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Abstract. We construct nearly optimal quadratures for the sphere
that are invariant under the icosahedral rotation group. These quadra-
tures integrate all (N +1)2 linearly independent functions in a rotation-
ally invariant subspace of maximal order and degree N . The nodes of
these quadratures are nearly uniformly distributed and the number of
nodes is only marginally more than the optimal (N +1)2/3 nodes. Using
these quadratures, we discretize the reproducing kernel on a rotationally
invariant subspace to construct an analogue of Lagrange interpolation on
the sphere. This representation uses function values at the quadrature
nodes. In addition, the representation yields an expansion that uses a
single function centered and mostly concentrated at nodes of the quadra-
ture, thus providing a much better localization than spherical harmonic
expansions. We show that this representation may be localized even
further. We also describe two algorithms of complexity O(N3) for using
these grids and representations. Finally, we note that our approach is
also applicable to other discrete rotation groups.

1. Introduction

Many problems in physics, mathematics and engineering involve integra-
tion and interpolation on the sphere in R

3. Of particular importance are
discretizations of rotationally invariant subspaces of L2

(

S
2
)

that integrate
all spherical harmonics up to a fixed order and degree. A typical approach to
discretizing the sphere is that of equally spaced discretization in azimuthal
angle and Gauss-Legendre discretization in polar angle, leading to an unrea-
sonably dense concentration of nodes near the poles. It is well known that in
a variety of applications such concentration of nodes may lead to problems
when using these grids.

Alternatively, Sobolev [39] (see also [31, 40]) suggested the use of grids
that are invariant under finite rotation groups. In such constructions there
is no clustering of nodes and, moreover, the number of nodes necessary to
integrate a particular subspace is close to optimal. In fact, in some cases
it is optimal, a notion we make precise later. There have been several con-
structions of this type of grids using algebraic approaches (see [34, 26, 27, 31]
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and references therein) but the technique limits the results to a few partic-
ular orders and degrees. An attempt to construct grids invariant under the
icosahedral group may be found in [23, 22] (with some negative weights in
the early construction). We also refer to [7, 42] for a review and further
references.

In this paper we develop a systematic numerical approach for construct-
ing nearly optimal quadratures invariant under the icosahedral group to in-
tegrate rotationally invariant subspaces of L2

(

S
2
)

up to a fixed order and
degree. Using these grids and a reproducing kernel, we show how to re-
place the standard basis of spherical harmonics on a rotationally invariant
subspace by a representation formed using a single function centered at the
quadrature nodes. The reproducing kernel is mostly concentrated near the
corresponding grid point. In the resulting representation, the coefficients,
up to a factor, are the values on the grid of the function being represented.
We may interpret this construction as an analogue of Lagrange interpola-
tion on the sphere (see also [36, 37]) and note that it allows us to develop
well conditioned linear systems for interpolation in contrast to some earlier
constructions [10, 11].

An alternative to spherical harmonics has long been sought, especially for
numerical purposes. Spherical harmonics provide an efficient orthonormal
basis, nicely subdivided into rotationally invariant subspaces. However, the
global support of these functions poses a serious difficulty in problems where
physical effects are localized. In fact, the global nature of spherical harmonics
is a consequence of their optimality. Therefore, if we want localized functions
to represent the same subspaces, we necessarily must have a less efficient
representation.

Work on alternative representations has accelerated since the development
of wavelets. Several proposals for local and multiresolution representations
have been suggested over the years, resulting in numerous publications (see
e.g. [12, 43, 4, 15] and references therein). Several attempts to generalize the
wavelet transform on Euclidean spaces to the sphere have been made (see
e.g. [19, 20, 1, 12] and references therein). One particular generalization [1]
uses a doubly periodic discretization of the sphere to provide algorithmic ef-
ficiency. Such discretization, however, does not assure rotational invariance
as the nodes will necessarily concentrate near the polar regions. Discrete
multiresolution transforms on the sphere have been suggested using geodesic
grids [35], equal area subdivisions [29] and irregular grids in [8, 25], mostly
for the purpose of graphics. These transforms are also useful for the anal-
ysis of data measured on the sphere, e.g., for geophysical or astrophysical
applications. Such transforms may have a formal extension to high order
versions, but only low order constructions appear to be practical.

A practical high order local construction based on a “cubed sphere” has
been successfully used in global atmospheric modeling [43] and geodesy [4].
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As a replacement for spherical harmonics, such “cubed sphere” represen-
tations proved to be practical in the development of high order numerical
techniques but, at the same time, they lack a number of useful properties.

We view our approach as the first step in constructing a local and multires-
olution representation of functions on the sphere that respects rotationally
invariant subspaces. We note that the high efficiency of quadratures con-
structed in this paper implies a near uniform distribution of nodes on the
sphere. On the other hand, the nodes maintain a regular organization vi-
sually similar to that of geodesic or equal area grids. Moreover, our grids
are associated with rotationally invariant subspaces, an important property
in a number of numerical applications, e.g., geodesy. To date, we have con-
structed grids which integrate subspaces of maximum order and degree rang-
ing from 5 up to 210. As an example, we illustrate in Figure 3.2 a grid with
7212 nodes integrating subspaces of maximal order and degree 145.

Our method for constructing these grids is based on Newton’s method and,
hence, the key to its success is a good initial distribution of nodes. At first,
as the initial distribution we used spherical codes with icosahedral symmetry
constructed by Hardin, Sloane and Smith [16]. We then developed a simple
approach to map a two dimensional lattice to the icosahedron and then to the
sphere yielding the initial distribution of nodes structurally similar to that
of the resulting quadrature nodes. We describe this approach in Section 3.3.

The rotationally invariant spherical grids constructed here have many ap-
plications. Let us mention a few specific problems in some detail. First,
due to the central role played by spherical harmonics in the theory of grav-
ity and magnetic fields, solutions to many geodetic problems use them as
a basis (see, e.g., [2, 18]). Yet, their global support is inconsistent with
the physical nature of the problem leading to many difficulties in, e.g., con-
structing gravity models. The grids developed in this paper provide a first
step toward replacing spherical harmonics with localized functions. We plan
to continue work in this direction. Second, the equations used in global
atmospheric modeling are typically posed on the sphere [44]. Current spec-
tral methods which use spherical harmonics suffer from the above mentioned
problems of nodal clustering and require additional steps to alleviate the
problem [21]. An approach in [43] provides a practical alternative but also
introduces artificial singularities associated with vertices of the cube. The
new representations developed in this paper eliminate clustering and singu-
larities due to the coordinate system and should provide efficient solution
methods. Third, acoustic and electromagnetic scattering problems posed as
integral equations involve integration over spherical domains [5]. New algo-
rithms for the numerical solution of these integral equations may be based
on the results of this paper. Finally, we mention a numerical technique used
in molecular dynamics calculations known as discrete variable representation
(DVR) [30]. In the DVR method, integrals over spherical domains in R

3 are
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computed and some implementations of the DVR method [17] use quadra-
tures developed by Lebedev [26, 27]. Our quadratures should extend such
methods by allowing effectively an arbitrary order and degree.

