Final Exam Selected Solutions
 APPM 5450 Spring 2016 Applied Analysis 2

Date: Wed, May. 42016
Instructor: Dr. Becker
Your name:
If the mathematical field is not specified, you may assume it is \mathbb{R} or \mathbb{C} at your convenience. The symbol \mathcal{H} denotes an arbitrary Hilbert space. Your proofs may use any major result discussed in class (if you are unsure, please ask). Spend your time on the problems worth a lot of points: problems worth more points are not necessarily harder. Partial credit is possible on all problems except the True/False.

Total points possible: 100.
For problems 1 and 2, PLEASE WRITE DIRECTLY ON THIS SHEET
Problem 1: (22 pts) Definitions and short answer, 2 points each.
(1) Define the Sobolev space $H^{s}(\mathbb{T})$ for $s>0$.

Solution: $\left\{f=1 /\left.\sqrt{2 \pi} \sum_{n \in \mathbb{N}} \hat{f}_{n} e^{i n x} \in L^{2}(\mathbb{T})\left|\sum_{n \in \mathbb{N}} n^{2 s}\right| \hat{f}_{n}\right|^{2}<\infty\right\}$. A response such as "functions with s-weak derivatives" did not get full credit as we need a definition like this to make sense of a non-integer weak derivative.
(2) State the Banach-Alouglu theorem, any variant

Solution: The unit ball is either (1) weakly compact, in a Hilbert space or reflexive Banach space, or (2) weak-* compact in a Banach space. The theorem does not apply to a general normed linear space - it must be at least Banach.
(3) What does it mean for $\left(\varphi_{n}\right) \subset \mathcal{S}$ to converge to a limit φ ?

Solution: It means for all α, β multi-indices, then $\left\|\varphi_{n}-\varphi\right\|_{\alpha, \beta} \rightarrow 0$. The pseudo-norm is defined in eq. (11.3).
(4) What does it mean for $\left(T_{n}\right) \subset \mathcal{S}^{*}$ to converge to a limit T ?

Solution: This means weak-* convergence, i.e., for all $\varphi \in \mathcal{S},\left\langle T_{n}, \varphi\right\rangle \rightarrow\langle T, \varphi\rangle$.
(5) State Fatou's lemma

Solution: If $f_{n} \geq 0$ are measurable functions, then $\int \lim \inf f_{n} \leq \liminf \int f_{n}$. A good number of students forgot to require $f_{n} \geq 0$ (about a quarter of students did not get full credit).
(6) Let X and Y be normed linear spaces, and $T: X \rightarrow Y$ linear. Define what it means for T be compact.

Solution: Maps bounded sets to precompact sets is one possible answer; you lost points if you said mapped bounded sets to compact sets, since the operator need not map closed sets to closed sets (unless, e.g., it has a continuous inverse).
(7) How can we make sense of $g(t)=\int_{\mathbb{R}} 1 \cdot e^{i \omega t} d \omega$?

Solution: We can think of 1 as in \mathcal{S}^{*}, and then g is its Fourier transform, so also in \mathcal{S}^{*}, and in fact it is just a (scaled) delta function. Full credit awarded if you mentioned δ or "in the distributional sense" or similar.
(8) Let $f:(X, \mathcal{A}) \rightarrow(Y, \mathcal{B})$ and $g:(Y, \mathcal{B}) \rightarrow(Z, \mathcal{C})$ be measurable functions, and $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be σ-algebras on the spaces X, Y, Z respectively. Is $g \circ f:(X, \mathcal{A}) \rightarrow(Z, \mathcal{C})$ measurable? Briefly justify why it is, or give a counter-example why it is not.

Solution: True, straightforward.
(9) Let X be a linear space and $P: X \rightarrow X$ a projection. Is $\operatorname{ran}(P)$ necessarily closed? When $\operatorname{ran}(P)$ is closed, is P a bounded operator? (Prove or disprove).

Solution: (1) $\operatorname{ran}(P)$ is not necessarily closed (but the range is always a subspace - so your answer should be consistent with your answer about closed subspaces in the T / F section).
(2) Yes, if range is closed, it is bounded, since the range is $\{x: x=P x\}$, so if $x_{n} \rightarrow x$ then $P x_{n}=x_{n} \rightarrow x$ and since the range is closed, $P x_{n} \rightarrow P y$ for some y, hence $x=y$ and $P x_{n} \rightarrow P x$, meaning P is sequentially continuous and hence bounded. (In fact, P is bounded if and only if its range is closed).

