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The multiresolution analysis (MRA) strategy for the reduction of a nonlinear
differential equation is a procedure for constructing an equation directly for the
coarse scale component of the solution. The MRA homogenization process is a
method for building a simpler equation whose solution has the same coarse
behavior as the solution to a more complex equation. We present two multireso-
lution reduction methods for nonlinear differential equations: a numerical proce-
dure and an analytic method. We also discuss one possible appproach to the
homogenization method.© 1998 Academic Press

I. INTRODUCTION

There are many difficult, interesting, and important problems which incorporate mul-
tiple scales and which are prohibitively expensive to solve on the finest scales. In many
problems of this kind it is sufficient to find the solution on a coarse scale only. However,
we cannot disregard the fine scale contributions as the behavior of the solution on the
coarse scale is affected by the fine scales. In these problems it is necessary to obtain a
procedure for constructing the equations on a coarse scale that account for the contribu-
tions from these scales. This amounts to writing an effective equation for the coarse scale
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component of the solution which can be solved more economically. Alternatively, we
might want to construct simpler fine scale equations whose solutions have the same coarse
properties as the solutions of more complicated systems. These simpler equations would
also be considerably less expensive to solve. These procedures are generally referred to as
homogenization, though the specifics of the approaches vary significantly.

An example of a problem which encompasses many scales and which is difficult to solve
on the finest scale is molecular dynamics. The highest frequency motion of a polymer chain
under the fully coupled set of Newton’s equations determines the largest stable integration
time step for the system. In the context of long time dynamics the high frequency motions of
the system are not of interest but current numerical methods (see [1, 17]) which directly access
the low frequency motions of the polymer aread hocmethods, not methods which take into
account the effects of the high frequency behavior. The work of Bornemann and Schu¨tte (see
[16, 6]) is a notable exception and appears quite promising.

Let us briefly mention several classical approaches to homogenization. The classical
theory of homogenization, developed in part by Bensoussanet al. [3], Jikov et al. [12],
Murat [15], and Tartar [18], poses the problem as follows: Given a family of differential
operatorsLe, indexed by a parametere, assume that the boundary value problem

Leue 5 f in V

(with ue subject to the appropriate boundary conditions) is well-posed in a Sobolev space
H for all e and that the solutionsue form a bounded subset ofH so that there is a weak
limit u0 in H of the solutionsue. The small parametere might represent the relative
magnitude of the fine and coarse scales. The problem of homogenization is to find the
differential equation thatu0 satisfies and to construct the corresponding differential
operator. We call the homogenized operatorL0 and the equationL0u0 5 f in V the
homogenized equation.

There are several methods for solving this problem. A standard technique is to expand
the solution in powers ofe, to substitute the asymptotic series into the differential
equations and associated boundary conditions, and then to recursively solve for the
coefficients of the series given the first order approximation to the solution (see [14, 2, 13]
for more details). If we consider a probabilistic interpretation of the solutions to elliptic
or parabolic PDEs as averages of functionals of the trajectory of a diffusion process, then
homogenization involves the weak limits of probability measures defined by a stochastic
process [3]. In [12, 3], the methods of asymptotic expansions and ofG-convergence are
used to examine families of operatorsLe. Murat and Tartar (see [15, 18]) developed the
method of compensated compactness. Coifmanet al. (see [8]) have recently shown that
there are intrinsic links between compensated compactness theory and the tools of
classical harmonic analysis (such as Hardy spaces and operator estimates).

Using a multiresolution approach, Beylkin and Brewster [7] give a procedure for
constructing an equation directly for the coarse scale component of the solution. This
process is called reduction. From this effective equation one can determine a simpler
equation for the original function with the same coarse scale behavior. Unlike the
asymptotic approach for traditional homogenization, the reduction procedure in [7]
consists of a reduction operator which takes an equation at one scale and constructs the
effective equation at an adjacent scale (the next coarsest scale). This reduction operator
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can be used recursively provided that the form of the equation is preserved under the
transition. For systems of linear ordinary differential equations a step of the multiresolu-
tion reduction procedure consists of changing the coordinate system to split variables into
averages and differences (in fact, quite literally in the case of the Haar basis), expressing
the differences in terms of the averages, and eliminating the differences from the
equations. For systems of linear ODEs there are relatively simple explicit expressions for
the coefficients of the resulting reduced system. Because the system is organized so that
the form of the equations is preserved, we may apply the reduction step recursively to
obtain the reduced system over several scales.

M. Dorobantu [9] and A. Gilbert [10] apply the technique of MRA homogenization to
the one-dimensional elliptic problem and derive results which relate the MRA approach
to classical homogenization theory. A multiresolution approach to the reduction of elliptic
PDEs and eigenvalue problems has been developed in [5]. It is shown in [5] that by
choosing an appropriate MRA for a given problem, the small eigenvalues of the reduced
operator differ only slightly from those of the original operator.

In this paper we consider a multiresolution strategy for the numerical reduction and
homogenization of nonlinear equations. This strategy differs from the classical methods in
that we do not require a distinguished parametere nor do we form an asymptotic
expansion (or weak limit) in powers ofe. We demonstrate that the numerical reduction
procedure can be applied to a small system of nonlinear ordinary differential equations.
The main difficulty in performing a reduction step in the nonlinear case as compared to
the linear case is that there are no explicit expressions for the differences in terms of the
averages. We offer two basic approaches to address this problem. First, it appears possible
not to require an analytic substitution for the differences and, instead, to rely on a
numerical procedure. Second, we use a series expansion of the nonlinear functions in
terms of a small parameter related to the discretization at a given scale (e.g., the step size
of the discretization) and obtain analytic recurrence relations for the terms of the
expansion. These recurrence relations allow us to reduce repeatedly. A third method is a
hybrid of the two basic approaches.

