
Final Exam Selected Solutions
APPM 5450 Spring 2016 Applied Analysis 2

Date: Wed, May. 4 2016
Instructor: Dr. Becker Your name:

If the mathematical field is not specified, you may assume it is R or C at your convenience. The symbol
H denotes an arbitrary Hilbert space. Your proofs may use any major result discussed in class (if you are
unsure, please ask). Spend your time on the problems worth a lot of points: problems worth more points
are not necessarily harder. Partial credit is possible on all problems except the True/False.

Total points possible: 100.
For problems 1 and 2, PLEASE WRITE DIRECTLY ON THIS SHEET

Problem 1: (22 pts) Definitions and short answer, 2 points each.

(1) Define the Sobolev space Hs(T) for s > 0.
Solution: {f = 1/

√
2π
∑
n∈N f̂ne

inx ∈ L2(T) |
∑
n∈N n

2s|f̂n|2 <∞}. A response such as “functions
with s-weak derivatives” did not get full credit as we need a definition like this to make sense of a
non-integer weak derivative.

(2) State the Banach-Alouglu theorem, any variant
Solution: The unit ball is either (1) weakly compact, in a Hilbert space or reflexive Banach space,

or (2) weak-* compact in a Banach space. The theorem does not apply to a general normed linear
space — it must be at least Banach.

(3) What does it mean for (ϕn) ⊂ S to converge to a limit ϕ?
Solution: It means for all α, β multi-indices, then ‖ϕn − ϕ‖α,β → 0. The pseudo-norm is defined

in eq. (11.3).
(4) What does it mean for (Tn) ⊂ S∗ to converge to a limit T?

Solution: This means weak-* convergence, i.e., for all ϕ ∈ S, 〈Tn, ϕ〉 → 〈T, ϕ〉.
(5) State Fatou’s lemma

Solution: If fn ≥ 0 are measurable functions, then
∫

lim inf fn ≤ lim inf
∫
fn. A good number of

students forgot to require fn ≥ 0 (about a quarter of students did not get full credit).
(6) Let X and Y be normed linear spaces, and T : X → Y linear. Define what it means for T be compact.

Solution: Maps bounded sets to precompact sets is one possible answer; you lost points if you
said mapped bounded sets to compact sets, since the operator need not map closed sets to closed sets
(unless, e.g., it has a continuous inverse).

(7) How can we make sense of g(t) =
∫
R 1 · eiωt dω?

Solution: We can think of 1 as in S∗, and then g is its Fourier transform, so also in S∗, and in fact
it is just a (scaled) delta function. Full credit awarded if you mentioned δ or “in the distributional
sense” or similar.

(8) Let f : (X,A) → (Y,B) and g : (Y,B) → (Z, C) be measurable functions, and A,B, C be σ-algebras
on the spaces X,Y, Z respectively. Is g ◦ f : (X,A)→ (Z, C) measurable? Briefly justify why it is, or
give a counter-example why it is not.

Solution: True, straightforward.
(9) Let X be a linear space and P : X → X a projection. Is ran(P ) necessarily closed? When ran(P ) is

closed, is P a bounded operator? (Prove or disprove).
Solution: (1) ran(P ) is not necessarily closed (but the range is always a subspace – so your answer

should be consistent with your answer about closed subspaces in the T/F section).
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(2) Yes, if range is closed, it is bounded, since the range is {x : x = Px}, so if xn → x then
Pxn = xn → x and since the range is closed, Pxn → Py for some y, hence x = y and Pxn → Px,
meaning P is sequentially continuous and hence bounded. (In fact, P is bounded if and only if its
range is closed).

Many students assumed that if the range is closed, then P is orthogonal. This is not true; it is true
that P orthogonal means the range is closed; and it is true that given a closed subspace M , you can
define a unique orthogonal projection that has range M , but you could also define many non-unique
non-orthogonal with range M .

More than half the class did poorly on this question! See Fig. 1 for a brief sketch of an example
non-orthogonal projection. We have the basic results: a projection is bounded iff its range is closed;
and the norm is 1 (or 0) iff the projection is orthogonal (Problem 3 from HW 4).