Many students assumed that if the range is closed, then P is orthogonal. This is not true; it is true that P orthogonal means the range is closed; and it is true that given a closed subspace M, you can define a unique orthogonal projection that has range M, but you could also define many non-unique non-orthogonal with range M.

More than half the class did poorly on this question! See Fig. 1 for a brief sketch of an example non-orthogonal projection. We have the basic results: a projection is bounded iff its range is closed; and the norm is 1 (or 0) iff the projection is orthogonal (Problem 3 from HW 4).
(10) Give an example of a linear operator $T \in \mathcal{B}(X, Y)$ for Banach spaces X and Y that does not have closed range.

Solution: We need to violate that $\|T x\| \geq c\|x\|$ for all x. Take $X=Y=\ell^{2}(\mathbb{N})$ and define $T(x)=\left(x_{1}, 1 / 2 x_{2}, 1 / 3 x_{3}, \ldots\right)$ so then it is clear that T^{-1} is not a bounded linear operator; if the range were closed, then it would be complete, and the open mapping theorem would imply that T^{-1} actually is bounded.

Another way to think of it is to find any T such that $0 \in \sigma_{c}(T)$.
Another good example is $(T f)(x)=x f(x)$ on $L^{2}([0,1])$, and we know from class that $\sigma_{c}(T)=$ $[0,1]$.

About half the students did poorly on this question.
(11) Let $X=L^{4 / 3}([0,1])$. Is the set $D=\{f \in X:\|f\|=1\}$ weakly closed? Briefly justify or provide a counterexample.

Solution: False. For example, take any orthonormal basis $\left(e_{n}\right) \subset L^{2}([0,1]) \subset L^{4 / 3}([0,1])$ (the L^{p} spaces are nested on compact intervals), then with respect to $L^{2}, e_{n} \rightharpoonup 0$, and because $\left(L^{4 / 3}\right)^{*}=$ $L^{4} \subset L^{2}=\left(L^{2}\right)^{*}$, it follows $e_{n} \rightharpoonup 0$ with respect to $L^{4 / 3}$ as well, hence we have a sequence $\left(e_{n}\right) \subset D$ but the weak limit is not in D, so D is not weakly closed.

More than half the class did poorly on this question. It was not intended to be a trick question (we used the notation D for $\|f\|=1$, while we typically use B for $\|f\| \leq 1$). The Banach-Alouglu theorem applies to the closed unit ball B, not its boundary D. See problems 3 and 4 from Homework 1.

Problem 2: (32 pts) Mark true/false (or yes/no). No justification needed. 2 points each.
More than a quarter of the class missed numbers $1,7,8,11,12,14-16$; no one missed 3 and 6 ; and the rest were missed by at least two people.
(1) Let $\left(f_{n}\right) \subset H^{1}$ where $H^{1} \subset L^{2}(\mathbb{R})$ is a Sobolev space.

