Final Exam APPM 5450 Spring 2016 Applied Analysis 2

Date: Wed, May. 4 2016 Instructor: Dr. Becker

Your name: ____

If the mathematical field is not specified, you may assume it is \mathbb{R} or \mathbb{C} at your convenience. The symbol \mathcal{H} denotes an arbitrary Hilbert space. Your proofs may use any major result discussed in class (if you are unsure, please ask). Spend your time on the problems worth a lot of points: problems worth more points are not necessarily harder. Partial credit is possible on all problems except the True/False.

Total points possible: 100.

For problems 1 and 2, PLEASE WRITE DIRECTLY ON THIS SHEET

Problem 1: (22 pts) Definitions and short answer, 2 points each.

(1) Define the Sobolev space $H^s(\mathbb{T})$ for s > 0.

(2) State the Banach-Alouglu theorem, any variant

(3) What does it mean for $(\varphi_n) \subset S$ to converge to a limit φ ?

(4) What does it mean for $(T_n) \subset S^*$ to converge to a limit T?

(5) State Fatou's lemma

(6) Let X and Y be normed linear spaces, and $T: X \to Y$ linear. Define what it means for T be compact.

(7) How can we make sense of $g(t) = \int_{\mathbb{R}} 1 \cdot e^{i\omega t} d\omega$?

(8) Let $f : (X, \mathcal{A}) \to (Y, \mathcal{B})$ and $g : (Y, \mathcal{B}) \to (Z, \mathcal{C})$ be measurable functions, and $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be σ -algebras on the spaces X, Y, Z respectively. Is $g \circ f : (X, \mathcal{A}) \to (Z, \mathcal{C})$ measurable? Briefly justify why it is, or give a counter-example why it is not.

(9) Let X be a linear space and $P: X \to X$ a projection. Is ran(P) necessarily closed? When ran(P) is closed, is P a bounded operator? (Prove or disprove).

(10) Give an example of a linear operator $T \in \mathcal{B}(X, Y)$ for Banach spaces X and Y that does not have closed range.

(11) Let $X = L^{4/3}([0,1])$. Is the set $D = \{f \in X : ||f|| = 1\}$ weakly closed? Briefly justify or provide a counterexample.

Problem 2: (32 pts) Mark true/false (or yes/no). No justification needed. 2 points each.

(1)	Let $(f_n) \subset H^1$ where $H^1 \subset L^2(\mathbb{R})$ is a Sobolev space. If there is $f \in L^2$ such that $\lim_{n \to \infty} f_n - f _{L^2} = 0$, is $f \in H^1$?
(2)	Let ∂ be the differential operator on L^2 that maps $f \in H^1$ to its weak derivative ∂f (so ∂ is not defined on all of L^2). Is ∂ a bounded linear operator with respect to $L^2(\mathbb{R})$?
(3)	If a linear operator is compact, then it is also bounded.
(4)	Let X be a normed linear space and $T: X \to X$ a linear operator (not necessarily bounded), and let $x = \sum_{n=1}^{\infty} \alpha_n x_n \in X$ for $x_n \in X$ and scalars α_n . Then $T(x) = \sum_{n=1}^{\infty} \alpha_n T(x_n)$
(5)	Let X be a normed linear space. If X is reflexive, then it must be Banach. \dots
(6)	If $\lim_{R\to\infty} \int_{-R}^{R} f(x) dx$ exists in the Riemann sense, then f is Lebesgue integrable
(7)	All subspaces are closed.
(8)	In a separable Banach space, a Schauder basis is a set such that every element of the Banach space can be written as a finite linear combination of basis elements
(9)	Every Hilbert space has an orthonormal basis.
(9) (10)	Every Hilbert space has an orthonormal basis
(9)(10)(11)	Every Hilbert space has an orthonormal basis
(9)(10)(11)(12)	Every Hilbert space has an orthonormal basis
 (9) (10) (11) (12) (13) 	Every Hilbert space has an orthonormal basis
 (9) (10) (11) (12) (13) (14) 	Every Hilbert space has an orthonormal basis
 (9) (10) (11) (12) (13) (14) (15) 	Every Hilbert space has an orthonormal basis

Problem 3: (5 pts). Let $(e_n) \subset \mathcal{H}$ be any orthonormal set. Prove $e_n \rightharpoonup 0$.

Problem 4: (5 pts). Let $A \in \mathcal{B}(\mathcal{H})$ be a compact self-adjoint operator. Prove that for all R > 0, there are only finitely many eigenvalues with magnitude greater than R.

Problem 5: (10 pts). Let $f \in L^2(\mathbb{R})$ and \mathcal{F} represent the Fourier transform on $L^2(\mathbb{R})$.

- (1) (5 pts). How is \mathcal{F} defined?
- (2) (5 pts). If f is non-negative, prove

$$(\mathcal{F}f)(\omega) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-i\omega x} d\lambda$$

is well-defined (using the Lebesgue measure λ)

- **Problem 6:** (5 pts). Let X be a normed vector space, and $x_n \rightharpoonup x$. Prove $(||x_n||)$ is bounded.
- **Problem 7:** (10 pts). Cantor set. Define $F_1 = [0, 1/3] \cup [2/3, 1]$, and then remove the middle third of each interval to define $F_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8, 9, 1]$, and remove the middle third of each interval of F_2 to define F_3 , and construct all F_n in this recursive fashion. Then the closed set $F \stackrel{\text{def}}{=} \bigcap_{n=1}^{\infty} F_n$ is called the Cantor set. A number $x \in [0, 1]$ belongs in F if and only if it has a base three expansion (which may not be unique) that contains no 1's, e.g., $1/3 = 0.1\overline{0}$ in base 3, but we can also write $1/3 = 0.02\overline{2}$, hence $1/3 \in F$.
 - (1) (7 pts) Prove that the Lebesgue measure of F is zero, i.e., $\lambda(F) = 0$.
 - (2) (3 pts) Prove F is uncountable, and hence there exist uncountable sets with zero Lebesgue measure.
- **Problem 8:** (10 pts). Let $0 \neq g \in L^p(\mathbb{R})$ for $1 be a fixed function, and <math>f_n(x) \stackrel{\text{def}}{=} g(x) \sin(n\pi x)$.
 - (1) (7 pts) Prove $f_n \rightarrow 0$.
 - (2) (3 pts) Prove f_n does not converge strongly. (Remark: g is arbitrary you cannot choose it. For example, g may be the indicator function of the real numbers on [0, 1].)

Problem 9: (1 pt) Prove that for $1 , the dual of <math>\ell^p(\mathbb{N})$ is $\ell^q(\mathbb{N})$ where $p^{-1} + q^{-1} = 1$.