We start by reviewing necessary mathematics, outline a general method
for constructing nodes invariant under the icosahedral group and illustrate
resulting quadratures through several examples. Based on these new quadra-
tures, we also develop a representation of functions in rotationally invariant
subspaces as linear combinations of a single function centered at the quad-
rature nodes. We then discuss properties of this representation which may
be interpreted as an analogue on the sphere of the usual Lagrange interpola-
tion. We present two O

(

N3
)

algorithms to work with these new grids (here
N is the maximum order and degree of the subspace). We also consider
a representation via localized functions and briefly describe its properties.
We conclude by listing directions for future research in developing practical
methods for applications dealing with the sphere.

2. Preliminaries

Here we establish notation and state some well known results about spher-
ical harmonics, reproducing kernels and quaternionic representation of rota-
tions. We also formulate two theorems of Sobolev [39] for quadratures that
are invariant under a finite rotation group and a theorem of Molien [33] on
the number of invariants for a finite group.

2.1. Spherical harmonics and reproducing kernels. We denote the
sphere in R

3 as S
2 =

{

x ∈ R
3 : x2 + y2 + z2 = 1

}

. An orthonormal basis

for L2
(

S
2
)

is given by the spherical harmonics,

(2.1) Y m
n (θ, φ) =

1√
2π

P
m
n (cos θ) eimφ, 0 ≤ |m| ≤ n, n = 0, 1, . . . ,

where the polar angle θ ∈ [0, π], the azimuthal angle φ ∈ [0, 2π) and P
m
n are

the normalized associated Legendre functions,

Pm
n (µ) = (−1)m

√

(2n + 1) (n − m)!

2 (n + m)!

(

1 − µ2
)m/2

2nn!

dn+m

dµn+m

(

µ2 − 1
)n

, |µ| ≤ 1.

Any f ∈ L2
(

S
2
)

may be expanded as

(2.2) f (θ, φ) =

∞
∑

n=0

n
∑

m=−n

cnmY m
n (θ, φ) ,

with the coefficients given by

(2.3) cnm ≡ 〈f, Y m
n 〉 =

ˆ

S2

f (θ, φ)Y ∗m
n (θ, φ) dΩ,

where 〈·, ·〉 is the inner product and ∗ denotes complex conjugation. We
define a subspace of spherical harmonics with fixed degree n as

(2.4) Hn = span {Y m
n (θ, φ) , |m| ≤ n} .
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The spherical harmonics Y m
n are linearly independent and, hence, the di-

mension of Hn is 2n + 1. The subspace of maximum degree N is then the
direct sum

(2.5) PN =

N
⊕

n=0

Hn = span {Y m
n (θ, φ) , |m| ≤ n, 0 ≤ n ≤ N}

and has dimension (N + 1)2. We make use of the addition theorem (see e.g.
[13]), which states that for ω,ω′ ∈ S

2

(2.6)
2n + 1

4π
Pn

(

ω · ω′
)

=

n
∑

m=−n

Y m
n (ω) Y ∗m

n

(

ω′
)

,

where Pn is the Legendre polynomial of degree n. We also use the reproduc-
ing kernel for PN which satisfies

(2.7) f (ω) =

ˆ

S2

K
(

ω · ω′
)

f
(

ω′
)

dΩ′, f ∈ PN ,

where

(2.8) K
(

ω · ω′
)

≡
N
∑

n=0

2n + 1

4π
Pn

(

ω · ω′
)

.

The identity in (2.7) may be verified by using (2.6). We rely on (2.7) to
develop a new representation of functions in PN and an analogue of Lagrange
interpolation on the sphere.

2.2. Quaternionic representation of rotations and points on the

sphere. We use quaternions to represent points on the sphere as well as
perform rotations. A quaternion q is defined as

q = w + ix + jy + kz,

where w, x, y, z ∈ R and the symbols i, j, k satisfy i2 = j2 = k2 = ijk ≡ −1
and ij = k , jk = i, ki = j. Here w is the scalar part of the quaternion
and (x, y, z) is its vector part, which may be associated with a vector in R

3.
Thus, vectors in R

3 may be represented by quaternions by simply setting
the scalar part to zero. The norm of q is defined as

‖q‖ =
(

w2 + x2 + y2 + z2
)

.1/2

Quaternions form an algebra, H, and the multiplicative inverse of q is given
by

q−1 = (w + ix + jy + kz)−1 =
w − ix − jy − kz

‖q‖2
.

We represent points on the sphere as quaternions with zero scalar part and
unit norm, q ∈ H, ‖q‖ = 1 .
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In order to rotate a point on the sphere represented by v ∈ H by an angle
θ around the unit vector u ∈ R

3, we construct the quaternion, qr ∈ H,

qr = cos

(

θ

2

)

+ sin

(

θ

2

)

u.

The rotated point is given by the quaternion v′ = qrvq−1
r

and it is not
difficult to show that v′ has zero scalar part and unit norm (see e.g. [24]).
We use quaternions to represent actions of the icosahedral group1.

2.3. Sobolev’s theorems. Sobolev’s paper [39] contains two key results
that we now summarize. For clarity, we specialize these results to the case
of the icosahedral rotation group noting that our approach may be applied
without essential modifications to other discrete rotation groups.

Consider evaluating the integral
´

S2 f (θ, φ) dΩ, where f belongs to the
rotationally invariant subspace PN , using a quadrature rule with nodes

{θi, φi}M
i=1 and weights {wi}M

i=1 so that

ˆ

S2

f (θ, φ) dΩ =

M
∑

i=1

wif (θi, φi) ≡ Q (f)

for all f ∈ PN . Since both the integration domain and the subspace have ro-
tational symmetry, is it natural to look for rotationally invariant quadrature
rules. Following [39], we define invariant quadrature rules as follows: given
a finite rotation group G, a quadrature rule Q is invariant under G if for all
g ∈ G,

M
∑

i=1

wif
(

g−1θi, g
−1φi

)

=

M
∑

i=1

wif (θi, φi) .

We have

Theorem 2.1. Let Q be a quadrature rule invariant under the group G. Then

Q is exact for all functions f ∈ PN if and only if Q is exact for functions f
invariant under G.

