f
APPM 3010 Schedule (Fall 2012)
Wk Date Ch Sec Topic Assignments Due
1 27 1   Terminology      
  29 2 2,4 One-d flows, qualitative analysis      
  31     Chaos, the video Ch 2 §1 #1, 2, 4 §2 #3, 4 §3 #4 §4 #4 §8 #2, 6 12-Sep
  Sept-3   LABOR DAY      
2 5     Discussion Groups—Video      
  7   4,8 Linear Stability, Numerics      
3 10 3 1,2 Bifurcations: Saddle Node & transcritical      
  12     HW Presentations, Bifurcation Theory   Solutions for Problem2.8.6  
  14 3 4,5 Bead on a Wire Ch 3 §1 #1, 2, 5; §2 #3, 5; §4 #4, 12; §5 #4; §7 #4 26-Sep
4 17   5,6 Catastrophe (cusp bifurcations)      
  19 10 1 Fixed Points, and Cobwebs      
  21   2 Bifurcations etc. Logistic Map      
5 24   2 Logistic Map, Part II      
  26     HW Presentations and Period 2   Solutions for 3.7.4  
  28   3 Logistic Lab Logistic Map: Computer Lab (Project Selection Due) Lab is HW#3 3-Oct
6 Oct-1   4 PeriodDoublings  
  3     Periodic 3 -> Chaos  
  5   5 Lyapunov Exponents      
7 8   Lyapunov and Chaos Ch 10 §1 #10,11; §2 #4,6,8; §3 #4,13; §4 #2,6; §6 #5 17-Oct
  10     Chaos and Binary Shift      
  12   4 Universality      
8 15   6 Renormalization      
  17   Arcadia by Tom Stoppard A class reading of several scenes  
  19 11   Fractals and Dimension   Solutions for HW 4  
9 22 Self-Similarity
  24 5 Classification of Linear Systems Ch 5 §1 #7,10; §2 #4,8,10 E.C. #14 Nov-7
  26 6 1,2 Linear systems, Nullclines Ch 6 §1 #6,11; §3: #2,6,7, §5: #5 Nov-7
10 29     Computer Demos, Phase Plane      
31   3 Linearization about Fixed Points      
  Nov-2   5 Conservative Systems   Project Proposal Due!  
11 5 7 1 Limit Cycles Def.      
HW in class      
  2 Gradient Systems and Lyapunov Functions    
12 12   3 Poincare Bendixson Theorem      
  14 9 1 Lorenz Model-the Water wheel      
  16 2 Lorenz Analysis      
13 19     FALL BREAK
  21     FALL BREAK
  23     FALL BREAK
14 26   Lorenz Analysis-Lyapunov      
  28   Poincare & Stoboscopic Maps, Std Map      
  30   Fixed Points and Stability  
15 Dec-3   Std Map Lab   ECCR 225, the Macintosh Computer Lab. Dec 7
  5 12 2 Henon Attractor, Dimension      
  7 12 1 Baker's Transformation, Horseshoe      
16 10     Symbolic Dynamics    
  12   Presentations   Ethan Oehring & Eric James  
  14     Presentations   Randell Callahan & Mackenzie Green Written Proposals Due
  18   Final Presentations 7:30-10:00PM   Everyone Else