``SuperCalculator'' In the Mathematica examples below, boldface type is Input, regular type is Output.
Mathematica tries to do exact arithmetic on integers and symbols; floating point numbers (e.g. numbers with a decimal point) are treated differently in many cases.
{ Sqrt[2], Sqrt[2.0], Sqrt[9Pi], N[Sqrt[9Pi],20] }
{2^(1/2), 1.414213562373095, 3*Pi^(1/2), 5.3173615527165480819}
Expand[ (x+y)^3 ] Factor[ a^3 - 1 ] Simplify[ (x+y)^2-(x-y)^2 ] x^3 + 3*x^2*y + 3*x*y^2 + y^3 (-1 + a)*(1 + a + a^2) 4*x*y
{ (2-3I)(4+I), Sqrt[-1.2+0.3I], E^(I Pi) }
{11 - 10*I, 0.1358890865472614 + 1.103841403392104*I, -1}
Solve[x^2 - x == 1, x]
{{x -> (1 - 5^(1/2))/2}, {x -> (1 + 5^(1/2))/2}}
Solve[ x^2 - x == 1.0, x]
{{x -> -0.6180339887498949}, {x -> 1.618033988749895}}
soln = Solve[ x^5 + x^3 - x == 20, x ]
{ToRules[Roots[-x + x^3 + x^5 == 20, x]]}
...but numerical solutions, to any given precision, are always available:
soln // N
{{x -> -1.372125450681085 - 1.095936744606096 I},
{x -> -1.372125450681085 + 1.095936744606096 I},
{x -> 0.4973294258052813 - 1.859979470929126 I},
{x -> 0.4973294258052813 + 1.859979470929126 I},
{x -> 1.749592049751608}}
x /. N[soln]
{-1.372125450681085 - 1.095936744606096 I,
-1.372125450681085 + 1.095936744606096 I,
0.4973294258052813 - 1.859979470929126 I,
0.4973294258052813 + 1.859979470929126 I, 1.749592049751608}
Solve[ { x+y==3, 2x-3y==7 }, {x,y} ]
{{x -> 16/5, y -> -1/5}}
nlroots = FindRoot[{2 a b == Sin[b]+3, b==7^a },
{a, 0, 1}, {b, 1, 9}, WorkingPrecision -> 40]
{a -> 0.5508994143246705000988269421867181741894,
b -> 2.9212183179654732633290233970612014287913}