This theorem effectively reduces the size of the system of nonlinear equa-
tions which must be solved to determine a quadrature invariant under the
group G. The next result gives a formula to calculate the number of invari-
ant functions under the group G in a subspace of spherical harmonics Hn of
a given degree n. Let q1 = 5 be the number of edges meeting at a vertex of
an icosahedron, q2 = 3 be the number of sides of its (triangular) face and
q3 = 2 denote the order of rotation about mid-points of opposing edges.

Theorem 2.2. For a given degree n, the number of functions invariant

under the icosahedral rotation group in a subspace of spherical harmonics

Hn is given by

S(n) =

⌊

n

q1

⌋

+

⌊

n

q2

⌋

+

⌊

n

q3

⌋

− n + 1,

1See online supplement http://please-insert-address
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where ⌊ ⌋ denotes the integer part2.

This result may also be obtained using a theorem of Molien (circa 1897)
[33]. In his approach the number of invariants for a finite group may be
obtained as coefficients of a generating function. In our case we have (see
[32])

Theorem 2.3. For a given degree n, the number of functions invariant

under the icosahedral rotation group in a subspace of spherical harmonics

Hn is given by coefficients S(n) of the series expansion of the generating

function,

1 + t15

(1 − t6)(1 − t10)
=

∞
∑

n=0

S(n)tn.

It is not difficult to see that both Theorems 2.2 and 2.3 yield the same
result. We use theorems of this section to determine the number of equa-
tions contributed by each subspace Hn to the nonlinear system of equations
determining the quadrature nodes and weights.

3. Quadratures for the sphere

The main difficulty in constructing quadratures comes from the need to
solve a large system of nonlinear equations. Without using special structure
of these equations, general root finding or optimization methods typically
fail. The essence of our approach is to develop and use such structure within
a root finding method.

We start by noting four different types of orbits of the icosahedral rotation
group. In general, with three exceptions described below, a point on the
sphere under the action of the group generates a total of 60 points (which
is the group’s order). However, if a point is a vertex of the icosahedron,
then it generates a total of only 12 distinct points. Also, if a point is the
projection of the center of an icosahedron face onto the sphere, it generates
20 distinct points in total. Finally, if a point is the projection onto the sphere
of the mid-point of an edge, it generates a total of 30 distinct points. When
describing these different types of orbits it is sufficient to consider a single
point, a generator of its orbit. The orbit of a point with spherical coordinates
(θ, φ) is the set

{(

g−1
i θ, g−1

i φ
)

| gi ∈ G
}

and, depending on the type of orbit,
has cardinality 12, 20, 30 or 60.

With these types of orbits in mind, we consider four types of quadra-
tures. The first type assumes that all generators, except for a vertex of the
icosahedron, give rise to orbits of size 60, i.e.,

(3.1) Qv (f) = wv

12
∑

i=1

f (θv
i , φ

v
i ) +

Ng
∑

j=1

wj

60
∑

i=1

f
(

θ
(j)
i , φ

(j)
i

)

,

2We note that an alternative formula for S(n), Eq.17 in Sobolev’s paper [39], is incorrect
but does not affect anything else in his paper.
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where {θv
i , φ

v
i }12

i=1 are coordinates of the vertices of an icosahedron inscribed
in the unit sphere, wv their associated weight, Ng is the number of generators

with coordinates
{

θ(j), φ(j)
}Ng

j=1
and weights {wj}Ng

j=1. For each gi ∈ G, we

denote
(

θ
(j)
i , φ

(j)
i

)

=
(

g−1
i θ(j), g−1

i φ(j)
)

. For this quadrature rule, we fix the

positions of vertices and, hence, do not consider them as unknowns. The
subscript v indicates that the vertices are held fixed. Therefore, for this type
of quadrature there are 3Ng +1 unknown generator coordinates and weights,
although there are the total of 60Ng + 12 nodes.

The second type of quadrature has nodes at the fixed vertices of an icosa-
hedron and one generator with a fixed position at the projection of the center
of an icosahedron face onto the sphere which gives rise to 20 points on the
sphere. We assume that all other generators give rise to orbits of length 60.
Thus, we have
(3.2)

Qvf (f) = wv

12
∑

i=1

f (θv
i , φ

v
i ) + wf

20
∑

i=1

f
(

θf
i , φf

i

)

+

Ng
∑

j=1

wj

60
∑

i=1

f
(

θ
(j)
i , φ

(j)
i

)

,

where
{

θf
i , φf

i

}20

i=1
are coordinates of the face centers of the icosahedron pro-

jected onto the sphere and wf is the associated weight. For this quadrature
there are 3Ng + 2 unknown generator coordinates and weights, with a total
of 60Ng + 32 nodes.

The third type of quadrature has nodes at the fixed vertices of an icosahe-
dron and one generator with a fixed position at the projection onto the sphere
of the mid-point of an edge giving rise to 30 fixed nodes of the quadrature.
We have
(3.3)

Qve (f) = wv

12
∑

i=1

f (θv
i , φ

v
i ) + we

30
∑

i=1

f (θe
i , φ

e
i ) +

Ng
∑

j=1

wj

60
∑

i=1

f
(

θ
(j)
i , φ

(j)
i

)

,

where {θe
i , φ

e
i }30

i=1 are coordinates of the projection onto the sphere of the
mid-points of edges of the icosahedron and we is the associated weight.
For this quadrature there are 3Ng + 2 unknown generator coordinates and
weights, with a total of 60Ng + 42 nodes.

Finally, the fourth type of quadrature has as fixed nodes vertices and
projections of both face centers and edge midpoints of the icosahedron. We
have

Qvfe (f) = wv

12
∑

i=1

f (θv
i , φ

v
i ) + wf

20
∑

i=1

f
(

θf
i , φf

i

)

(3.4)

+ we

30
∑

i=1

f (θe
i , φ

e
i ) +

Ng
∑

j=1

wj

60
∑

i=1

f
(

θ
(j)
i , φ

(j)
i

)

.
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For this quadrature we have 3Ng + 3 unknown generator coordinates and
weights, with the total of 60Ng + 62 nodes.

Using Theorem 2.2 or 2.3, we determine the number of invariant functions
in the subspace Hn. Theorem 2.1 allows us to limit the number of equations
to not exceed the number of invariant functions. Ideally, when constructing a
system of equations for the generator coordinates and weights, we would like
to match the number of equations to the number of unknowns. For example,
to construct a quadrature that integrates exactly the subspace P23, we must
integrate the 10 invariant functions in P23. Therefore, we have 10 equations
and, using quadrature (3.1), we have 3Ng + 1 unknowns, where Ng is the
number of generators. Setting 3Ng +1 = 10 gives Ng = 3 and, thus, we look
for a quadrature with 192 = 3 × 60 + 12 nodes. We solve the corresponding
system (see Section 3.2) and obtain a solution, thus verifying its existence
directly. We illustrate a set of 7212 nodes that exactly integrates P145 in
Figure 3.2. This set of nodes was found using the quadrature Qv in (3.1).