If there is $f \in L^{2}$ such that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L^{2}}=0$, is $f \in H^{1}$? Solution: False. H^{1} is complete using its own norm, but not with the L^{2} norm.
(2) Let ∂ be the differential operator on L^{2} that maps $f \in H^{1}$ to its weak derivative ∂f
(so ∂ is not defined on all of L^{2}). Is ∂ a bounded linear operator with respect to $L^{2}(\mathbb{R})$? Solution: False, it is linear but not bounded, i.e., not sequentially continuous. H^{1} is dense in L^{2} (wrt L^{2} norm), so if $f_{n} \rightarrow f \in L^{2} \backslash H^{1}$ where $\left(f_{n}\right) \subset H^{1}$, then if ∂ were sequentially continuous, it means in fact f does have a weak derivative. It is continuous on \mathcal{S} with the usual topology.
(3) If a linear operator is compact, then it is also bounded. Solution: True, since it maps bounded sets to precompact sets, and precompact sets are necessarily bounded; any linear operator that maps bounded sets to bounded sets has a bounded operator norm.
(4) Let X be a normed linear space and $T: X \rightarrow X$ a linear operator (not necessarily bounded), and let $x=\sum_{n=1}^{\infty} \alpha_{n} x_{n} \in X$ for $x_{n} \in X$ and scalars α_{n}. Then $T(x)=\sum_{n=1}^{\infty} \alpha_{n} T\left(x_{n}\right)$. Solution: False. Because this is an infinite sum, we need to use sequential continuity, not linearity, and we do not know T is sequential continuous unless it is bounded. This is true in finite dimensions, though, since all linear operators are bounded then.
(5) Let X be a normed linear space. If X is reflexive, then it must be Banach. are saying $X=X^{* *}$ and any dual space is always complete.
(6) If $\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x$ exists in the Riemann sense, then f is Lebesgue integrable. Solution: False. If f is Riemann integrable, it is Lebesgue integrable, but this is not true for an improper Riemann integral such as the one listed above.
(7) All subspaces are closed. Solution: False, though true in finite dimensions. For example, $H^{1} \subset$ L^{2} is not closed (cf. T/F question 1 above); or, the set of all polynomials is clearly a subspace, but it is not closed (since, e.g., on $[0,1]$, its closure under the sup-norm is $C([0,1])$ via Weierstrass). Note that the range of a linear operator is always a subspace, and not all linear operators have closed range.
(8) In a separable Banach space, a Schauder basis is a set such that every element of the

Banach space can be written as a finite linear combination of basis elements. Solution: False, this is the definition of a Hamel basis (and it holds regardless of completeness or separability of the space); a Schauder basis relaxes the assumption that we have a finite linear combination. A lot of students missed this question.
(9) Every Hilbert space has an orthonormal basis. Solution: True (though it requires the axiom of choice, so a False answer would be acceptable if you wrote that you do not believe the axiom of choice).
(10) The right-shift operator \mathcal{S} on $\ell^{\infty}(\mathbb{N})$ is onto. Solution: False.
(11) Let X be a normed linear space. We say a sequence $\left(\varphi_{n}\right) \subset X^{*}$ converges to φ in the weak* sense if it converges weakly with respect to $X^{* *}$, i.e., $\forall f \in X^{* *}, f\left(\varphi_{n}\right) \rightarrow f(\varphi)$. Solution: False, this is just weak convergence in X^{*} (there is no special name for it). To have weak* convergence, we would reduce the condition to just those $f \in X^{* *}$ which can be defined by $f(\varphi)=\varphi(x)$ for some $x \in X$, so it is equivalent only if X is reflexive.
(12) Let X, Y be normed linear spaces and $X \subset Y$. If $\left(x_{n}\right) \subset X$ converges weakly with respect to X, does it also converge weakly with respect to Y ? Solution: True, since $X \subset Y$, then $Y^{*} \subset X^{*}$.
(13) If P is an orthogonal projection on a Hilbert space \mathcal{H} then $\mathcal{H}=\operatorname{ran}(P) \oplus \operatorname{ker}(P)$. Solution: True, since the range is closed and $P=P^{*}$ so it follows from $\mathcal{H}=\overline{\operatorname{ran}(P)} \oplus \operatorname{ker}\left(P^{*}\right)$.
(14) Let H be the heaviside function $H(x)=1$ if $x \geq 0$ and $H(x)=0$ if $x<0$. Then the regular distribution T_{H} has a weak derivative. Solution: False. It has a distributional derivative (the delta function) but this is singular. A weak derivative would imply H is continuous (via Sobolev embedding) which it isn't. A weak derivative can be thought of as a special case of a distributional derivative (i.e., if we have a regular distributional derivative).
(15) Define $g(t)=\int_{-1}^{1} s^{3} e^{i s t} d s$. Is $g \in L^{1}(\mathbb{R})$? Solution: False. Think of g as the Fourier transform of the function $\hat{g}(s)=s^{3} \chi_{[-1,1]}$, so if g were in L^{1}, we would need \hat{g} to be continuous (RiemannLebesgue), which it is not due to the indicator function. Note: using a computer to calculate the integral, the leading order t term looks like $\cos (a t) / t$, which supports our reasoning.
(16) (For the same g as above). Is $g \in L^{2}(\mathbb{R})$? Solution: True. Using the same \hat{g} as above, we see $\hat{g} \in L^{2}(\mathbb{R})$, and the Fourier transform maps L^{2} to L^{2}, so therefore $g \in L^{2}$. Almost all students missed this problem.