In the first section we present a derivation of the reduction procedure for nonlinear
ODEs and the series expansion of the recurrence relations. In the second section we
discuss the implementation of the approaches to reduction. We discuss the homogeniza-
tion procedure for nonlinear equations in the final section. We leave detailed discussions
of the results to the appendices.

II. MRA REDUCTION METHODS

II.1. Linear Reduction Method

Let us briefly review the reduction method for linear systems of differential equations
presented in [7]. Consider the differential equation

d

dt
~G~t! x~t! 1 q~t!! 5 F~t! x~t! 1 p~t!, t { @0, 1#,

where F and G are bounded matrix-valued functions andp and q are vector-valued
functions (with elements inL2([0, 1])). We will rewrite this differential equation as an
integral equation
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G~t! x~t! 1 q~t! 2 b 5 E
0

t

~F~s! x~s! 1 p~s!!ds, t { @0, 1# (2.1)

(whereb is a complex or real vector) since we can preserve the form of this equation under
reduction, while we cannot preserve the form of the corresponding differential equation.
To express this integral equation in terms of an operator equation on functions inL2([0,
1]), let F andG be the operators whose actions on functions are pointwise multiplication
by F andG and letK be the integral operator whose kernelK is

K~s, t! 5 H 1, 0# s # t
0, otherwise.

Then Eq. (2.1) can be rewritten as

Gx 1 q 2 b 5 K ~Fx 1 p!.

We will use a general MRA ofL2([0, 1]) in this discussion. See Appendix B for
definitions. We begin with an initial discretization of our integral equation by applying the
projection operatorPn and looking for a solutionxn in Vn. This is equivalent to
discretizing our problem at a very fine scale. We have

Gnxn 1 qn 2 b 5 Kn~Fnxn 1 pn!, (2.2)

where

Gn 5 PnGP*n, Fn 5 PnFP*n, Kn 5 PnK P*n, pn 5 Pn p, and qn 5 Pnq.

We rewritexn in terms of its averages (vn21 { Vn21) and differences (wn21 { Wn21),

xn 5 Pn21xn 1 Qn21xn 5 vn21 1 wn21,

and plug this into our Eq. (2.2):

Gn~vn21 1 wn21! 1 qn 2 b 5 Kn~Fn~vn21 1 wn21! 1 pn!. (2.3)

Next, we apply the operatorsPn21 andQn21 to Eq. (2.3) to split it into two equations, one
with values inVn21 and the other with values inWn21, and we drop the subscripts:

~PGP* !v 1 ~PGQ* !w 1 Pq 5 PKP* ~~PFP* !v 1 ~PFQ* !w 1 Pp!

1 PKQ* ~~QFP* !v 1 ~QFQ* !w 1 Qp!

~QGP* !v 1 ~QGQ* !w 1 Qq 5 QKP* ~~PFP* !v 1 ~PFQ* !w 1 Pp!

1 QKQ* ~~QFP* !v 1 ~QFQ* !w 1 Qp!.

Let us denote

453NUMERICAL REDUCTION AND HOMOGENIZATION



TO, j 5 PjOj11P*j, CO, j 5 PjOj11Q*j

BO, j 5 QjOj11P*j, AO, j 5 QjOj11Q*j

(see [4] for a discussion of the non-standard form or representation of an operatorO), so
that we may simplify the linear system of equations inv andw. Then we obtain (again
dropping the subscriptn21)

TGv 1 CGw 1 Pq2 b 5 TK~TFv 1 CFw 1 Pp! 1 CK~BFv 1 AFw 1 Qp! (2.4)

BGv 1 AGw 1 Qq5 BK~TFv 1 CFw 1 Pp! 1 AK~BFv 1 AFw 1 Qp!. (2.5)

Let us assume that

R 5 AG 2 BKCF 2 AKAF

is invertible so that we may solve Eq. (2.5) forw and plug the result into Eq. (2.4), giving
us a reduced equation inVn21 for v:

~TG 2 CKBF 2 ~CG 2 CKAF! R21~BG 2 BKTF 2 AKBF!!v

1 ~Pq 2 CKQp 2 ~CG 2 CKAF! R21~Qq 2 BKPp 2 AKQp!! 2 b

5 TK@~TF 2 CFR
21~BG 2 BKTF 2 AKBF!!v 1 Pp 2 CFR

21~Qq 2 BKPp 2 AKQp!#.

(2.6)

This equation forvn21 5 Pn21xn exactly determines the averages ofxn. That is, we have
an exact “effective” equation for the averages ofxn which contains the contribution from
the fine scale behavior ofxn. Since we have a linear system and since we assumed thatR
is invertible, then we can solve Eq. (2.5) exactly forw and substitute the solution into Eq.
(2.4). Note that this reduced equation has half as many unknowns as the original system.
We call this procedure the reduction step.

Remark. There are differential equations for whichR 5 AG 2 BKCF 2 AKAF is not
invertible. An example of such an equation can be found in [7].

We should point out that under the reduction step the form of the original equations is
preserved. Our Eq. (2.6) forvn21 has the form

Gn21vn21 1 qn21 2 b 5 Kn21~Fn21vn21 1 pn21!,

where

Gn21 5 TG 2 CKBF 2 ~CG 2 CKAF! R21~BG 2 BKTF 2 AKBF!