However, it appears that in some cases so constructed system of equations
may not have a solution. Our conclusion is based on the behavior of New-
ton’s iteration and, so far, has not been verified analytically. In such cases,
we reduce the number of equations by removing those from the subspace of
the highest degree and solve a formally under determined system. We note
that in this situation Newton’s iteration may not converge quadratically and
the resulting quadratures may be less efficient than the count of invariants
suggests. However, the reduction in efficiency is negligible for practical pur-
poses. We also note that there may be more than one solution of these
equations with different positive weights. In all cases, we directly verify the
resulting quadratures for all spherical harmonics.

It is also possible to set two or more of the generator weights equal, thereby
reducing the number of unknowns. We have confirmed numerically the exis-
tence of quadratures where some of the generator weights are identical. We
note that there has been interest in constructing quadratures for the sphere
where all weights are equal, i.e., so-called spherical t-designs (see, e.g., [6]
and references therein). The approach outlined above allows us to address
this problem as well. We note, however, that it might be more natural to
pose a problem of finding quadratures with two or more distinct weights
depending on the type of quadrature in (3.1-3.4), where we set wj = w1 for
all j = 2, . . . , Ng.

Remark. For quadratures Qve and Qvfe, the number of unknowns may be
slightly different if the node is on an edge but not at its center. In this case,
the orbit has length 60 as in the general case, but there are only 2 degrees
of freedom since the node is constrained to lie on the great circle joining two
vertices of the icosahedron.

We also note that additional quadratures may be constructed by using
the full icosahedral group that includes reflections. In this paper, we focus
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only on quadratures (3.1-3.4) and will report results of developing other
quadratures in a future paper.

3.1. Efficiency of quadratures on the sphere. A useful way of measur-
ing the efficiency of a quadrature was suggested in [31] using the ratio of
the dimension of the subspace to be integrated to the (maximum) number
of degrees of freedom in the quadrature rule (two coordinates and a weight
for each node):

(3.5) η =
(N + 1)2

3M
,

where M is the number of nodes. If η = 1, we call the quadrature optimal.
Remarkably, there are a few special cases where η is slightly greater than 1,
see [31]. However, in general the efficiency is less than 1. As the number of
nodes M increases, the efficiency of each of the four types of quadratures,
Qv, Qvf , Qve and Qvfe, improves and approaches 1. In Figure 3.1 we display
the potential efficiency of quadrature Qv as a function of the degree N of
subspace PN using Theorem 2.2 or 2.3 to count invariants and superimpose
the actual efficiencies of computed quadratures. The behavior of efficiency
of other quadratures in (3.2-3.4) is similar.

For comparison, the efficiency of the standard discretization of the sphere,
using equally spaced nodes in the azimuthal direction and Gauss-Legendre
nodes in polar direction, is ηst = 2/3. Specifically, for a maximum order and
degree N , we need at least N + 1 equally spaced nodes to integrate in the
azimuthal direction over the interval [0, 2π) and (N +1)/2 nodes to integrate
in the polar direction with a Gauss-Legendre quadrature over the interval
[0, π], so that M = (N + 1)2/2. The efficiency of the standard quadrature is
also illustrated in Figure 3.1.

Although it is beneficial to have a highly efficient quadrature, it is the
near uniform distribution of nodes that is the key property of quadratures
with icosahedral symmetry. As mentioned in the introduction, clustering
of nodes is detrimental for many applications. For example, the smallest
distance between nodes determines the maximum time step size when solving
PDEs on the sphere. Hence, when using the standard discretization of the
sphere, dynamics near the poles forces unnecessarily small time steps to be
taken. Although there are procedures to deal with this problem (see e.g.
[21]), with our new quadratures the maximum time step size is determined
by the dynamics rather than the grid.

3.2. Iterative method for computing quadratures via Newton’s iter-

ation. We are now in a position to describe our algorithm for finding nodes
and weights for quadratures invariant under the icosahedral group. Since
the algorithm is the same for all quadratures (3.1–3.4), we use the generic
notation Q to denote any one of the four types. For a given N , we first use
Theorem 2.2 or 2.3 to determine those n, 0 ≤ n ≤ N , for which S (n) 6= 0.
This gives a set of values of n which we denote as NN . For example, we
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Figure 3.1. Potential efficiency (3.5) of quadrature (3.1) as
a function of degree N of subspace PN computed using The-
orems 2.2 or 2.3. Fast oscillations of η for small N are due to
the sensitivity of the number of nodes to arithmetic require-
ments of icosahedral invariance. Note that in a few cases
the efficiency is slightly greater than 1. Vertical lines are at
locations |G| j/2, j = 0, 1, . . . , where |G| = 60 is the order
of icosahedral rotation group. For comparison, efficiency of
the standard quadrature ηst = 2/3 is also shown. Solid dots
indicate the efficiency of computed quadratures using our ap-
proach.

obtain N21 = {0, 6, 10, 12, 15, 16, 18, 20, 21}. We now define the set of orders
m associated with a fixed degree n as

(3.6) Mn =

{

m = 2 (l − 1) , l = 1, 2, . . . S (n) if n is even

m = 2l, l = 1, 2, . . . S (n) if n is odd
.

Note that for odd m, Q (Y m
n ) vanishes identically by symmetry. Using indices

Mn with n ∈ NN , we now construct the equations

(3.7) Fn,m ≡ Q (Y m
n ) − In,m = 0, m ∈ Mn, n ∈ NN ,

where In,m =
´

S2 Y m
n dΩ =

√
4πδn,0δm,0 and δ is the Kronecker delta. The

collection of equations in (3.7) is a system of nonlinear equations for the
generator coordinates and weights and the weights associated with the fixed
nodes. The group actions in Q (Y m

n ) (see (3.1–3.4)) are carried out using
quaternionic multiplication, as described in Section 2.2. Our formulation
implicitly assumes that the invariants functions generated numerically from
(3.6) for n ∈ NN are independent. It has been our observation that this is
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the case since any missing invariant functions would have been discovered
during a posteriori verification of quadratures.

Recall that Newton’s method for solving the system of nonlinear equations
F (x) = 0 with F : R

n′ → R
n, where n′ ≤ n, is the iteration

(3.8) xi+1 = xi − J
†
iFi,

starting with some initial vector x0, where J is the Jacobian of F,

(3.9) Jij =
∂Fi

∂xj
,

and J
†
i is its generalize inverse.

