\chapter{Introduction} % chapter 1 \label{introchap} % for reference (\ref{introchap}) This sample document illustrates how to use the {\tt thesis} class, originally written by John P. Weiss and updated by Bruce Fast. The necessary file, \verb2thesis.cls2, is on all the main computer systems of C.U.Boulder, and can be downloaded from the web site \verb2http://www.colorado.edu/its/docs/latex/thesis/2. Some requirements of the Graduate School are written into that file; page size, line spacing, appropriate placement of captions for tables and figures, etc. Other tasks of conforming to the requirements are left to other existing \LaTeX{} packages. For example, a common problem is to insert graphics --- figures and tables --- into the body of the thesis. For this one should use the {\tt graphicx} package, which is part of the standard \TeX{} distribution. Likewise, the Grad School specs say that a large table may be displayed in landscape mode at reduced size, but its caption must also be in rotated position, in the same font and size as the normal text in the body of the thesis. To accomplish this, the user must invoke the {\tt rotating} package, the use of which is illustrated in this document. See Table \ref{tbl:sidewaysT} and Fig. \ref{fig:sidewaysF}. More illustrations of the use of \verb2\label{}2 and \verb2\ref{}2: see \S\ref{ss} and \S\ref{sss}. You might enjoy \S\ref{mathchapter} % ...see \label{mathchapter} more than \S\ref{introchap}. And undoubtedly you will like \S\ref{sec:end} % in ch2.tex better than either \S\ref{sec:cata}, % in ch2.tex Table \ref{tbl:sample3}, % in ch2.tex or equation (\ref{eq:centerline}). % in ch2.tex \medskip \section{Example of included image} \begin{figure}[htbp] \begin{center} \leavevmode \setlength{\unitlength}{3947sp}% \begingroup\makeatletter\ifx\SetFigFont\undefined% \gdef\SetFigFont#1#2#3#4#5{% \reset@font\fontsize{#1}{#2pt}% \fontfamily{#3}\fontseries{#4}\fontshape{#5}% \selectfont}% \fi\endgroup% \begin{picture}(3924,1074)(1714,-2773) \thinlines \put(1726,-2761){\framebox(3900,1050){}} \put(4801,-2011){\line(-1,-6){ 61.432}} \put(4742,-2380){\line( 2,-1){335.200}} \put(5076,-2550){\line( 1, 1){264}} \put(5340,-2286){\line(-1, 2){167.600}} \put(5170,-1952){\line(-6,-1){368.595}} \put(2026,-1861){\line( 1, 0){1875}} \put(3901,-1861){\line(-6,-1){1641.892}} \put(2251,-2086){\line( 1, 0){2325}} \put(1876,-2536){\framebox(150,375){}} \put(2251,-2386){\makebox(0,0)[lb]{\smash{\SetFigFont{12}{14.4}{\rmdefault} {\mddefault}{\updefault}Saved as a \LaTeX{} figure??}}} \end{picture} \caption{A \LaTeX{} ``figure'', using {\tt $\backslash$framebox}} \label{fig:latexfig} \end{center} \end{figure} Figure \ref{fig:combustion} shows something or other; the image is from a PostScript file which is imported into this document using the \verb2graphicx2 package (notice that the \LaTeX{} command \verb2\usepackage{graphicx}2 appears near the very top of the main \LaTeX{} file) and the \verb2\includegraphics{...}2 command. \begin{figure}[htbp] \begin{center} \leavevmode \includegraphics[width=130mm]{figures/comb.eps} \caption[A figure imported from a PostScript file]{ The combustion zone in a rocket motor chamber is thin relative to the radius of the chamber, etc. How did this image get into the thesis? I used the {\tt $\backslash$includegraphics} command, which is defined in the {\tt graphicx} package. (The ``sub-captions'' are part of the PostScript image.)} \label{fig:combustion} \end{center} \end{figure} \begin{singlespacing} \subsection{Use of $\backslash${\tt includegraphics}:} \noindent Use \indent \verb2\includegraphics[2\emph{options}\verb3]{figX.eps}3\\ or \indent \verb2\includegraphics*[2\emph{options}\verb3]{figX.eps}3,\\ where the starred form clips the image so that nothing outside the image bounding box will appear in the document. The options include any of the following, in any order, separated by commas: \begin{itemize} \item \verb9bb=llx lly urx ury9 ~ ~ -- bounding box coordinates, overriding any in the image file itself \item \verb9angle=9\emph{angle} ~ ~ -- in degrees, counterclockwise \item \verb9width=9\emph{width} ~ ~ -- specify units, e.g., {\tt 85mm} \item \verb9height=9\emph{height} ~ ~ -- specify units, e.g., {\tt 60mm} \item \verb9scale=9\emph{factor} ~ ~ -- e.g., 0.5 = half-size \item \verb9clip=9\emph{true/false} ~ ~ -- {\tt clip=true} is equivalent to using the starred version \item \verb9draft=9\emph{true/false} ~ ~ -- {\tt draft=true} inserts a correctly-sized blank rectangle \end{itemize} \noindent Additionally, you can insert the \verb9\includegraphics9 command within one of these commands; \begin{itemize} \item \verb9\scalebox{h_scale}[v_scale]{9\emph{text}\verb9}9 ~ -- \verb9v_scale9 is optional \item \verb9\resizebox{h_length}{v_length}{9\emph{text}\verb9}9 ~ -- optionally use \verb9!9 for one of the lengths \item \verb9\reflectbox{9\emph{text}\verb9}9 ~ -- reflects the contents horizontally \item \verb9\rotatebox{angle}{9\emph{text}\verb9}9 ~ -- alternative to using \verb9\angle=9 option (above) \end{itemize} \end{singlespacing} \subsection{Question: What are the issues in studying this subject?