Fn21 5 TF 2 CFR
21~BG 2 BKTF 2 AKBF!

qn21 5 Pq 2 CKQp 2 ~CG 2 CKAF! R21~Qq 2 BKPp 2 AKQp!

pn21 5 Pp 2 CFR
21~Qq 2 BKPp 2 AKQp!.
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This procedure can be repeated up ton times use the recursion formulas:

Fj
~n! 5 TF, j 2 CF, j Rj

21~BG, j 2 BK, jTF, j 2 AK, j BF, j!, (2.7)

Gj
~n! 5 TG, j 2 CK, j BF, j 2 ~CG, j 2 CK, j AF, j!Rj

21~BG, j 2 BK, jTF, j 2 AK, j BF, j!, (2.8)

qj
~n! 5 Pj q 2 CK, j Qj p 2 ~CG, j 2 CK, j AF, j!Rj

21~Qj q 2 BK, j Pj p 2 AK, j Qj p!, (2.9)

pj
~n! 5 Pj p 2 CF, j Rj

21~Qj q 2 BK, j Pj p 2 AK, j Qj p!. (2.10)

The superscript (n) denotes the resolution level at which we started the reduction
procedure and the subscriptj denotes the current resolution level.

Let us summarize this discussion in the following proposition.

PROPOSITIONII.1. Suppose we have an equation for xj11
(n) 5 Pj11xn

(n) in Vj11,

Gj11
~n! xj11

~n! 1 qj11
~n! 2 b 5 Kj11~Fj11

~n! xj11
~n! 1 pj11

~n! ! ,

where the operator Rj 5 AG, j 2 BK, jCF, j 2 AK, jAF, j is invertible. Then we can write
an exact effective equation for xj

(n) 5 Pjxn
(n) in Vj,

Gj
~n!xj

~n! 1 qj
~n! 2 b 5 Kj~Fj

~n!xj
~n! 1 pj

~n!! ,

using the recursion relations (2.7)–(2.10).

Remark. We initialize the recursion relations with the values

Gn 5 PnGP*n, Fn 5 PnFP*n, Kn 5 PnK P*n, pn 5 Pn p, and qn 5 Pnq,

whereG andF are the operators whose actions on functions are pointwise multiplication
by G and F, bounded matrix-valued functions with elements inL2([0, 1]); K is the
integration operator; andp andq are vector-valued functions with elements in L2([0, 1]).

Remark. This recursion process involves only the matricesFj
(n), Gj

(n), andKj and the
vectorspj

(n) and qj
(n). In other words, we do not have to solve forx at any step in the

reduction procedure.

If we apply the reduction proceduren times, we get an equation inV0,

G0
~n!x0

~n! 1 q0
~n! 2 b 5

1

2
~F0

~n!x0
~n! 1 p0

~n!! ,

for the coarse scale behavior ofx0
(n), which is an easily solved scalar equation. If we are

interested in only this average behavior ofx, then the reduction process gives us a way of
determining the average ofx exactly without having to solve the original equation forx
and computing its average. This technique is very useful for complicated systems which
are computationally expensive to resolve on the finest scale and which solutions we are
interested in on only the coarsest scale.
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II.2. Nonlinear Reduction Method

We turn now to nonlinear differential equations. Let us begin by highlighting the
difficulty in the reduction procedure for nonlinear equations. The reduction proce-
dure begins with a discretization of the nonlinear equation. We choose the Haar
basis for illustrative purposes. Just as the initial discretization of a linear ODE is a
linear algebraic system, the initial discretization of a nonlinear ODE is a nonlinear
system

^n~ xn! 5 0. (2.11)

The nonlinear function̂ n maps RN to RN (for N 5 2n) and we denote thekth
coordinate of^n(xn) by ^n(xn)(k). Similarly, we denote thekth coordinate ofxn

by xn(k). We rewritexn in terms of its averagesPn21xn 5 sn21 and its differences
Qn21xn 5 dn21. We recall that for the Haar basis the action of the operatorsPn21

and Qn21 amounts to forming averages and differences of the odd and even ele-
ments of a vector (normalized by a factor of=2). We will modify the Haar basis
slightly and normalize the differences by 1/dn, wheredn 5 22n. The averages will not
be adjusted by any factor. The averagessn21 and the differencesdn21 are given in
coordinate form by

sn21~k! 5
1

2
~ xn~2k 1 1! 1 xn~2k!! and dn21~k! 5

1

dn
~ xn~2k 1 1! 2 xn~2k!!.

We split our Eq. (2.11) into two equations in the two unknownssn21 and dn21 by
applyingPn21 andQn21 to Eq. (2.11). Our two equations are

Pn21~^n~sn21, dn21!! 5 0 (2.12)

Qn21~^n~sn21, dn21!! 5 0. (2.13)

Notice that the functionPn21^n mapsRN/ 2 3 RN/ 2 to RN/ 2 and similarly forQn21^n

but that we cannot split these functions into their actions onPn21xn 5 sn21 andPn21xn

5 dn21 (as we did in the linear case). Instead, we can give the coordinate values for
Pn21^n andQn21^n (dropping subscripts),

~P^~s, d!!~k! 5
1

2
~^~s, d!~2k 1 1! 1 ^~s, d!~2k!!

~Q^~s, d!!~k! 5
1

d
~^~s, d!~2k 1 1! 2 ^~s, d!~2k!!

for k 5 0, . . . , 2n21 2 1.
As with the linear algebraic system, we must eliminate the differencesd from the

nonlinear system (2.12)–(2.13). In other words, we must solve Eq. (2.13) ford as a
function of s. This equation, however, is a nonlinear equation and may not be easily

456 BEYLKIN, BREWSTER, AND GILBERT



solved (if at all). Let us assume that we can solve Eq. (2.13) ford as a function ofs and
let d̃(s) denote the solution. We then plugd̃(s) into Eq. (2.12) to get

P^~s, d̃~s!! 5 0

which is the reduced equation for the coarse behavior ofx. The form of the original system
is preserved under this procedure and we may write the recurrence relation for^j as

^ j21~s! 5 Pj21^ j~sj21, d̃j21~sj21!!,

whered̃j21(sj21) satisfiesQj21^ j(sj21, d̃j21(sj21)) 5 0 and 0# j # n.
In this subsection we will give the precise form of the nonlinear system (2.13)–(2.12)

in d ands, state conditions for (2.13)–(2.12) under which we can solve ford as a function
of s, develop two approaches for solving (2.13)–(2.12) ford (a numerical and an analytic
approach), and derive formal recurrence relations for the nonlinear function^j.