Writing (3.7) in vector notation F = 0, we use (3.8) to solve for the gener-
ator coordinates and weights and the weight associated with the fixed nodes.
The Jacobian is calculated analytically, as described in Appendix. As a way
of finding initial weights, we use the initial node distribution to form and
solve the linear system

Kw = 4πI,

where the matrix K has entries Kij = K (ωi · ωj), vector I = (1, 1, . . . , 1)t,
I ∈ R

M , and w is the vector of initial weights. Construction of the initial
node distribution is described in Section 3.3 below.

In Figure 3.2 we illustrate a quadrature with 7212 nodes that integrates
functions in P145. The lighter colored nodes correspond to the vertices of the
icosahedron, while the darker colored nodes are those constructed by group
action on the generators. Note that each of the darker colored nodes has 6
nearest neighbors, whereas the vertices of the icosahedron have only 5 nearest
neighbors. So far the largest subspace we have constructed quadratures for
is P210.

3.3. Generation of initial grid. At first, as the initial node distribution,
we used spherical codes with icosahedral symmetry generated by Hardin,
Sloane and Smith [16]. In using such initial distributions, we observed that
the key to convergence of Newton’s method has been the structural similarity
of the initial grid with the final quadrature grid. This led us to a simple
construction that assures such structural similarity.

Let us start by generating a lattice in the plane formed by equilateral
triangles,

{me1 + ne2}m,n∈Z
,

with the lattice vectors e1 = (1, 0) and e2 = (1/2,
√

3/2). We then select
three points,

P0 = (0, 0), P1 = te1 + se2, P2 = −se1 + (t + s)e2,

on the lattice to form an equilateral triangle with vertices P0, P1 and P2,
where t, s ∈ N are positive integers. Indeed, it is easy to check that |P0P1|2 =

|P0P2|2 = |P1P2|2 = s2 + ts + t2. We consider t and s as parameters which
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Figure 3.2. Positions of 7212 quadrature nodes of a quad-
rature integrating exactly all spherical harmonics in the sub-
space of maximal order and degree 145. This quadrature has
efficiency η = 0.98521....

uniquely determine the number and type of generators for which the triangle
P0P1P2 serves as a template. Thus, t and s uniquely determine the total
number of unknown parameters in the nonlinear system (3.7). We illustrate
this construction in Figure 3.3.

The center of the triangle P0P1P2 is at the point

Pc = (t − s)/3 e1 + (t + 2s)/3 e2 =
(

t/2, (t + 2s)/(2
√

3)
)

,

which may or may not be a point of the lattice. If the center coincides with
a lattice point, then the type of quadrature is one with a face-centered node.
In the same manner, for some choices of parameters t and s, there might be
points on the sides of the triangle and, in such case, it leads to a quadrature
with edge-centered nodes. As we pointed out already, the type of quadrature
affects the count of independent variables.

In order to find the generators, we select nodes in the interior of a funda-
mental region of the icosahedral rotation group, defined by connecting the
center of the triangle with any two of its vertices [14]. We use the triangle
P0P1Pc. See Figure 3.3 for an illustration of this particular fundamental re-
gion. We note that by definition, acting with the icosahedral rotation group
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Figure 3.3. A grid template on a face of the icosahedron.
Here there are 9 generators with orbits of length 60 and 1 node
at the face center with orbit length 20, yielding 28 nodes in
the interior of the triangle and 572 total nodes on the sphere.
The resulting quadrature found using Newton’s method inte-
grates the subspace of maximum order and degree N = 40.
One of the possible 3 fundamental region is shown shaded.

on points inside the fundamental region will produce points on all faces of
the icosahedron and, thus, it is sufficient to consider only points inside that
region and, in addition, points on the sides of the triangle P0P1Pc.

In placing points from the fundamental region to the surface of the icosa-
hedron inscribed into the unit sphere, it is convenient to use the barycentric
system of coordinates associated with the triangle P0P1Pc. The barycentric
coordinates (τ0, τ1, τc) of a lattice point {me1 + ne2} are found by explicitly
solving the 3 × 3 linear system

τ0 + τ1 + τc = 1,

τ1(2t + s) + τct = 2m + n,

τ1s + τc(t + s) = n,

which yields

τ0 =
s2 + (s − t)m + st + t2 − (s + 2t) n

s2 + st + t2
,

τ1 =
(2m + n) s + (m − n) t

s2 + st + t2
,

τc =
3 (nt − ms)

s2 + st + t2
.

We recall that a point is inside the triangle P0P1Pc if τ0, τ1, τc > 0 and
it is on a side if one of the barycentric coordinates is equal to 0. In order
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to position the generators onto the sphere, we first map the points from the
fundamental region formed by the triangle P0P1Pc to a face of the icosa-
hedron. Let vectors P̃0, P̃1, P̃2 ∈ R

3, define a face of the icosahedron and
P̃c ∈ R

3 the center of the face. A point with the barycentric coordinates
(τ0, τ1, τc) with respect to the triangle P0P1Pc is then mapped to the point

τ0P̃0+τ1P̃1+τcP̃c. We then project this point radially outward to the surface
of the unit sphere. Using the resulting generators, we apply group actions
to produce all the nodes on the surface of sphere.

Finally we note that as the number of generators grows, we use previously
constructed quadrature nodes to map a grid template on a face of the icosa-
hedron to the sphere. We use the barycentric coordinates of points within
the corresponding triangles on a face of the icosahedron formed by preimages
of previous quadratures nodes on the sphere.

4. An analogue of Lagrange interpolation and an alternative

representation for rotationally invariant subspaces of

L2
(

S
2
)

Using the results in Sections 2 and 3, we now construct an alternative
representation for functions on invariant subspaces of L2

(

S
2
)

. Let us dis-
cretize (2.7) and (2.8) using quadratures developed in Section 3. The quad-
rature must be chosen so that it integrates exactly subspaces of order and
degree at least 2N , since this is the maximal order and degree of the product
K (ω · ω′) f (ω′) in (2.7). Using such a quadrature, we have the identity,

(4.1) f (ω) =
M
∑

j=1

K (ω · ωj) wjf (ωj) ,

where ωj = (cos φj sin θj, sin φj sin θj, cos θj) are unit vectors denoting the
coordinates of the quadrature nodes and wj the associated weights.

We observe that if f ∈ PN , then (4.1) provides an exact reconstruc-
tion of the function f from its values f (ω1) , f (ω2) , . . . , f (ωM ). Com-
paring (4.1) with standard Lagrange interpolation, we see that the functions

{K (ω · ωj)wj}M
j=1 play a role similar to that of Lagrange interpolating poly-

nomials and, therefore, we may think of (4.1) as an analogue of Lagrange
interpolation on the sphere. Formulas of this type have appeared in [36, 37]
using the standard quadratures for the sphere that are not invariant under
the action of a discrete rotation group. Due to concentration of nodes near
the poles and lack of invariance, the properties of representations obtained
in these papers differ from that in (4.1).