Problem 3: (5 pts). Subject: Weak convergence, Bessel's Let $\left(e_{n}\right) \subset \mathcal{H}$ be any orthonormal set. Prove $e_{n} \rightharpoonup 0$.

Solution: This follows immediately from Bessel's inequality. Note that we do not require the set to be a basis, i.e., it need not be total (you could extend it to be, but that is unnecessary).

Problem 4: (5 pts). Subject: Spectrum, spectral theorem Let $A \in \mathcal{B}(\mathcal{H})$ be a compact self-adjoint operator. Prove that for all $R>0$, there are only finitely many eigenvalues with magnitude greater than R.

Solution: We know all eigenvalues are bounded in magnitude by $\|A\|$. If there were infinitely many eigenvalues of magnitude greater than R, then because the set $\{\lambda|R<|\lambda| \leq\|A\|\} \subset \mathbb{R}$ is pre-compact, any infinite sequence must have a convergent subsequence. Since all accumulation points of eigenvalues must be 0 , by the spectral theorem, this is impossible. For full credit, you needed some kind of basic argument that an infinite sequence in a bounded subset of \mathbb{R} contains a limit point (the quickest such argument being simply "bounded" = "pre-compact" in finite dimensions, i.e., Bolzano-Weierstrass). Partial credit for stating the spectral theorem correctly.

Another proof: if there were infinitely many eigenvalues λ_{i} with magnitude greater than R, then let $\left(e_{i}\right)$ be a sequence of normalized eigenvectors corresponding to these eigenvalues, and the e_{i} are orthonormal since A is self-adjoint. By the previous problem, $e_{i} \rightharpoonup 0$, and then $A e_{i}=\lambda_{i} e_{i}$ so $\left\|A e_{i}\right\| \geq R$ so it cannot converge to 0 , so A cannot be compact (compact means maps weakly convergent to convergent).

Problem 5: (10 pts). Subject: Fourier transform, density, MCT Let $f \in L^{2}(\mathbb{R})$ and \mathcal{F} represent the Fourier transform on $L^{2}(\mathbb{R})$.
(1) (5 pts). How is \mathcal{F} defined?

Solution: Via the density of $L^{1} \cap L^{2} \subset L^{2}$ (or $\mathcal{S} \subset L^{2}$), and using that L^{2} is complete, we can apply the BLT theorem and therefore write $\mathcal{F}(f)$ as the limit of $\mathcal{F}\left(f_{n}\right)$ for any $\left(f_{n}\right) \subset L^{1} \cap L^{2}$ with $\left\|f_{n}-f\right\|_{2} \rightarrow 0$. Such a f_{n} could be defined as $f_{n}(x)=\left\{\begin{array}{ll}f(x) & |x|<n \\ 0 & |x| \geq n\end{array}\right.$ thus we could write

$$
\begin{equation*}
(\mathcal{F} f)(\omega)=\frac{1}{2 \pi} \lim _{n \rightarrow \infty} \int_{-n}^{n} f(x) e^{-i \omega x} d x \tag{1}
\end{equation*}
$$

(2) (5 pts). If f is non-negative, prove

$$
(\mathcal{F} f)(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(x) e^{-i \omega x} d \lambda
$$

is well-defined (using the Lebesgue measure λ)
Solution: This is a mistake, and in fact is not true (take $f(x)=\left\{\begin{array}{ll}1 / x & |x|>1 \\ 0 & \text { else }\end{array}\right.$ so that $f \in L^{2} \backslash L^{1}$, then for $\omega=1$, we basically have the integral of sinc, which is not integrable). We cannot just apply the MCT to (1) because even though $f \geq 0$ and f_{n} converges to f monotonically, it is not true that $f_{n}(x) e^{-i \omega x} \geq 0$ or that $f_{n}(x) e^{-i \omega x}$ converges monotonically.

Problem 6: (5 pts). Subject: Weak convergence, uniform boundedness theorem, dual spaces Let X be a normed vector space, and $x_{n} \rightharpoonup x$. Prove $\left(\left\|x_{n}\right\|\right)$ is bounded.