We now extend the MRA reduction method to nonlinear ODEs of the form

x9~t! 5 F~t, x~t!!, t { @0, 1#. (2.14)

We will address the difficulties raised in the previous discussion with two approaches, a
formal method to be implemented numerically and an asymptotic method. We will assume
thatF is differentiable as a function ofx and as a function oft. The assumption thatF is
Lipschitz as a function ofx guarantees the existence of uniqueness of the solutionx(t). For
the reduction procedureF must be Lipschitz int and differentiable inx. We will rewrite
this differential equation as an integral equation in a slightly unusual form,

G~t, x~t!! 2 G~0, x~0!! 5 E
0

t

F~s, x~s!!ds, (2.15)

where­G/­ x Þ 0. The more usual differential equation (2.14) is obtained by settingG(t,
x(t)) 5 x(t) and by differentiating. We choose this integral formulation because we can
maintain this form under the reduction procedure.

In our derivations we find it helpful to use an operator notation in addition to the
coordinate notation so we write Eq. (2.15) in an operator form,

G~ x! 5 K(F ~ x!), (2.16)

where

K ~ y!~t! 5 E
0

t

y~s!ds, G~ y!~t! 5 G~t, y~t!!, and F~ y!~t! 5 F~t, y~t!!.
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We will use the MRA ofL2([0, 1]) associated with the Haar basis to begin our
discretization. We discretize Eq. (2.16) int by applying the projection operatorPn to Eq.
(2.16) and seeking a solutionxn { Vn to the equation

Gn~ xn! 5 KnFn~ xn!, (2.17)

where

Gn~ xn! 5 PnG~ xn!, Kn 5 PnK P*n, and Fn~ xn! 5 PnF~ xn!.

Because we are using the Haar basis,xn is a piecewise constant function with step width
dn 5 22n. The functionsGn( xn) andFn( xn) are also piecewise constant functions. Note
thatGn, Fn, andKn mapVn to Vn, althoughGn andFn are nonlinear functions. Letxn(k)
denote the value of the functionxn on the intervalkdn , t , (k 1 1)dn, for k 5 0, . . . ,
2n 2 1. Let gn( xn)(k) and fn( xn)(k) denote the values of the functionsGn( xn) and
Fn( xn) on the same interval. That is,

gn~ xn!~k! 5
1

dn
E

kdn

~k11!dn

g~s, xn~k!!ds5 ~PnG~ xn!!~t!,

wherekdn , t , (k 1 1)dn, and similarly forfn( x)(k). We can say thatgn( xn)(k) is
the average value of the functionG(t, z ) over the time interval (kdn, (k 1 1)dn) and
evaluated atxn(k). Notice thatgn( xn)(k) is shorthand forgn( xn(k))(k).

As in [7] we use the integration operatorKn defined by

Kn 5 dn1
1
2

0 · · · 0

1 ···
···

······
···

··· 0

1 · · · 1 1
2

2 . (2.18)

With this notation, the coordinate form of Eq. (2.17) is

gn~ xn!~k! 5 dn O
k950

k21

fn~ xn!~k9! 1
dn

2
fn~ xn!~k!. (2.19)

This equation gives the precise form of the nonlinear system^( x) 5 0 discussed
previously. We are now ready to begin the reduction procedure.

We first split the Eq. (2.17) into two equations, one with values inVn21 and the other
with values inWn21, by applying the projection operatorsPn21 andQn21. We now have
the two equations

Pn21Gn~ xn! 5 Pn21Kn~Fn~ xn!! (2.20)

Qn21Gn~ xn! 5 Qn21Kn~Fn~ xn!!. (2.21)
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At this point let us work with two consecutive levels and drop the indexn indicating
the multiresolution level (assume thatd 5 dn). We again modify the Haar basis slightly
and normalize the differences by 1/d. The averages will not be adjusted by any factor.
By forming successive averages of Eq. (2.19), we can rewrite Eq. (2.20) in coordinate
form as

1

2
~ g~ x!~2k 1 1! 1 g~ x!~2k!! 5

d

2 O
k950

2k

f~ x!~k9! 1
d

4
f~ x!~2k 1 1!

1
d

2 O
k950

2k21

f~ x!~k9! 1
d

4
f~ x!~2k!. (2.22)

In the same manner we rewrite Eq. (2.21) by taking successive differences normalized by
the step sized:

1

d
~ g~ x!~2k 1 1! 2 g~ x!~2k!! 5

1

2
~ f~ x!~2k 1 1! 1 f~ x!~2k!!. (2.23)

Let us rearrange the right-hand side of Eq. (2.22) as

d

2 O
k950

2k

f~ x!~k9! 1
d

4
f~ x!~2k 1 1! 1

d

2 O
k950

2k21

f~ x!~k9! 1
d

4
f~ x!~2k!

5 d O
k950

2k21

f~ x!~k9! 1
d

4
f~ x!~2k 1 1! 1

3d

4
f~ x!~2k!

5 d O
k950

k21

~ f~ x!~2k9 1 1! 1 f~ x!~2k9!! 1
d

2
~ f~ x!~2k 1 1! 1 f~ x!~2k!!

2
d

4
~ f~ x!~2k 1 1! 2 f~ x!~2k!!.

To simplify our notation, let us defineS andD as “average” and “difference” operators
which act ong( x) and f( x) by taking successive averages and differences of elements
g( x)(k) and f( x)(k). We defineS andD as

Sg~ x!~k! 5
1

2
~ g~ x!~2k 1 1! 1 g~ x!~2k!!