Since every function f ∈ PN may be written as a linear combination of
functions {K (ω · ωj)wj}M

j=1, we may use such linear combinations to repre-

sent all functions in PN . We avoid calling {K (ω · ωj)wj}M
j=1 a basis since

the number of these functions exceeds the dimension of the subspace PN ;
however, effectively they play the same role as a basis for PN . We elaborate
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on this further below and note that an attempt to use the same number of
functions K (ω · ωj) as the dimension of PN leads to ill-conditioned systems
[38, 10].

Let us now consider f ∈ PN and evaluate (4.1) at the quadrature nodes

{ωi}M
i=1. We obtain

√
wif (ωi) =

M
∑

j=1

(√
wi K (ωi · ωj)

√
wj

) (√
wjf (ωj)

)

,

where we multiplied both sides by
√

wi. Denoting f̃i =
√

wif (ωi) and
Kij =

√
wi K (ωi · ωj)

√
wj, we obtain the matrix identity

(4.2) f̃i =

M
∑

j=1

Kij f̃j,

where the matrix K with entries Kij is a projector with eigenvalues either 1 or
0. Since the number of nodes M for the projector on a subspace of dimension
(N + 1)2 is at least (2N + 1)2/3, it asymptotically exceeds the dimension
of the subspace PN by a factor ≈ 4/3. This results in zero eigenvalues to
match the dimension of PN and the range of K. For example, the dimension
of P7 is 64 and we need a quadrature with the minimum of M = 72 nodes so
that K has 64 eigenvalues equal to 1 and 8 eigenvalues equal to 0. We note
that given the projector, the null space does not cause problems in numerical
computations since it allows us to work on the range coinciding with PN .
The near optimal number of nodes does reduce the number of unknowns in
the problem of scattered data interpolation on the sphere, a problem we plan
to consider elsewhere.

In Figure 4.1 we show a cross section of K (ω · ez) through the z axis,
with the maximum value of K normalized to 1.

0.5 1.0 1.5 2.0 2.5 3.0
Θ

-0.2
0.0
0.2
0.4
0.6
0.8
1.0

KHcos ΘL

Figure 4.1. Cross-section of normalized kernel with N = 40.
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5. Algorithms associated with icosahedral grids

For efficient use of the quadratures developed in this paper, we need fast
algorithms for evaluation of sums on these grids. Currently we only have
O(N3) algorithms for this purpose and are working on the development of
faster O(N2 log N) methods. We note that although there are O(N2 log N)
algorithms for evaluation of spherical harmonics, for most of them the break-
even point in comparison with the usual O(N3) versions is quite high [41].
Here we describe O(N3) algorithms for the numerical implementation of the
representation (4.1). We consider two approaches: the first is based on the
ideas in [21] and the second on the Unequally Spaced Fast Fourier Transform
(USFFT) [9, 3, 28].

5.1. Application of kernel K using the Christoffel-Darboux formula.

The key observation in [21] is that the numerical evaluation of (4.1) may
be accelerated by using the addition theorem and the Christoffel-Darboux
formula, provided that it is implemented via a fast algorithm. The kernel K
may be written as

K(ω · ω′) =
1

2π

N
∑

m=−N

(

(N + 1)2 − m2

4(N + 1)2 − 1

)1/2

[

P
m
N+1(cos θ)P

m
N (cos θ′) − P

m
N (cos θ)P

m
N+1(cos θ′)

cos θ − cos θ′

]

eim(φ−φ′),(5.1)

with P
m
N the normalized associated Legendre functions (see Section 2) and

ω · ω′ = cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′). With an appropriate rotation
of coordinates, the quadrature nodes can be seen to lie on planes of con-
stant polar angle, with five points equally spaced in azimuthal angle on
each plane. We write the coordinates of the quadrature nodes in plane i as
(

θi,
2π
5 k + δi

)

, k = 0, 1, 2, 3, 4, where δi is the relative shift in azimuth from
plane i−1 to plane i. We label the planes such that θi−1 < θi and set δ1 = 0.
Substituting (5.1) into (4.1), we need to evaluate the sum

f (θ, φ) =
1

2π

N
∑

m=−N

(

(N + 1)2 − m2

4(N + 1)2 − 1

)1/2 Nplanes
∑

i=1

wi

[

P
m
N+1(cos θ)P

m
N (cos θi) − P

m
N (cos θ)P

m
N+1(cos θi)

cos θ − cos θi

]

eim(φ−δi)
4
∑

k=0

e−i 2πmk
5 f

(

θi,
2π

5
k + δi

)

,(5.2)

where Nplanes is the number of planes. Following the key idea in [21], we
evaluate the summation over the index i in (5.2) using a fast algorithm (e.g.,
Fast Multipole Method (FMM) as in [21]). However, the quadrature used
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in [21] is the standard quadrature with O (N) Gauss-Legendre nodes in the
polar direction (and thus Nplanes ∼ N) and O (N) equally spaced nodes
in the azimuthal direction. Using the Fast Fourier transform to evaluate
along the azimuthal direction and FMM to evaluate in the polar direction
yields the overall complexity of O

(

N2 log N
)

. Unfortunately, in our case the

number of planes Nplanes ∼ N2 thus yielding only an O
(

N3
)

algorithm.

5.2. Application of kernel K using the USFFT. Since the kernel K
may be written as in (2.8), it also has a finite Fourier series representation

K
(

ω · ω′
)

=
∑

|n|≤N

cnei n ω·ω′

.

Substituting this sum into (4.1), changing the order of summations and eval-

uating at J ∼ O
(

N2
)

arbitrary points on the sphere, {ω}J
j=1, yields

(5.3) f (ωj) =
∑

|n|≤N

cn

M
∑

i=1

wif (ωi) ei n ωj ·ωi ,

where M is the total number of quadrature nodes. Recall that M ∼ O
(

N2
)

.

The sum in (5.3) may be evaluated in O
(

N3
)

operations using USFFT. We
split (5.3) as

(5.4) f (ωj) =
∑

|n|≤N

cng(n ωj),

with

(5.5) g (n ωj) =

M
∑

i=1

wif (ωi) ei n ωj ·ωi .

We may view (5.5) as evaluation of function g at O
(

N3
)

points n ωj , |n| ≤ N
and j = 1, . . . , J (which may be interpreted as frequencies for the purposes
of USFFT). Since |ωi| = 1 in (5.5), fast evaluation of such sums is precisely
the task for USFFT. Once we obtain values g (n ωj), we compute the sum
in (5.4) directly at cost of O

(

N3
)

.