(10) Give an example of a linear operator T ∈ B(X,Y ) for Banach spaces X and Y that does not have
closed range.

Solution: We need to violate that ‖Tx‖ ≥ c‖x‖ for all x. Take X = Y = `2(N) and define
T (x) = (x1, 1/2x2, 1/3x3, . . .) so then it is clear that T−1 is not a bounded linear operator; if the
range were closed, then it would be complete, and the open mapping theorem would imply that T−1

actually is bounded.
Another way to think of it is to find any T such that 0 ∈ σc(T ).
Another good example is

(
Tf
)
(x) = xf(x) on L2([0, 1]), and we know from class that σc(T ) =

[0, 1].
About half the students did poorly on this question.

(11) Let X = L4/3([0, 1]). Is the set D = {f ∈ X : ‖f‖ = 1} weakly closed? Briefly justify or provide a
counterexample.

Solution: False. For example, take any orthonormal basis (en) ⊂ L2([0, 1]) ⊂ L4/3([0, 1]) (the Lp
spaces are nested on compact intervals), then with respect to L2, en ⇀ 0, and because (L4/3)∗ =
L4 ⊂ L2 = (L2)∗, it follows en ⇀ 0 with respect to L4/3 as well, hence we have a sequence (en) ⊂ D
but the weak limit is not in D, so D is not weakly closed.

More than half the class did poorly on this question. It was not intended to be a trick question
(we used the notation D for ‖f‖ = 1, while we typically use B for ‖f‖ ≤ 1). The Banach-Alouglu
theorem applies to the closed unit ball B, not its boundary D. See problems 3 and 4 from Homework
1.

Problem 2: (32 pts) Mark true/false (or yes/no). No justification needed. 2 points each.
More than a quarter of the class missed numbers 1, 7, 8, 11, 12, 14–16; no one missed 3

and 6; and the rest were missed by at least two people.

(1) Let (fn) ⊂ H1 where H1 ⊂ L2(R) is a Sobolev space.
If there is f ∈ L2 such that limn→∞ ‖fn− f‖L2 = 0, is f ∈ H1? Solution: False. H1 is complete
using its own norm, but not with the L2 norm.

(2) Let ∂ be the differential operator on L2 that maps f ∈ H1 to its weak derivative ∂f
(so ∂ is not defined on all of L2). Is ∂ a bounded linear operator with respect to L2(R)? Solution:
False, it is linear but not bounded, i.e., not sequentially continuous. H1 is dense in L2 (wrt L2 norm),
so if fn → f ∈ L2 \H1 where (fn) ⊂ H1, then if ∂ were sequentially continuous, it means in fact f
does have a weak derivative. It is continuous on S with the usual topology.

(3) If a linear operator is compact, then it is also bounded. Solution: True, since it maps bounded
sets to precompact sets, and precompact sets are necessarily bounded; any linear operator that maps
bounded sets to bounded sets has a bounded operator norm.

(4) Let X be a normed linear space and T : X → X a linear operator (not necessarily bounded),
and let x =

∑∞
n=1 αnxn ∈ X for xn ∈ X and scalars αn. Then T (x) =

∑∞
n=1 αnT (xn). Solution:

False. Because this is an infinite sum, we need to use sequential continuity, not linearity, and we do
not know T is sequential continuous unless it is bounded. This is true in finite dimensions, though,
since all linear operators are bounded then.
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(5) Let X be a normed linear space. If X is reflexive, then it must be Banach. Solution: True; we
are saying X = X∗∗ and any dual space is always complete.

(6) If limR→∞
∫ R
−R f(x) dx exists in the Riemann sense, then f is Lebesgue integrable. Solution:

False. If f is Riemann integrable, it is Lebesgue integrable, but this is not true for an improper
Riemann integral such as the one listed above.

(7) All subspaces are closed. Solution: False, though true in finite dimensions. For example, H1 ⊂
L2 is not closed (cf. T/F question 1 above); or, the set of all polynomials is clearly a subspace, but it
is not closed (since, e.g., on [0, 1], its closure under the sup-norm is C([0, 1]) via Weierstrass). Note
that the range of a linear operator is always a subspace, and not all linear operators have closed
range.