Dg~ x!~k! 5
1

d
~ g~ x!~2k 1 1! 2 g~ x!~2k!!.
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Then we may write the coordinate form of Eqs. (2.20)–(2.21) in a compact form

Sg~ x!~k! 1
d2

4
Df~ x!~k! 5 2d O

k950

k21

Sf~ x!~k9! 1 dSf~ x!~k! (2.24))

Dg~ x!~k! 5 Sf~ x!~k!. (2.25)

We have split Eq. (2.19) into two sets and now we split the variables accordingly. We
define the averagessn21 and the scaled differencesdn21 as

sn21~k! 5
1

2
~ xn~2k 1 1! 1 xn~2k!! and dn21~k! 5

1

d
~ xn~2k 1 1! 2 xn~2k!!.

Notice that sincexn is a piecewise constant function with step widthdn, thensn21 and
dn21 are piecewise constant functions with step width 2dn 5 dn21. We will now change
variables in Eqs. (2.24) and (2.25) and replacex with

x~2k 1 1! 5 s~k! 1
d

2
d~k! and x~2k! 5 s~k! 2

d

2
d~k!.

We will abuse our own notation slightly for clarity and denote the change of variables by

Sg~s, d!~k! 5
1

2 S gSs 1
d

2
dD ~2k 1 1! 1 gSs 2

d

2
dD ~2k!D

Dg~s, d!~k! 5
1

d S gSs 1
d

2
dD ~2k 1 1! 2 gSs 2

d

2
dD ~2k!D .

Note that when we writeg( x)(k), this is shorthand forg( x(k))(k); so g( x)(2k 1 1)
stands forg( x(2k 1 1))(2k 1 1). When we replacex(2k 1 1) with s(k) 1 d

2
d(k) and

write g( x)(2k 1 1) 5 g(s 1 d

2
d)(2k 1 1), this is shorthand for the expression

g~ x~2k 1 1!!~2k 1 1! 5 gSs~k! 1
d

2
d~k!D ~2k 1 1!.

The shorthand notationg(s 2 d

2
d)(2k) is similar. Then our system of two equations in

the two variabless andd is given by

Sg~s, d!~k! 1
d2

4
Df~s, d!~k! 5 2d O

k950

k21

Sf~s, d!~k9! 1 dSf~s, d!~k! (2.26)

Dg~s, d!~k! 5 Sf~s, d!~k!. (2.27)

Our goal, as in the linear case, is to eliminate the variablesd from Eqs. (2.26)–(2.27)
to obtain a single equation fors. We consider (2.27) as an equation ford which we have
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to solve in order to findd in terms ofs. Let us assume that we can solve (2.27) ford and
let d̃ represent this solution. Notice that Eq. (2.27) is a nonlinear equation ford so thatd̃
is a nonlinear function ofs. We will discuss how this is implemented numerically in
Section III and how this is implemented analytically in Subsection II.3. In the linear case,
d̃ is a linear function ofs and it can be easily computed explicitly. Provided that we have
d̃, we substitute this into Eq. (2.26) and obtain

Sg~s, d̃!~k! 1
d2

4
Df~s, d̃!~k! 5 2d O

k950

k21

Sf~s, d̃!~k9! 1 dSf~s, d̃!~k!. (2.28)

Observe that we may arrange Eq. (2.28) as

gn21~k!~sn21! 5 dn21 O
k950

k21

fn21~k9!~sn21! 1
dn21

2
fn21~k!~sn21!, (2.29)

where

gn21~k!~sn21! 5 Sgn~k!~sn21, d̃n21! 1
dn

2

4
Dfn~k!~sn21, d̃n21! (2.30)

and

fn21~k!~sn21! 5 Sfn~k!~sn21, d̃n21!. (2.31)

In other words, the reduced equation (2.29) is the effective equation for the averagessn21

of xn. It is important to note that this equation has the same form as the original
discretization.

Let us switch now to operator notation to present the recurrence relations for the
reduction procedure. We use the solutiond̃ of Eq. (2.27) to write Eq. (2.29) in operator
form as

Gn21
~n! ~sn21! 5 Kn21Fn21

~n! ~sn21!,

wheresn21 5 Pn21x and the nonlinear operatorsGn21
(n) and Fn21

(n) map Vn21 to Vn21.
The superscript (n) on the operators denotes the level at which we start the reduc-
tion procedure and the subscriptn 2 1 denotes the current level of resolution.
The operatorsGn21

(n) and Fn21
(n) are defined as the operators which act elementwise

according to Eqs. (2.30) and (2.31), respectively. Notice that they have the same
form as the operatorsGn

(n) and Fn
(n); both functionsGn21

(n) (sn21) and Fn21
(n) (sn21) are

piecewise constant functions with step widthdn21. In particular, thekth ele-
ment of Gn21

(n) (sn21) depends only on the arguments through thekth element of
sn21(k). Because the form of the discretization is preserved under reduction, we can
consider Eqs. (2.31) and (2.30) as recurrence relations for the operatorsGn21

(n) and
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Fn21
(n) and, as such, may be applied recursively to obtain a sequence of operators

Gj
(n) andFj

(n), j # n. The recurrence relations forGj
(n) andFj

(n) (for j # n) in operator
form are given by

Gj
~n! 5 PjGj11

~n! 1
d j11

2

4
QjFj11

~n! (2.32)

Fj
~n! 5 PjFj11

~n! , (2.33)

provided the solutiond̃j of the equationQjGj11
(n) 5 PjFj11

(n) exists. Observe that the
operator forms of the “average” and “difference” operatorsS andD, which we introduced
in working with the coordinate forms of our expressions, are the projectionsPj andQj. We
emphasize that this is a formal derivation of the recurrence relations. We show in Section
III how to implement numerically this formal procedure. In Subsection II.3 we derive
analytic expressions for these recurrence relations.