6. Local and multiresolution representations on the sphere

We expect that grids invariant under the icosahedral group (or other finite
rotation groups) will play an important role in constructing efficient and
practical local and multiresolution representations of functions on the sphere.
In this paper we only point out that the rate of decay and the oscillations of
the functions K(ω ·ωi) may be altered by extending and bringing gradually
to zero the spectrum of the kernel as a projector. We consider these results
as preliminary since there might be representations with better localization.



PROC. R. SOC. A 465, 3103-3125, 2009 19

If we were to measure the decay of a function on the sphere using variance
defined as

(6.1) Var (f) ≡
´

S2 ‖ξ − 〈ξ〉‖2 f (ξ)2 dΩ
´

S2 f (ξ)2 dΩ
,

where the mean is defined as

(6.2) 〈ξ〉 ≡
´

S2 ξ f (ξ)2 dΩ
´

S2 f (ξ)2 dΩ
,

then we can show that for large N the variance of the kernel K decays only
as O (1/N).

To improve localization of the kernel, let us consider

(6.3) K̃
(

ω · ω′
)

= K
(

ω · ω′
)

+

pN
∑

n=N+1

2n + 1

4π
anPn

(

ω · ω′
)

,

where p is the over-sampling factor and the coefficients an are chosen to
improve localization. Substituting (6.3) into (6.1) and minimizing the re-
sult with respect to an, we find that the resulting coefficients an decrease
linearly with a particular (optimal) slope. Using these optimal coefficients,

we achieve Var
(

K̃
)

∼ O
(

1/ (pN)2
)

. Since the total number of nodes is

also proportional to N2, this indicates that for a given node the number
of neighbors needed to be taken into account to achieve a given accuracy
remains constant as N becomes large.

We now show that K̃ may be used as a projector onto PN . For fixed ω,
we have K̃ ∈ PpN , while K̃ − K 6∈ PN . Thus, we obtain

K
(

ω · ω′
)

=

ˆ

S2

K̃ (ω · ν) K
(

ν · ω′
)

dν.

Now for f ∈ PN , we write

f (ω) =

ˆ

S2

K
(

ω · ω′
)

f
(

ω′
)

dω′

resulting in
ˆ

S2

K̃ (ω · ν) f (ν) dν =

ˆ

S2

ˆ

S2

K̃ (ω · ν) K
(

ν · ω′
)

f
(

ω′
)

dω′dν

=

ˆ

S2

K
(

ω · ω′
)

f
(

ω′
)

dω′

= f (ω) ,

so that K̃ is a projector onto PN . One of the benefits of using K̃ over K is
that we may consider fast algorithms exploiting the local nature of K̃. We
leave it as a subject for future research.
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7. Conclusions

We introduce a general numerical method for constructing quadratures
invariant under the icosahedral group which integrate rotationally invariant
subspaces of L2

(

S
2
)

. We note that while the specific results presented here
are for the icosahedral rotation group, quadratures invariant under other
symmetry groups may be constructed following the same approach. Using
these quadratures, we develop an exact representation of functions on ro-
tationally invariant subspaces of L2

(

S
2
)

, similar to Lagrange interpolation.

We describe two algorithms of O
(

N3
)

complexity for the numerical use of
this representation. Furthermore, we develop a representation with localized
functions and describe its properties.

In many ways the results of this paper are just the first step in a program
to develop practical methods in a variety of applications that have to deal
with the sphere. Further research should involve:

(1) Fast algorithms using these grids that have O
(

N2 log N
)

complexity,

hopefully with a low break-even point in comparison with O
(

N3
)

algorithms.
(2) A greater variety of localized representations with associated fast

algorithms.
(3) Multiresolution representations that maintain a relation with the ro-

tationally invariant subspaces.
(4) Appropriate representations of integral and differential operators on

the sphere and their embedding into a variety of applications.
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8. Appendix

Evaluation of the Jacobian. Here we give details of computing the Jacobian
of the nonlinear system (3.7). Let (cos φ sin θ, sinφ sin θ, cos θ) be spherical
coordinates of a point on the unit sphere which we may also write as a
quaternion,

ν = i cos φ sin θ + j sin φ sin θ + k cos θ.

Applying a rotation as quaternion multiplication, qrνq−1
r , we get quaternion

of the form

ν ′ = if(θ, φ) + jg(θ, φ) + kh(θ, φ) = i cos φ′ sin θ′ + j sin φ′ sin θ′ + k cos θ′,

where the functions f , g, and h describe the action of the group element.
Hence, the rotated point has spherical coordinates

cos θ′ = h(θ, φ), cos φ′ =
f(θ, φ)

√

f(θ, φ)2 + g(θ, φ)2
, sin φ′ =

g(θ, φ)
√

f(θ, φ)2 + g(θ, φ)2
.

Thus, the spherical harmonic

Y m
n (θ, φ) = Cm

n Pm
n (cos(θ)) (cos φ + i sin φ)m ,

after rotation is written as

(8.1) Y m
n (θ′, φ′) = Cm

n Pm
n

(

cos θ′
) (

cos φ′ + i sin φ′
)m

,
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where Cm
n is a normalization constant. We now compute the partial deriva-

tives of (8.1) with respect to θ and φ. We obtain

∂

∂θ
Y m

n (θ′, φ′) = Cm
n (Pm

n )′
(

cos θ′
) (

cos φ′ + i sin φ′
)m ∂ cos θ′

∂θ

+ mCm
n Pm

n

(

cos θ′
) (

cos φ′ + i sin φ′
)m−1

(

∂ cos φ′

∂θ
+ i

∂ sinφ′

∂θ

)

and

∂

∂φ
Y m

n (θ′, φ′) = Cm
n (Pm

n )′
(

cos θ′
) (

cos φ′ + i sin φ′
)m ∂ cos θ′

∂φ

+ mCm
n Pm

n

(

cos θ′
) (

cos φ′ + i sin φ′
)m−1

(

∂ cos φ′

∂φ
+ i

∂ sinφ′

∂φ

)

.

Continuing with the second term, we have

Cm
n Pm

n

(

cos(θ′)
) (

cos φ′ + i sin φ′
)m−1

(

∂ cos(φ′)

∂θ
+ i

∂ sin(φ′)

∂θ

)

=

Y m
n (θ′, φ′)

(

cos φ′ − i sin φ′
)

(

∂ cos(φ′)

∂θ
+ i

∂ sin(φ′)

∂θ

)

and, furthermore,

(

cos φ′ − i sin φ′
)

(

∂ cos(φ′)

∂θ
+ i

∂ sin(φ′)

∂θ

)

= cos φ′∂ cos(φ′)

∂θ
+ sin φ′ ∂ sin(φ′)

∂θ

+ i

(

cos φ′∂ sin(φ′)

∂θ
− sinφ′ ∂ cos(φ′)

∂θ

)

.