Solution: The basic idea is the uniform boundedness theorem (aka Banach-Steinhaus): if $\left(\varphi_{n}\right)$ are bounded linear functionals on a Banach space, and if $\varphi_{n}(y)$ is bounded for each y (the bound depending on y perhaps), then in fact $\left\|\varphi_{n}\right\|$ is bounded.

To apply this, we have two issues: our x_{n} is not a functional, and we are not in a Banach space. Both problems are solved by mapping $x_{n} \mapsto \varphi_{n} \in X^{* *}$ where $\varphi_{n}: X^{*} \rightarrow \mathbb{R}$ is defined as $\varphi_{n}(f)=f\left(x_{n}\right)$ (i.e., the canonical embedding). Using the appropriate norms, we also have $\left\|x_{n}\right\|=\left\|\varphi_{n}\right\|$. Now we operate on X^{*}, which is always Banach.

For any $f \in X^{*}, \varphi_{n}(f)=f\left(x_{n}\right)$ and this is a bounded sequence since $f\left(x_{n}\right)$ is a convergent sequence in \mathbb{R}. The result follows now from the uniform boundedness theorem applied to φ_{n}.

Comments: many students wanted to use Banach-Steinhaus but were concerned about the fact that X was not a Banach space. This does not matter. The proof of proposition 8.40 part (a) still works. It is also tempting to use Hahn-Banach to show the existence of a functional φ such that $\|\varphi\|=1$ and, for a particular $x, \varphi(x)=\|x\|$. But this does not mean $\varphi\left(x-x_{n}\right)=\left\|x-x_{n}\right\|$, so this approach doesn't work (this was a very common error for students this year and last year - make sure you understand the issue).

Problem 7: (10 pts). Subject: Measure theory, classical analysis Cantor set. Define $F_{1}=[0,1 / 3] \cup$ $[2 / 3,1]$, and then remove the middle third of each interval to define $F_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup$ $[2 / 3,7 / 9] \cup[8,9,1]$, and remove the middle third of each interval of F_{2} to define F_{3}, and construct all F_{n} in this recursive fashion. Then the closed set $F \stackrel{\text { def }}{=} \cap_{n=1}^{\infty} F_{n}$ is called the Cantor set. A number $x \in[0,1]$ belongs in F if and only if it has a base three expansion (which may not be unique) that contains no 1^{\prime} 's, e.g., $1 / 3=0.1 \overline{0}$ in base 3 , but we can also write $1 / 3=0.02 \overline{2}$, hence $1 / 3 \in F$.
(1) (7 pts) Prove that the Lebesgue measure of F is zero, i.e., $\lambda(F)=0$.

Solution: Each F_{n} is a finite union of intervals, so we can explicitly calculate its Lebesgue measure. Furthermore, we have $\lambda\left(F_{1}\right)<\infty$ and $F_{n+1} \subset F_{n}$, so applying the homework problem about continuity of measure,

$$
\lambda(F)=\lambda\left(\cap F_{n}\right)=\lim _{n \rightarrow \infty} \lambda\left(F_{n}\right)=0
$$

since $\lambda\left(F_{n}\right)=(2 / 3)^{n}$.
Alternatively, you could make them into disjoint intervals, which is basically replicating the proof of the homework problem.

Finally, another quick proof is that since $F \subset F_{n}$ for all n, then $0 \leq \lambda(F) \leq \lambda\left(F_{n}\right)=(2 / 3)^{n}$ for all n hence $\lambda(F)=0$.
(2) (3 pts) Prove F is uncountable, and hence there exist uncountable sets with zero Lebesgue measure.

Solution: We follow the classic Cantor diagonal proof that the real numbers are uncountable. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a proposed enumeration of F, and write out each x_{n} in its base 3 representation, e.g.,

$$
\begin{aligned}
& x^{1}=0 .(1) 200202220 \ldots \\
& x^{2}=0.2(2) 00200200 \ldots \\
& x^{3}=0.02(0) 2020200 \ldots \\
& x^{4}=0.222(2) 222002 \ldots
\end{aligned}
$$

and define $x=.2020 \ldots$ where the $n^{\text {th }}$ entry of x, x_{n}, is the flipped entry of x_{n}^{n}, that is, if $x_{n}^{n}=2$ then $x_{n}=0$ and of $x_{n}^{n}=0$ then $x_{n}=2$. Then $x \neq x^{n}$ for any n due to this construction, but also $x \in F$, so we conclude it is impossible to enumerate all of F.

