A=[1 2 3;6 5 4;1 2 4]
and don't type a semicolon, because you want to see the output.
A=[ 1 2 3; 6 5 4; 1 2 4]
B=[ 1 -2 -3; -6 5 -4; -1 -2 4]
and they are the same dimension, then you can add them:
A + B =
2 0 0
0 10 0
0 0 8
.
You can subtract them:
A - B =
0 4 6
12 0 8
2 4 0
.
Or you can multiply them:
A * B =
-14 2 1
-28 5 -22
-15 0 5
.
Scalar multiplication works the same way:
3 * A =
3 6 9
18 15 12
3 6 12
.
A\b
For A=[1 2 3;6 5 4;1 2 4] and b=[1 ; 13 ; 0], you should get
2.0000
1.0000
-1.0000
det(A)
Using the above matrix A, you should get -7.
inv(A)
Using the above matrix A, you should get
-1.7143 0.2857 1.0000
2.8571 -0.1429 -2.0000
-1.0000 0.0000
1.0000
[V,D]=eig(A)
Using the above matrix A, you should get
V =
0.5847
-0.3475 0.1312
-0.7825
-0.8529 -0.8186
0.2141
-0.3895 0.5591
D =
-0.5779
0 0
0 9.2714
0
0 0 1.3065
The eigenvalues are located along the matrix D and the correpsonding eigenvectors are the columns of V