Since

cos φ′∂ cos φ′

∂θ
+ sin φ′∂ sin φ′

∂θ
=

∂

∂θ

1

2

(

cos2 φ′ + sin2 φ′
)

= 0

and

cos φ′ ∂ sin φ′

∂θ
− sinφ′ ∂ cos φ′

∂θ
=

f(θ, φ)
√

f(θ, φ)2 + g(θ, φ)2
∂

∂θ

(

g(θ, φ)
√

f(θ, φ)2 + g(θ, φ)2

)

− g(θ, φ)
√

f(θ, φ)2 + g(θ, φ)2
∂

∂θ

(

f(θ, φ)
√

f(θ, φ)2 + g(θ, φ)2

)

=
1

f(θ, φ)2 + g(θ, φ)2

(

f(θ, φ)
∂

∂θ
g(θ, φ) − g(θ, φ)

∂

∂θ
f(θ, φ)

)

,

we arrive at

∂

∂θ
Y m

n (θ′, φ′) = Cm
n (Pm

n )′
(

cos θ′
) (

cos φ′ + i sin φ′
)m ∂ cos θ′

∂θ
+

+ imY m
n (θ′, φ′)

1

f(θ, φ)2 + g(θ, φ)2

(

f(θ, φ)
∂

∂θ
g(θ, φ) − g(θ, φ)

∂

∂θ
f(θ, φ)

)
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and

∂

∂φ
Y m

n (θ′, φ′) = Cm
n (Pm

n )′
(

cos θ′
) (

cos φ′ + i sin φ′
)m ∂ cos θ′

∂φ
+

+ imY m
n (θ′, φ′)

1

f(θ, φ)2 + g(θ, φ)2

(

f(θ, φ)
∂

∂φ
g(θ, φ) − g(θ, φ)

∂

∂φ
f(θ, φ)

)

.

We now calculate the factors ∂ cos θ′

∂θ , ∂ cos θ′

∂φ and

1

f(θ, φ)2 + g(θ, φ)2

(

f(θ, φ)
∂

∂θ
g(θ, φ) − g(θ, φ)

∂

∂θ
f(θ, φ)

)

.

For the icosahedron group, these factors are of the form

∂ cos θ′

∂θ
=

∂h(θ, φ)

∂θ
= α1 cos θ cos φ + β1 cos θ sin φ + γ1 sin θ

∂ cos θ′

∂φ
=

∂h(θ, φ)

∂φ
= sin θ (A1 cos φ + B1 sin φ)

f(θ, φ)
∂

∂θ
g(θ, φ) − g(θ, φ)

∂

∂θ
f(θ, φ) = A2 cos φ + B2 sin φ

f(θ, φ)
∂

∂φ
g(θ, φ) − g(θ, φ)

∂

∂φ
f(θ, φ) = sin θ (α2 cos θ cos φ + β2 cos θ sin φ + γ2 sin θ) ,

with the numbers α1, β1, γ1, A1, B1, α2, β2, γ2, A2, B2 determined by direct
computation using e.g. Mathematica TM and then tabulated.
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Coordinates of vertices of an icosahedron. We set α =
(

1 −

√

5
)

/2
and list the Cartesian coordinates of the vertices of an icosahedron inscribed

into the unit sphere.

Vertex Coordinate

v1 (0, α, 1)/
√

1 + α2

v2 (0, α,−1)/
√

1 + α2

v3 (1, 0, α)/
√

1 + α2

v4 (1, 0,−α)/
√

1 + α2

v5 (α, 1, 0)/
√

1 + α2

v6 (α,−1, 0)/
√

1 + α2

vi+6 −vi, i = 1 . . . 6

Table 1. Cartesian coordinates of an icosahedron. Here α =
(

1 −

√

5
)

/2.

Elements of the icosahedral rotation group as quaternions. The ac-

tion of an element from the icosahedral rotation group may be represented

using quaternions. Here we list a quaternionic representation of the icosahe-

dral rotation group.
1
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q1 = −
1

2
− i1

2
+ j1

2
− k1

2
q21 = i q41 = −β + i1

2
+ kγ

q2 = −
1

2
− i1

2
+ j1

2
+ k1

2
q22 = −iβ − j1

2
− kγ q42 = −β + i1

2
− kγ

q3 = −
1

2
− jβ + kγ q23 = −iβ + j1

2
+ kγ q43 = −β + iγ − j1

2

q4 = −
1

2
+ jβ + kγ q24 = −iβ + j1

2
− kγ q44 = −β + iγ + j1

2

q5 = −
1

2
+ i1

2
− j1

2
− k1

2
q25 = iγ − jβ − k1

2
q45 = −β − iγ − j1

2

q6 = −
1

2
+ i1

2
− j1

2
+ k1

2
q26 = iγ − jβ + k1

2
q46 = −β − iγ + j1

2

q7 = −
1

2
− iβ + jγ q27 = iγ + jβ + k1

2
q47 = γ − i1

2
− jβ

q8 = −
1

2
− iβ − jγ q28 = −iγ − jβ + k1

2
q48 = γ − i1

2
+ jβ

q9 = −
1

2
+ iγ − kβ q29 = iβ + j1

2
− kγ q49 = γ − j1

2
− kβ

q10 = −
1

2
+ iγ + kβ q30 = 1

2
− i1

2
− j1

2
− k1

2
q50 = γ − j1

2
+ kβ

q11 = −
1

2
− iγ − kβ q31 = 1

2
− i1

2
− j1

2
+ k1

2
q51 = γ + iβ − k1

2

q12 = −
1

2
− iγ + kβ q32 = 1

2
− jβ + kγ q52 = γ + iβ + k1

2

q13 = −
1

2
+ iβ + jγ q33 = 1

2
+ jβ + kγ q53 = −γ − i1

2
− jβ

q14 = −
1

2
+ iβ − jγ q34 = 1

2
+ i1

2
+ j1

2
− k1

2
q54 = −γ − i1

2
+ jβ

q15 = −i1

2
+ jγ − kβ q35 = 1

2
+ i1

2
+ j1

2
+ k1

2
q55 = −γ − j1

2
− kβ

q16 = −i1

2
+ jγ + kβ q36 = 1 q56 = −γ − j1

2
+ kβ

q17 = −i1

2
− jγ + kβ q37 = −β + jγ − k1

2
q57 = −γ + iβ − k1

2

q18 = −j q38 = −β + jγ + k1

2
q58 = −γ + iβ + k1

2

q19 = k q39 = −β − jγ − k1

2
q59 = β + i1

2
+ kγ

q20 = i1

2
+ jγ + kβ q40 = −β − jγ + k1

2
q60 = β + i1

2
− kγ

Table 2. Quaternionic representation of the icosahedral ro-

tation group. Here we set β = 1+
√

5

4
and γ = 1−

√

5

4
.
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