Let us now address the existence of the solutiond̃j to the equationQjGj11
(n) 5 PjFj11

(n) .
We will write this equation in coordinate form as follows (dropping subscripts),

^~s, d!~k! 5 Dg~s, d!~k! 2 Sf~s, d!~k! 5 0,

where^: E3 R2j

, (s, d) { E an open set inR2j

3 R2j

, andk 5 0, . . . , 2j 2 1. Assume
that g and f are both differentiable functions so that^ {C1(E). Suppose that there is a
pair (s0, d0) { E such that

^~s0, d0!~k! 5 Dg~s0, d0!~k! 2 Sf~s0, d0!~k! 5 0

and that the Jacobian of̂ with respect tod at (s0, d0) does not vanish. (We know
that such a pair (s0, d0) { E must exist since a unique solution to our ODE exists.)
The Implicit Function Theorem tells us that there is a neighborhoodS of s0 in R2j

and a unique functiond̃: S3 R2j

(d̃ { C1(S)) such thatd̃(s0) 5 d0 and^(s, d̃(s)) 5 0
for s { S.

Let us investigate what it means for the Jacobian of^ with respect tod at (s0, d0) to
be nonzero. Notice that thekth coordinate of̂ , ^(s, d)(k), depends only on thekth
coordinates ofs andd

^~s, d!~k! 5 Dg~s, d!~k! 2 Sf~s, d!~k!.

In turn, s(k) andd(k) depend onx(2k 1 1) andx(2k) and we may writê (s, d)(k) in
terms ofx(2k 1 1) andx(2k). In particular, we can write

Dg~s, d!~k! 5
1

d
~ g~ x!~2k 1 1! 2 g~ x!~2k!!

Sf~s, d!~k! 5
1

2
~ f~ x!~2k 1 1! 1 f~ x!~2k!!,
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where

x~2k 1 1! 5 s~k! 1
d

2
d~k! and x~2k! 5 s~k! 2

d

2
d~k!.

When we differentiatê (s, d)(k) with respect tod(k), we can apply the chain rule and
differentiate with respect tox(2k 1 1) andx(2k) instead. Therefore, the derivative of the
term Dg(s, d)(k) with respect tod(k) is

­

­d~k!
Dg~s, d!~k! 5

1

2

dg~ x!~2k 1 1!

dx~2k 1 1!
1

1

2

dg~ x!~2k!

dx~2k!
5 Sg9~s, d!~k!.

We calculate a similar expression for the derivative ofSf(s, d)(k). Hence, the Jacobian
of ^ with respect tod is given by the matrixJ^ with entries (k, l ):

J^~s, d!~k, l ! 5
­^~k!

­d~l !
5

­

d~l !
~Dg~s, d!~k! 2 Sf~s, d!~k!!

5 HSg9~s, d!~k! 2
d2

4
Df9~s, d!~k!, k 5 l ,

0, k Þ l .

Requiring the Jacobian of̂ to be nonsingular at (s0, d0) is equivalent to stipulating that
the product below be nonzero; i.e.,

P
k50

2 j21 SSg9~s0, d̃0!~k! 2
d2

4
Df9~s0, d̃0!~k!D Þ 0.

In other words, the quantitySg9(s0, d0)(k) 2
d 2

4
Df9(s0, d̃0)(k) must be nonzero for every

k 5 0, . . . , 2j 2 1 to find a solutiond̃(s) for eachk. If d2 is sufficiently small, the
product)k50

2j21 Sg9(s0, d0)(k) Þ 0 dominates the condition. We will see this condition
reappear in the analytic reduction procedure.

We summarize the above derivation as

PROPOSITION II.2. Given an equation of the form (2.19) on some scale j1 1 (with
dyadic intervals of size22( j11)), we arrange the reduction of this equation to an equation
at scale j as

gj~k!~sj! 5 d j O
k950

k21

fj~k9!~sj! 1
d j

2
fj~k!~sj!, (2.34)

where

gj~k!~sj! 5 Sgj11~k!~sj, d̃j! 1
d j11

2

4
Dfj11~k!~sj, d̃j! (2.35)
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and

fj~k!~sj! 5 Sfj11~k!~sj, d̃j!. (2.36)

The solution d˜ j to the equationDgj11(k)(sj, dj) 2 Sfj11(k)(sj, dj) exists provided there
is a pair (sj

0, dj
0) which satisfies the equation and the product below does not vanish:

P
k50

2 j21 SSgj11~k!~sj
0, d̃ j

0! 2
d j11

2

4
Dfj11~k!~sj

0, d̃ j
0!D Þ 0. (2.37)

Remark. We have stated the proposition for a scalar differential equation but it also
holds for a system of differential equations, assuming that the product (2.37) is non-
singular.

II.3. Series Expansion of the Recurrence Relations

In the previous subsection we derived recurrence relations for the functionsgj(k)(sj)
and fj(k)(sj) (2.35)–(2.36) which depended on the existence ofd̃j. In this subsection we
derive analytic expressions for these recurrence relations (2.35)–(2.36) and an explicit
expression ford̃j.

Let us begin at the initial discretization scaledn 5 22n and examine the reduction from
scalen to scalen 2 1. We will not include the subscriptsn andn 2 1 unless they are
necessary for clarity. Assume thatd 5 dn. The equation which determinesd̃n21 is given
by

Dgn~sn21, dn21!~k! 5 Sfn~sn21, dn21!~k!. (2.38)

Below it will be convenient to expandg( x)(2k 1 1) as

g~ x~2k 1 1!!~2k 1 1! 5 gSs~k! 1
d

2
d~k!D ~2k 1 1!

5 g~s~k!!~2k 1 1! 1 g9~s~k!!~2k 1 1!
d

2
d~k! 1 O~d2!.

