
ACM 11: Homework 3

Assigned Tuesday October 14, 2008. Due Wednesday October 22 at noon. 50 points. Instruc-
tions are identical to Homework 2. Please display your email address so we can email grades.
Specifically, here are the instructions:

Create a directory entitled Firstname Lastname 3, where you replace Firstname and Lastname
with your first and last names, respectively. Save your solution to this problem set in this directory;
when finished, follow the directions on the course site to submit the directory by FTP. The main
program– the one that the TAs will execute– should be named main.m; give the auxiliary functions
referred to in the assignment reasonable names. If you need to submit revisions of your solution,
follow the instructions provided on the course site.

Begin main.m with a title comment containing your name and email address. This information
should also be displayed in the command window when your script runs. Output the answers to
all questions to the command window, properly labeled, including the problem number; if you
output a number, indicate what has been measured, and if you provide an explanation, indicate
what phenomenon you are explaining. All values in the command windows should be the result of
deliberate display statements (e.g. disp or fprintf) and not MATLAB default evaluations! This
documentation is required! Put simply, your output should be easy to read and understandable
without reference to your code. Your grade will be almost entirely determined by the output of
main.m, not the code itself.

Each graph that is requested, or which you found useful while solving a problem (e.g. one which
supports an explanation), should be created in a new figure (using the figure command), properly
labeled, and referred to in your output by figure number. Be sure to put clear, clc, and close
all as the first executable instructions in main.m.

1. Raptors. Scientist/cartoonist Randall Munroe poses an interesting question about optimiza-
tion in his XKCD comic. We can answer question 2 (see Figure 1) using MATLAB . First,
formulate the problem as an ODE. Let the human position be h(t) ∈ R2, and a raptor’s
position r(t) ∈ R2. We assume a raptor is not good at predicting the human’s location, and
at any time t, the raptor runs directly at the human’s current position. If the raptor’s speed
is constant (for simplicity, we also assume instantaneous acceleration at the beginning) at,
say, vr, then we can model the raptor’s motion as

dr

dt
= vr

h(t)− r(t)
‖h(t)− r(t)‖2

(1)

The three raptors each satisfy this ODE separately, i.e. their motions are not coupled. How-
ever, the x and y components of a raptor’s motion are coupled, so we have 2-dimensional
ODEs.

For simplicity, we assume the person runs in a constant direction and at a constant speed;
thus h(t) = vht c

‖c‖2 + h(0), where c ∈ R2 is an initial direction. Then, substitute h(t) into
equation 1 to obtain dr

dt = F (r, t) for some function F .

We will use Munroe’s setup, with a small modification (and assuming instantaneous acceler-
ation). As in the comic, the human is at the center of a 20m equilateral triangle, and the
human has a top speed of 6 m/s and the healthy raptors have a top speed of 25 m/s. However,
if the injured raptor can only run at 10 m/s, then the best strategy for the human is to run
directly at the injured raptor. To make the problem more interesting, assume the injured
raptor can run at 20 m/s (bonus question: what is the critical speed of the injured raptor at
which the optimal strategy is no longer to run directly towards it?).

(a) Write a MATLAB function that, given an initial angle of the human, calculates the time
until the human is caught and devoured by the raptors (call this tdevour). Assume that
the human is “caught” when a raptor is within .1 meters. In MATLAB , use an ODE
solver such as ode45. To improve performance, you may reduce the absolute tolerance of

1

Figure 1: From the XKCD comic. We can use MATLAB to solve problem 2. The full comic can be
found at http://imgs.xkcd.com/comics/substitute.png

the solver to 10−3. How long will the human live if he/she runs at an angle of 30◦ degrees
above the horizontal? For grading, we will also test your function on an arbitrary angle.
Your function should accept angles in degrees; internally, you may convert to radians
using deg2rad if you wish. Hint: in the function you pass to the ODE solver, you may
declare dr

dt = 0 when ‖r(t)− h(t)‖2 < .1. This should improve performance. 15 points.