(8) In a separable Banach space, a Schauder basis is a set such that every element of the
Banach space can be written as a finite linear combination of basis elements. Solution: False,
this is the definition of a Hamel basis (and it holds regardless of completeness or separability of the
space); a Schauder basis relaxes the assumption that we have a finite linear combination. A lot of
students missed this question.

(9) Every Hilbert space has an orthonormal basis. Solution: True (though it requires the axiom
of choice, so a False answer would be acceptable if you wrote that you do not believe the axiom of
choice).

(10) The right-shift operator S on `∞(N) is onto. Solution: False.
(11) Let X be a normed linear space. We say a sequence (ϕn) ⊂ X∗ converges to ϕ in the

weak* sense if it converges weakly with respect to X∗∗, i.e., ∀f ∈ X∗∗, f(ϕn)→ f(ϕ). Solution:
False, this is just weak convergence inX∗ (there is no special name for it). To have weak* convergence,
we would reduce the condition to just those f ∈ X∗∗ which can be defined by f(ϕ) = ϕ(x) for some
x ∈ X, so it is equivalent only if X is reflexive.

(12) Let X,Y be normed linear spaces and X ⊂ Y . If (xn) ⊂ X converges weakly with respect
to X, does it also converge weakly with respect to Y ? Solution: True, since X ⊂ Y , then
Y ∗ ⊂ X∗.

(13) If P is an orthogonal projection on a Hilbert space H then H = ran(P )⊕ker(P ). Solution: True,
since the range is closed and P = P ∗ so it follows from H = ran(P )⊕ ker(P ∗).

(14) Let H be the heaviside function H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0.
Then the regular distribution TH has a weak derivative. Solution: False. It has a distributional
derivative (the delta function) but this is singular. A weak derivative would imply H is continuous
(via Sobolev embedding) which it isn’t. A weak derivative can be thought of as a special case of a
distributional derivative (i.e., if we have a regular distributional derivative).

(15) Define g(t) =
∫ 1
−1 s

3eist ds. Is g ∈ L1(R)? Solution: False. Think of g as the Fourier transform
of the function ĝ(s) = s3χ[−1,1], so if g were in L1, we would need ĝ to be continuous (Riemann-
Lebesgue), which it is not due to the indicator function. Note: using a computer to calculate the
integral, the leading order t term looks like cos(at)/t, which supports our reasoning.

(16) (For the same g as above). Is g ∈ L2(R)? Solution: True. Using the same ĝ as above, we see
ĝ ∈ L2(R), and the Fourier transform maps L2 to L2, so therefore g ∈ L2. Almost all students missed
this problem.

Problem 3: (5 pts). Subject: Weak convergence, Bessel’s Let (en) ⊂ H be any orthonormal set.
Prove en ⇀ 0.

Solution: This follows immediately from Bessel’s inequality. Note that we do not require the
set to be a basis, i.e., it need not be total (you could extend it to be, but that is unnecessary).

Problem 4: (5 pts). Subject: Spectrum, spectral theorem Let A ∈ B(H) be a compact self-adjoint
operator. Prove that for all R > 0, there are only finitely many eigenvalues with magnitude
greater than R.
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Solution: We know all eigenvalues are bounded in magnitude by ‖A‖. If there were infinitely
many eigenvalues of magnitude greater than R, then because the set {λ | R < |λ| ≤ ‖A‖} ⊂ R is
pre-compact, any infinite sequence must have a convergent subsequence. Since all accumulation
points of eigenvalues must be 0, by the spectral theorem, this is impossible. For full credit,
you needed some kind of basic argument that an infinite sequence in a bounded subset of R
contains a limit point (the quickest such argument being simply “bounded” = “pre-compact”
in finite dimensions, i.e., Bolzano–Weierstrass). Partial credit for stating the spectral theorem
correctly.

Another proof: if there were infinitely many eigenvalues λi with magnitude greater than
R, then let (ei) be a sequence of normalized eigenvectors corresponding to these eigenvalues,
and the ei are orthonormal since A is self-adjoint. By the previous problem, ei ⇀ 0, and then
Aei = λiei so ‖Aei‖ ≥ R so it cannot converge to 0, so A cannot be compact (compact means
maps weakly convergent to convergent).