We will then use a slight abuse of notation and writeg(s(k))(2k 1 1) asg(s)(2k 1 1)
(andg9(s(k))(2k 1 1) asg9(s)(2k 1 1)). Thereader should beware that the notation
convention forg( x) andg(s) is thus slightly different. To solve this equation ford̃, we
will first expandg(s, d) andf(s, d) in Taylor series abouts(k) (for eachk 5 0, . . . , 2n21

2 1) and keep only the terms which are of orderO(1) in d. Observe that we may expand
the left side of Eq. (2.38) as

1

d S gSs 1
d

2
dD ~2k 1 1! 2 gSs 2

d

2
dD ~2k!D

5
1

d
~ g~s!~2k 1 1! 2 g~s!~2k!! 1

d~k!

2
~ g9~s!~2k 1 1! 1 g9~s!~2k!! 1 O~d2!,
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and similarly for the right side. After expanding both sides of Eq. (2.38) and retaining only
terms of orderO(1) in d, we have the equation

Dg~s!~k! 1 Sg9~s!~k!d~k! 5 Sf~s!~k!,

which we may solve ford̃(s)(k):

d̃~s!~k! 5
Sf~s!~k! 2 Dg~s!~k!

Sg9~s!~k!
1 O~d2!.

Next we expand the recursion relations forgn21(sn21) andfn21(sn21) in Taylor series
aboutsn21 and keep only the terms which are of orderO(1) in dn21. This gives us the
following expressions forgn21 and fn21:

gn21~sn21!~k! 5 Sgn~sn21!~k! and fn21~sn21!~k! 5 Sfn~sn21!~k!.

Notice that if we retain terms which are only of orderO(1) in dn21, the recursion
relations do not depend ond̃n21! These equations simply reproduce the discretization
procedure without incorporating any information from the fine scale. In operator form,
we have done nothing other than project onto the next coarsest scale, reducing
PnG(xn) 5 K nPnF(xn) to Pn21G(xn21) 5 K n21Pn21F(xn21). Therefore, we have to
include higher order terms in the recurrence relations to determine any contribution
from the fine scales.

Let us expand the recurrence relations forgn21(sn21) andfn21(sn21) in Taylor series
again, but this time we will retain terms of orderO(1) and O(dn21

2 ). This gives us
recurrence relations of the form

gn21(s)~k! 5 Sgn~s!~k! 1 S d̃~s!~k!

16
~Dg9n~s!~k! 1 Sf9n~s!~k!!

1
1

16
Dfn~s!~k! 1

d̃2~s!~k!

32
Sg0n~s!~k!Ddn21

2

fn21~s!~k! 5 Sfn~s!~k! 1 S d̃~s!~k!

16
Df9~s!~k! 1

d̃2~s!~k!

32
Sf 0~s!~k!Ddn21

2 .

Notice that these equations do include information from the fine scale. If we solve Eq.
(2.38) ford̃n21(s)(k) to orderO(1) and substituted̃n21(s)(k) into the recursion relations
for gn21(s) andfn21(s), we may split the functionsgn21(s) andfn21(s) into two terms,
one of orderO(1) in dn21 and one of orderO(dn21

2 ),

gn21~s!~k! 5 g0~s!~k! 1 g1~s!~k!dn21
2 and fn21~s!~k! 5 u0~s!~k! 1 u1~s!~k!dn21

2 ,
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where

g0 5 Sgn

u0 5 Sfn

g1 5
d̃

16
~Dg9n 1 Sf9n! 1

1

16
Dfn 1

d̃2

32
Sg0n

u1 5
d̃

16
Df9n 1

d̃2

32
Sf 0n

d̃ 5
Sfn 2 Dgn

Sg9n
.

We summarize the previous discussion in the following proposition.

PROPOSITIONII.3. If F and G are twice continuously differentiable as functions of x and if
F is a Lipschitz function in both t and x, then we can obtain analytic expressions, at least up
to orderdj

2, for the recurrence relations and for d˜. Let us again introduce a superscript(n) on
the functions to denote the level at which we started the reduction procedure, the subscript j,
as before, signifies the current level of resolution. If the functions gj11

(n) (s) and fj11
(n) (s) at some

scale j1 1 consist of two terms, one of order O(1) and the other of order O(dj11
2 ),

gj11
~n! ~s!~k! 5 g0, j11

~n! ~s!~k! 1 g1, j11
~n! ~s!~k!d j11

2 (2.39)

and

f j11
~n! ~s!~k! 5 u0, j11

~n! ~s!~k! 1 u1, j11
~n! ~s!~k!d j11

2 , (2.40)

then we may arrange the reduction of these function to functions gj
(n)(s) and fj

(n)(s) at scale j as

gj
~n!~s!~k! 5 g0, j

~n!~s!~k! 1 g1, j
~n!~s!~k!d j

2 and f j
~n!~s!~k! 5 u0, j

~n!~s!~k! 1 u1, j
~n!~s!~k!d j

2,

(2.41)

where (dropping superscripts)

g0,j 5 Sg0,j21 (2.42)

u0,j 5 Su0,j21 (2.43)

g1,j 5
1

4
Sg1,j21 1

d̃j

16
~Dg90,j21 1 Su90,j21! 1

1

16
Du0,j21 1

~d̃j!
2

32
Sg00,j21 (2.44)

u1,j 5
1

4
Su1,j21 1

d̃j

16
Du90,j21 1

~d̃j!
2

32
Su00,j21 (2.45)

d̃j 5
Su0, j21 2 Dg0, j21

Sg 00, j21
. (2.46)
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In other words, at level j, we arrange the functions gj
(n) and fj

(n) so that they consist
of two terms of the appropriate orders and we write recurrence relations for each of
these two terms.

Remark. We usually initialize the reduction procedure with theO(1) terms,

g0,n
~n!~s!~k! 5 gn

~n!~s!~k!, u0,n
~n!~s!~k! 5 f n

~n!~s!~k!,

and theO(dn
2) terms,

g1,n
~n!~s!~k! 5 0, u1,n

~n!~s!~k! 5 0.

