Final Exam
 APPM 5450 Spring 2016 Applied Analysis 2

Date: Wed, May. 42016
Instructor: Dr. Becker
Your name: \qquad
If the mathematical field is not specified, you may assume it is \mathbb{R} or \mathbb{C} at your convenience. The symbol \mathcal{H} denotes an arbitrary Hilbert space. Your proofs may use any major result discussed in class (if you are unsure, please ask). Spend your time on the problems worth a lot of points: problems worth more points are not necessarily harder. Partial credit is possible on all problems except the True/False.

Total points possible: 100.
For problems 1 and 2, PLEASE WRITE DIRECTLY ON THIS SHEET
Problem 1: (22 pts) Definitions and short answer, 2 points each.
(1) Define the Sobolev space $H^{s}(\mathbb{T})$ for $s>0$.
(2) State the Banach-Alouglu theorem, any variant
(3) What does it mean for $\left(\varphi_{n}\right) \subset \mathcal{S}$ to converge to a limit φ ?
(4) What does it mean for $\left(T_{n}\right) \subset \mathcal{S}^{*}$ to converge to a limit T ?
(5) State Fatou's lemma
(6) Let X and Y be normed linear spaces, and $T: X \rightarrow Y$ linear. Define what it means for T be compact.
(7) How can we make sense of $g(t)=\int_{\mathbb{R}} 1 \cdot e^{i \omega t} d \omega$?
(8) Let $f:(X, \mathcal{A}) \rightarrow(Y, \mathcal{B})$ and $g:(Y, \mathcal{B}) \rightarrow(Z, \mathcal{C})$ be measurable functions, and $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be σ-algebras on the spaces X, Y, Z respectively. Is $g \circ f:(X, \mathcal{A}) \rightarrow(Z, \mathcal{C})$ measurable? Briefly justify why it is, or give a counter-example why it is not.
(9) Let X be a linear space and $P: X \rightarrow X$ a projection. Is $\operatorname{ran}(P)$ necessarily closed? When $\operatorname{ran}(P)$ is closed, is P a bounded operator? (Prove or disprove).
(10) Give an example of a linear operator $T \in \mathcal{B}(X, Y)$ for Banach spaces X and Y that does not have closed range.
(11) Let $X=L^{4 / 3}([0,1])$. Is the set $D=\{f \in X:\|f\|=1\}$ weakly closed? Briefly justify or provide a counterexample.

Problem 2: (32 pts) Mark true/false (or yes/no). No justification needed. 2 points each.
(1) Let $\left(f_{n}\right) \subset H^{1}$ where $H^{1} \subset L^{2}(\mathbb{R})$ is a Sobolev space. If there is $f \in L^{2}$ such that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L^{2}}=0$, is $f \in H^{1}$?
(2) Let ∂ be the differential operator on L^{2} that maps $f \in H^{1}$ to its weak derivative ∂f (so ∂ is not defined on all of L^{2}). Is ∂ a bounded linear operator with respect to $L^{2}(\mathbb{R})$? \qquad
(3) If a linear operator is compact, then it is also bounded.
(4) Let X be a normed linear space and $T: X \rightarrow X$ a linear operator (not necessarily bounded), and let $x=\sum_{n=1}^{\infty} \alpha_{n} x_{n} \in X$ for $x_{n} \in X$ and scalars α_{n}. Then $T(x)=\sum_{n=1}^{\infty} \alpha_{n} T\left(x_{n}\right)$. \qquad
(5) Let X be a normed linear space. If X is reflexive, then it must be Banach. \qquad
\qquad
(6) If $\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x$ exists in the Riemann sense, then f is Lebesgue integrable. \qquad
(7) All subspaces are closed.
(8) In a separable Banach space, a Schauder basis is a set such that every element of the Banach space can be written as a finite linear combination of basis elements. \qquad
(9) Every Hilbert space has an orthonormal basis. \qquad
(10) The right-shift operator \mathcal{S} on $\ell^{\infty}(\mathbb{N})$ is onto.
(11) Let X be a normed linear space. We say a sequence $\left(\varphi_{n}\right) \subset X^{*}$ converges to φ in the weak* sense if it converges weakly with respect to $X^{* *}$, i.e., $\forall f \in X^{* *}, f\left(\varphi_{n}\right) \rightarrow f(\varphi)$. \qquad
(12) Let X, Y be normed linear spaces and $X \subset Y$. If $\left(x_{n}\right) \subset X$ converges weakly with respect to X, does it also converge weakly with respect to Y ? \qquad
(13) If P is an orthogonal projection on a Hilbert space \mathcal{H} then $\mathcal{H}=\operatorname{ran}(P) \oplus \operatorname{ker}(P)$. \qquad
(14) Let H be the heaviside function $H(x)=1$ if $x \geq 0$ and $H(x)=0$ if $x<0$. Then the regular distribution T_{H} has a weak derivative. \qquad
(15) Define $g(t)=\int_{-1}^{1} s^{3} e^{i s t} d s$. Is $g \in L^{1}(\mathbb{R})$? \qquad
(16) (For the same g as above). Is $g \in L^{2}(\mathbb{R})$? \qquad