Problem 5: (10 pts). Subject: Fourier transform, density, MCT Let f ∈ L2(R) and F represent the
Fourier transform on L2(R).

(1) (5 pts). How is F defined?
Solution: Via the density of L1 ∩ L2 ⊂ L2 (or S ⊂ L2), and using that L2 is complete, we can

apply the BLT theorem and therefore write F(f) as the limit of F(fn) for any (fn) ⊂ L1 ∩ L2 with

‖fn − f‖2 → 0. Such a fn could be defined as fn(x) =
{
f(x) |x| < n

0 |x| ≥ n
thus we could write

(Ff) (ω) = 1
2π lim

n→∞

∫ n

−n
f(x)e−iωx dx. (1)

(2) (5 pts). If f is non-negative, prove(
Ff
)
(ω) = 1√

2π

∫
R
f(x)e−iωx dλ

is well-defined (using the Lebesgue measure λ)

Solution: This is a mistake, and in fact is not true (take f(x) =
{

1/x |x| > 1
0 else

so that f ∈ L2\L1,

then for ω = 1, we basically have the integral of sinc, which is not integrable). We cannot just apply
the MCT to (1) because even though f ≥ 0 and fn converges to f monotonically, it is not true that
fn(x)e−iωx ≥ 0 or that fn(x)e−iωx converges monotonically.

Problem 6: (5 pts). Subject: Weak convergence, uniform boundedness theorem, dual spaces
Let X be a normed vector space, and xn ⇀ x. Prove (‖xn‖) is bounded.

Solution: The basic idea is the uniform boundedness theorem (aka Banach-Steinhaus): if
(ϕn) are bounded linear functionals on a Banach space, and if ϕn(y) is bounded for each y
(the bound depending on y perhaps), then in fact ‖ϕn‖ is bounded.

To apply this, we have two issues: our xn is not a functional, and we are not in a Banach
space. Both problems are solved by mapping xn 7→ ϕn ∈ X∗∗ where ϕn : X∗ → R is defined
as ϕn(f) = f(xn) (i.e., the canonical embedding). Using the appropriate norms, we also have
‖xn‖ = ‖ϕn‖. Now we operate on X∗, which is always Banach.

For any f ∈ X∗, ϕn(f) = f(xn) and this is a bounded sequence since f(xn) is a convergent
sequence in R. The result follows now from the uniform boundedness theorem applied to ϕn.

Comments: many students wanted to use Banach-Steinhaus but were concerned about
the fact that X was not a Banach space. This does not matter. The proof of proposition
8.40 part (a) still works. It is also tempting to use Hahn-Banach to show the existence of
a functional ϕ such that ‖ϕ‖ = 1 and, for a particular x, ϕ(x) = ‖x‖. But this does not
mean ϕ(x− xn) = ‖x− xn‖, so this approach doesn’t work (this was a very common error for
students this year and last year — make sure you understand the issue).
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Problem 7: (10 pts). Subject: Measure theory, classical analysis Cantor set. Define F1 = [0, 1/3] ∪
[2/3, 1], and then remove the middle third of each interval to define F2 = [0, 1/9]∪ [2/9, 1/3]∪
[2/3, 7/9]∪[8, 9, 1], and remove the middle third of each interval of F2 to define F3, and construct
all Fn in this recursive fashion. Then the closed set F def= ∩∞n=1Fn is called the Cantor set. A
number x ∈ [0, 1] belongs in F if and only if it has a base three expansion (which may not be
unique) that contains no 1′s, e.g., 1/3 = 0.10̄ in base 3, but we can also write 1/3 = 0.022̄,
hence 1/3 ∈ F .

(1) (7 pts) Prove that the Lebesgue measure of F is zero, i.e., λ(F ) = 0.
Solution: Each Fn is a finite union of intervals, so we can explicitly calculate its Lebesgue measure.

