Department of Applied Mathematics at the University of Colorado at Boulder
University of Colorado at Boulder Search A to Z Campus Map University of Colorado at BoulderCU Search Links
Print this page

Defining Matrices

06: Define Matrices

Define the following matrices:

m1 = 3×4 matrix of zeroes
m2 = the 3×3 matrix where row1=(1,2,0), row2=(2,5,-1), row3=(4,10,-1)
m3 = transpose of m2
m4 = matrix product of m2 and m3
m5 = sum of m2 and m3
m6 = elementwise product of m2 and m3
m7 = matrix inverse of m2
m8 = the 5×5 identity matrix

Mathematica:

m1 = Table[0, 3,4]
m2 = , , }
m3 = Transpose[m2]
m4 = m2 . m3
m5 = m2 + m3
m6 = m2 * m3
m7 = Inverse[m2]
m8 = IdentityMatrix[5]

Matlab:

m1 = zeros(3,4)
m2 = [ 1 2 0 ; 2 5 -1 ; 4 10 -1 ]
m3 = m2'
m4 = m2 * m3
m5 = m2 + m3
m6 = m2 .* m3
m7 = inv(m2)
m8 = eye(5)

Maple:

with(LinearAlgebra):
m1 := Matrix(3,4);
m2 := Matrix([[1,2,0], [2,5,-1], [4,10,-1]]);
m3 := Transpose(m2);
m4 := m2 . m3;
m5 := m2 + m3;
  ----
m7 := MatrixInverse(m2);
m8 := IdentityMatrix(5);

IDL:

m1 = fltarr(4,3)
m2 = [ [1,2,0], [2,5,-1], [4,10,-1] ]
m3 = transpose(m2)
m4 = m3 # m2
m5 = m2 + m3
m6 = m2 * m3
m7 = invert(m2)
m8 = identity(5)