Problem 3: $(5 \mathrm{pts})$. Let $\left(e_{n}\right) \subset \mathcal{H}$ be any orthonormal set. Prove $e_{n} \rightharpoonup 0$.
Problem 4: (5 pts). Let $A \in \mathcal{B}(\mathcal{H})$ be a compact self-adjoint operator. Prove that for all $R>0$, there are only finitely many eigenvalues with magnitude greater than R.

Problem 5: (10 pts). Let $f \in L^{2}(\mathbb{R})$ and \mathcal{F} represent the Fourier transform on $L^{2}(\mathbb{R})$.
(1) (5 pts). How is \mathcal{F} defined?
(2) (5 pts). If f is non-negative, prove

$$
(\mathcal{F} f)(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(x) e^{-i \omega x} d \lambda
$$

is well-defined (using the Lebesgue measure λ)
Problem 6: (5 pts). Let X be a normed vector space, and $x_{n} \rightharpoonup x$. Prove $\left(\left\|x_{n}\right\|\right)$ is bounded.
Problem 7: (10 pts). Cantor set. Define $F_{1}=[0,1 / 3] \cup[2 / 3,1]$, and then remove the middle third of each interval to define $F_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup[8,9,1]$, and remove the middle third of each interval of F_{2} to define F_{3}, and construct all F_{n} in this recursive fashion. Then the closed set $F \stackrel{\text { def }}{=} \cap_{n=1}^{\infty} F_{n}$ is called the Cantor set. A number $x \in[0,1]$ belongs in F if and only if it has a base three expansion (which may not be unique) that contains no 1^{\prime} s, e.g., $1 / 3=0.1 \overline{0}$ in base 3 , but we can also write $1 / 3=0.02 \overline{2}$, hence $1 / 3 \in F$.
(1) (7 pts) Prove that the Lebesgue measure of F is zero, i.e., $\lambda(F)=0$.
(2) (3 pts) Prove F is uncountable, and hence there exist uncountable sets with zero Lebesgue measure.

Problem 8: (10 pts). Let $0 \neq g \in L^{p}(\mathbb{R})$ for $1<p<\infty$ be a fixed function, and $f_{n}(x) \xlongequal{\text { def }} g(x) \sin (n \pi x)$.
(1) (7 pts) Prove $f_{n} \rightharpoonup 0$.
(2) (3 pts) Prove f_{n} does not converge strongly. (Remark: g is arbitrary - you cannot choose it. For example, g may be the indicator function of the real numbers on $[0,1]$.)

Problem 9: (1 pt) Prove that for $1<p<\infty$, the dual of $\ell^{p}(\mathbb{N})$ is $\ell^{q}(\mathbb{N})$ where $p^{-1}+q^{-1}=1$.