Furthermore, we have λ(F1) <∞ and Fn+1 ⊂ Fn, so applying the homework problem about continuity
of measure,

λ(F ) = λ(∩Fn) = lim
n→∞

λ(Fn) = 0

since λ(Fn) = (2/3)n.
Alternatively, you could make them into disjoint intervals, which is basically replicating the proof

of the homework problem.
Finally, another quick proof is that since F ⊂ Fn for all n, then 0 ≤ λ(F ) ≤ λ(Fn) = (2/3)n for

all n hence λ(F ) = 0.
(2) (3 pts) Prove F is uncountable, and hence there exist uncountable sets with zero Lebesgue measure.

Solution: We follow the classic Cantor diagonal proof that the real numbers are uncountable. Let
(xn)n∈N be a proposed enumeration of F , and write out each xn in its base 3 representation, e.g.,

x1 = 0. 0©200202220 . . .
x2 = 0.2 2©00200200 . . .
x3 = 0.02 0©2020200 . . .
x4 = 0.222 2©222002 . . .

and define x = .2020 . . . where the nth entry of x, xn, is the flipped entry of xnn, that is, if xnn = 2
then xn = 0 and of xnn = 0 then xn = 2. Then x 6= xn for any n due to this construction, but also
x ∈ F , so we conclude it is impossible to enumerate all of F .

Another quick proof: for each number x ∈ F with its base 3 representation, e.g.,
x = 0.22020000220 . . ., make the bijection mapping it to x = 0.11010000110 . . . (map 0 7→ 0 and
2 7→ 1), which is now the binary expansion of any number between [0, 1], hence we have the same
cardinality as [0, 1].

Problem 8: (10 pts). Subject: Weak convergence, Riemann-Lebesgue, Hölder. Let 0 6= g ∈ Lp(R)
for 1 < p <∞ be a fixed function, and fn(x) def= g(x) sin(nπx).

(1) (7 pts) Prove fn ⇀ 0.
Solution: Weak convergence in Lp means that for all h ∈ Lq with 1/p + 1/q = 1, we want∫

hfn → 0. By Hölder, hg ∈ L1, and then via Riemann-Lebesgue, we know its Fourier transform
decays to 0, i.e., lim|ω|→∞

∫
h(x)g(x)e−iωx dx = 0. Using Euler’s identity, this gives the desired result.

(2) (3 pts) Prove fn does not converge strongly. (Remark: g is arbitrary — you cannot choose it. For
example, g may be the indicator function of the real numbers on [0, 1].)

Solution: Sketch (this was a hard problem, and no one got it right): C∞c is dense in Lp, so
approximate g with g̃ (and define f̃n = g̃ sin(nπx)), where ‖g− g̃‖p < ε/2, and hence ‖fn− f̃n‖p < ε/2
as well. Then ‖fn‖p ≥ ‖f̃n‖p − ‖fn − f̃n‖p and as long as we chose ε appropriately (careful not to
make it circular), we just need to show lim infn→∞ ‖f̃n‖pp > εp.

Now that we have continuous functions, we can bound g̃ from below with a characteristic function
that is supported on some interval [a, b] (we can ignore the rest of the function, since we are looking
at its absolute value so the other parts cannot have a negative contribution), so essentially (let
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Figure 1: For the short-answer question about projections

p = 2 for simplicity) we need to show cn =
∫ b
a

sin2(nx) dx does not converge to 0 (we can ignore
the π since a, b are arbitrary). We can actually evaluate this integral as x

2 −
sin(2nx)

4n
∣∣b
a
so, cn =

(b− a) /2 − 1
4n (sin(2nb)− sin(2na)), and since the sin terms are bounded, cn = (b − a)/2 +O(1/n)

so cn → (b− a)/2 6= 0. The cases for other 1 < p <∞ are similar.

Problem 9: (1 pt) Subject: Dual spaces, sequential continuity. Prove that for 1 < p <∞, the dual
of `p(N) is `q(N) where p−1 + q−1 = 1.

Solution: This was done on homeworks. Sketch: showing one is a subset of the other is
quite easy and relies on Hölder’s inequality; the other direction, you define a candidate vector
in `q by looking at the action on the unit basis en, and prove it is equivalent using sequential
continuity (e.g., that en is a Schauder basis for `p with p <∞).
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