} A major goal in studying solid fuel rocket motors is to create a model of the dynamics of a motor chamber. This involves two major goals: the combustion zone and the acoustic zone. Figure \ref{fig:combustion} shows this. The combustion zone consists of the thin layer above the solid fuel where the gasification of the fuel takes places. The zone is very reactive and highly turbulent. The acoustic-vortical zone is the volume of gas above the combustion zone. Within this zone, the gas is non-reactive and contains acoustic waves and vorticity. \section{Lists in {\tt thesis} class} In {\tt thesis} class (for Colorado University), lists are defined so that nested lists will be numbered or marked appropriately. First, an itemized (non-enumerated) list prefaces each item with a bullet. Nested itemized list use asterisks, then dashes, then dots. These lists are typed between the \verb2\begin{itemize}2 and \verb2\end{itemize}2 commands. \begin{itemize} \item{} This is ``itemized'' item A. \item{} This is ``itemized'' item B. \item{} This is ``itemized'' item C. \begin{itemize} \item{} This is ``itemized'' subitem A. \begin{itemize} \item{} This is ``itemized'' subsubitem A. \begin{itemize} \item{} This is ``itemized'' subsubsubitem A. \end{itemize} \item{} This is ``itemized'' subsubitem B. \end{itemize} \item{} This is ``itemized'' subitem B. \end{itemize} \item{} This is ``itemized'' item D. \end{itemize} Enumerated lists use the commands \verb2\begin{enumerate}2 and \verb2\end{enumerate}2, and nested enumerations appear like this. \begin{enumerate} \item{} This is ``enumerated'' item A. \item{} This is ``enumerated'' item B. \item{} This is ``enumerated'' item C. \begin{enumerate} \item{} This is ``enumerated'' subitem A. \begin{enumerate} \item{} This is ``enumerated'' subsubitem A. \begin{enumerate} \item{} This is ``enumerated'' subsubsubitem A. \end{enumerate} \item{} This is ``enumerated'' subsubitem B. \end{enumerate} \item{} This is ``enumerated'' subitem B. \end{enumerate} \item{} This is ``enumerated'' item D. \end{enumerate} The work presented here\footnote{Footnotes are handled neatly by \LaTeX.} is an extension of Lao\cite{lao:thesis} and Lao et~al.\cite{lao:paper} The driving frequency is on the order of the inverse of the axial acoustic time scale, $t_A'= L'/C_0'$, where $L'$ is the length of the cylinder and $C_0'$ is the reference speed of sound.\footnote{Remember the traditional method of calculating the distance of lightning? See the flash, count seconds until you hear the thunder, divide by five, that's the number of miles. That assumes $C_0=\frac{1 mi.}{5 s}$.} Radial and azimuthal velocities\footnote[5]{gratuitous footnote} are found to vanish exponentially fast in the downstream direction, as suggested by Table \ref{powertable}. \begin{table}[htb] \label{powertable} \caption[Example of a table with its own footnotes]{ Here is an example of a table with its own footnotes. Don't use the $\backslash${\tt footnote} macro if you don't want the footnotes at the bottom of the page. Also, note that in a thesis the caption goes \emph{above} a table, unlike figures. } \begin{center} \begin{tabular}{||l|c|c|c|c||} \hline & $S$ & $P$ & $Q^{\ast}$ & $D^{\dagger}$ \\ % footnote symbols! wave form & (kVA) & (kW) & (kVAr) & (kVAd) \\ \hline \hline Fig. \ref{fig:latexfig} & 25.87 & 25.83 & 1.3 & $\approx 0$ \\ \hline Fig. \ref{fig:combustion}a & 25.48 & 25.00 & -2.82 & 4.03 \\ \hline Fig. \ref{fig:combustion}b & 25.11 & 18.02 & -9.75 & 14.52 \\ \hline Table \ref{tbl:sample2} & 24.98 & 22.26 & 9.19 & 6.64 \\ \hline Fig. \ref{tbl:sidewaysT} & 23.48 & 15.00 & 6.59 & 16.82 \\ \hline Fig. \ref{fig:pyramid} & 24.64 & 22.81 & -0.44 & 9.3 \\ \hline Fig. \ref{fig:sidewaysF} & 23.03 & 18.01 & 3.36 & 13.95 \\ \hline \end{tabular} \\ \rule{0mm}{5mm} ${}^\ast$kVAr means reactive power. % footnote symbol \\ ${}^\dagger$kVAd means distortion power. % footnote symbol \end{center} \end{table} These results provide an analytical explanation of those found from computational analysis by Fabnis et~al.\cite{fabnis} The non-axisymmetric flow near the endwall contains cross-sectional velocity patterns that include flow across the cylinder axis. A viscous boundary layer adjacent to the sidewall and near the endwall is studied to find the transition between the transient core flow and the no-slip condition on the sidewall. It is found, as in Lao et~al.\cite{lao:paper}, that the azimuthal component of the vorticity is proportional to the inverse of the Mach number. In addition, the axial component of the vorticity driven by the non-axisymmetric boundary condition at the endwall is also found to be proportional to the the inverse of the Mach number.