(b) Now, using one of MATLAB’s non-linear optimization functions (see help funfun for a
list of functions) in combination with the function from part (a), find the optimal angle
at which the human should run to maximize tdevour. What is the least optimal angle
(or, most optimal from the raptor’s point-of-view)? Is this surprising? 15 points.

Figure 2: An example of the output from
solving the raptor ODE (you do not need
to make a plot for your homework). The
person lives for less than half-a-second by
choosing to run at a 40◦ angle. It takes .60
seconds for the left raptor to reach the per-
son, .446 seconds for the right raptor, and
.509 seconds for the top (injured) raptor. If
the top raptor is seriously injured, the opti-
mal strategy is to run straight at it.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−5

0

5

10

x, distance in meters

y,
 d

ist
an

ce
 in

 m
et

er
s

Time until death: 0.44554 seconds with angle 40 deg

injured raptor
Raptors
you
0.60099
0.44554
0.50853

2

http://imgs.xkcd.com/comics/substitute.png

(c) Bonus: Solve the ODE analytically. Or, make a more advanced ODE model that accounts
for a limited predictive ability of the raptors (i.e. the raptors don’t run at the human’s
current position, but instead run at some predicted location of where the human will be
using, e.g., a linear model of the human’s movement, and a simple model of the intercept
time). Solve this advanced ODE numerically in MATLAB . Or, with this advanced model
(perhaps with some time delay added in), allow the human to run in a more complicated
pattern. Is there a clear strategy? Note: answering these questions would make for a
nice final MATLAB project.

2. Fast convolution. Consider two vectors f and g with lengths N1 and N2 respectively. We
define the vector f ? g of length N1 + N2 − 1 as follows:

(f ? g)(j) =
∞∑

i=−∞
f(i)g(1 + j − i) for j = 1, . . . , N1 + N2 − 1

with the convention that f(i) = 0 if i 6∈ [1, N1] and g(i) = 0 if i 6∈ [1, N2] (and hence the sum is
not really an infinite sum). If the vectors are assumed to start at 0 (f(i) = 0 if i 6∈ [0, N1−1]),
then the formula is (f ? g)(j) =

∑
i f(i)g(j − i) for j = 0, . . . , N1 + N2 − 2.

(a) Write a MATLAB function that takes as input two vectors f and g and returns the
convolution f ? g. Implement the convolution however you like, except do not use the
FFT. You may test your code for accuracy by using MATLAB’s conv function, but of
course you may not use conv within your funcion. To prove that your code works, seed
randn’s Ziggurat algorithm with the seed 2008, then define f = randn(80000,1); g =
randn(40000,1);, and display the 30th element of the output from your function (do
NOT print out the entire output!). 10 points.

(b) Now, write a new function that takes the same input and gives the same output, except
use the FFT in the calculations. Here’s how:
The FFT can be used to find the circular convolution of two vectors of the same length;
if you haven’t seen this result, then just accept it as fact. To perform this, the operation
is ifft(fft(f).*fft(g)). We transform f and g into the Fourier domain, where
convolution becomes element-wise multiplication, and then transform back to the original
domain via the Inverse FFT.
For f and g of different lengths, and if we want a normal convolution and not a circular
convolution (a circular convolution assumes the vector entries repeat periodically), we
can pad the vectors with zeros. In MATLAB , the fft function will automatically pad
with zeros if we call the function as fft(f,N) for any integer N >= length(f). For the
convolution, set N = N1 +N2−1 or larger (you may wish to make it larger, e.g. a power
of 2, for speed benefits). Is your code comparable in speed to MATLAB’s conv function?
Test your code as in part (a). 5 points.

(c) Keeping f fixed as before (with length 80000), vary the length of g from 10 to 10000 with
8 exponentially-spaced points (use MATLAB’s logspace function). Plot the execution
time of both convolution functions as a function of the length of g, and label the plot.
The y-axis should be logarithmic. 5 points.

3