Another quick proof: for each number $x \in F$ with its base 3 representation, e.g., $x=0.22020000220 \ldots$, make the bijection mapping it to $x=0.11010000110 \ldots$ (map $0 \mapsto 0$ and $2 \mapsto 1$), which is now the binary expansion of any number between $[0,1]$, hence we have the same cardinality as $[0,1]$.

Problem 8: (10 pts). Subject: Weak convergence, Riemann-Lebesgue, Hölder. Let $0 \neq g \in L^{p}(\mathbb{R})$ for $1<p<\infty$ be a fixed function, and $f_{n}(x) \stackrel{\text { def }}{=} g(x) \sin (n \pi x)$.
(1) (7 pts) Prove $f_{n} \rightharpoonup 0$.

Solution: Weak convergence in L^{p} means that for all $h \in L^{q}$ with $1 / p+1 / q=1$, we want $\int h f_{n} \rightarrow 0$. By Hölder, $h g \in L^{1}$, and then via Riemann-Lebesgue, we know its Fourier transform decays to 0, i.e., $\lim _{|\omega| \rightarrow \infty} \int h(x) g(x) e^{-i \omega x} d x=0$. Using Euler's identity, this gives the desired result.
(2) (3 pts) Prove f_{n} does not converge strongly. (Remark: g is arbitrary - you cannot choose it. For example, g may be the indicator function of the real numbers on $[0,1]$.)

Solution: Sketch (this was a hard problem, and no one got it right): C_{c}^{∞} is dense in L^{p}, so approximate g with \widetilde{g} (and define $\widetilde{f_{n}}=\widetilde{g} \sin (n \pi x)$), where $\|g-\widetilde{g}\|_{p}<\epsilon / 2$, and hence $\left\|f_{n}-\widetilde{f_{n}}\right\|_{p}<\epsilon / 2$ as well. Then $\left\|f_{n}\right\|_{p} \geq\left\|\widetilde{f_{n}}\right\|_{p}-\left\|f_{n}-\widetilde{f_{n}}\right\|_{p}$ and as long as we chose ϵ appropriately (careful not to make it circular), we just need to show $\liminf _{n \rightarrow \infty}\left\|\widetilde{f_{n}}\right\|_{p}^{p}>\epsilon^{p}$.

Now that we have continuous functions, we can bound \widetilde{g} from below with a characteristic function that is supported on some interval $[a, b]$ (we can ignore the rest of the function, since we are looking at its absolute value so the other parts cannot have a negative contribution), so essentially (let

Figure 1: For the short-answer question about projections
$p=2$ for simplicity) we need to show $c_{n}=\int_{a}^{b} \sin ^{2}(n x) d x$ does not converge to 0 (we can ignore the π since a, b are arbitrary). We can actually evaluate this integral as $\frac{x}{2}-\left.\frac{\sin (2 n x)}{4 n}\right|_{a} ^{b}$ so, $c_{n}=$ $(b-a) / 2-\frac{1}{4 n}(\sin (2 n b)-\sin (2 n a))$, and since the sin terms are bounded, $c_{n}=(b-a) / 2+\mathcal{O}(1 / n)$ so $c_{n} \rightarrow(b-a) / 2 \neq 0$. The cases for other $1<p<\infty$ are similar.

Problem 9: (1 pt) Subject: Dual spaces, sequential continuity. Prove that for $1<p<\infty$, the dual of $\ell^{p}(\mathbb{N})$ is $\ell^{q}(\mathbb{N})$ where $p^{-1}+q^{-1}=1$.

Solution: This was done on homeworks. Sketch: showing one is a subset of the other is quite easy and relies on Hölder's inequality; the other direction, you define a candidate vector in ℓ^{q} by looking at the action on the unit basis e_{n}, and prove it is equivalent using sequential continuity (e.g., that e_{n} is a Schauder basis for ℓ^{p} with $p<\infty$).