This can be modified, however.

Remark. Higher order expansions may be obtained in the same manner. We supply an
algorithm implemented in Maple in Subsection VI.2 to compute the recurrence relations
for sufficiently high order terms.

III. IMPLEMENTATION AND EXAMPLES

In this section we present the numerical implementation of our formal reduction
procedure, which we derived in Subsection II.2, and three examples to evaluate the
accuracy of our reduction methods and to explore “patching” together the series
expansion of the recursion relations and the numerical reduction procedure. We also
determine numerically the long-term effect of a small perturbation in a nonlinear
forced equation.

III.1. Implementation of the Reduction Procedure

We initialize our numerical reduction procedure with two tables of values, one table
for each of the discretizations of the functionsF andG at the starting resolution level
n. The first coordinatek in our table enumerates the averages in time of the functions
F andG, the functionsgn(sn)(k) and fn(sn)(k), for k 5 0, . . . , 2n 2 1. Notice that these
are still functions ofsn which is unknown, so we also discretize insn. In other words,
from the start, we look at a range of possible valuessn(k, i) (i 5 0, . . . ,N 2 1) for each
k, and work with all of them together. This discretization gives us the second
coordinatei for our tables. We then have valuesgn(sn(k, i))(k) andfn(sn(k, i))(k) for k 5
0, . . . , 2n 2 1 and i 5 0, . . . , N 2 1. To look at a range of possible values insn(k),
we must have somea priori knowledge of the bounds on the solution of the
differential equation.

Next we form the equation (dropping the subscriptn) which determinesd̃ on the
interval kdn21 , t , (k 1 1)dn21 (see Eq. (2.27)):

Dg~s~k, i !, d~k, i !!~k! 5 Sf~s~k, i !, d~k, i !!~k!. (3.47)

Notice that this is a sampled version of Eq. (2.27) and for each sample values(k, i ) and
for eachk 5 0, . . . , 2n21 2 1 we must solve (3.47) ford̃(k, i ). That is, our unknowns
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d̃(k, i ) form a two-dimensional array. To solve for eachd̃(k, i ) we must interpolate among
the known valuesg(s(k, i ))(k) since we need to know the valueg(s(k, i ) 1 d

2
d̃(k,

i ))(2k 1 1) (and similarly forg(s(k, i ) 2 d

2
d̃(k, i ))(2k)) and we only have the values

at the sample pointss(k, i ) for i 5 0, . . . , N 2 1. For higher order interpolation
schemes, we need fewer grid points ins to achieve a desired accuracy which reduces the
size of the system with which we have to work.

Once we have computed the valuesd̃(k, i ), we calculate the reduced tables of values
gn21(s(k, i ))(k) andfn21(s(k, i ))(k), wherek 5 0, . . . , 2n21 2 1 andi 5 0, . . . ,N 2
1, according to the sampled versions of the recurrence relations (2.35)–(2.36):

gn21~s~k, i !!~k! 5 Sgn~k!~s~k, i !, d̃~k, i !! 1
dn

2

4
Dfn~k!~s~k, i !, d̃~k, i !!

fn21~s~k, i !!~k! 5 Sfn~k!~s~k, i !, d̃~k, i !!.

Notice that the tables are reduced in width ink by a factor of two and that this procedure
can be applied repeatedly.

Remark. Observe that wheni 5 0 (respectively,i 5 N 21), we cannot interpolate
to calculate the valuesg(s(k, i) 2 d

2
d̃(k, i)) (respectively,g(s(k, i) 1 d

2
d̃(k, i))). We

must either extrapolate (and then ignore the resulting “boundary effects” which
propagate through the reduction procedure) or adjust the grid in thes variable at each
resolution level. An alternate approach could be to use asymptotic formulas valid for
large s.

We implemented this algorithm in Matlab as a prototype to test the following examples.

III.2. Examples

III.2.1. Accuracy. With the first example we verify our numerical reduction
procedure and determine how the accuracy of the method depends on the step-size
dn 5 22n of the initial discretization. We also evaluate the accuracy of the linear
versus cubic interpolation in the context of our approach. We use a simple separable
equation

x9~t! 5 ~1/e! x2~t! cos~t/e! and x~0! 5 x0 (3.48)

with the solution available analytically. We observe that the solutionx(t) to Eq. (3.48)
oscillates about its initial valuex0. We choosee 5 1/(4p) and the initial valuex0 5 1/ 2.
The exact solution is given by

x~t! 5
x0

1 2 x0sin~t/e!
,

which we use to verify our reduction procedure. In particular we check if the averages of
x(t) satisfy the difference equation derived via reduction.

Let us assume that we reduce to resolution leveld j 5 22j so that we have two tables
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of values forfj(s(k, i ))(k) andgj(s(k, i ))(k). If xj(k) is the average ofx over the interval
k22j , t , (k 1 1)22j, then the following equation should hold

gj~ xj!~k! 5 d j O
k950

k21

fj~ xj!~k9! 1
d j

2
fj~ xj!~k!.

We denote byej(k) the error over each intervalkdj , t , (k 1 1)dj and define
ej(k) by

ej~k! 5 Ugj~ xj!~k! 2 d j O
k950

k21

fj~ xj!~k9! 2
d j

2
fj~ xj!~k!U .

Note that we have only sampled values forgj(s(k, i ))(k) andfj(s(k, i ))(k) and so we must
interpolate among these values to calculategj( xj)(k) for a specific valuexj(k). We want
to know how the errorsej(k) depend on the level of resolution at which we begin the
reduction procedure. We reduce to resolution level withd j 5 221 and calculate the errors
ej(0) andej(1) using the averagesxj(0) 5 xj(1) 5 0.5774. We fix thenumber of sample
points ins to be 50 and use linear interpolation. Table 1 lists the errors as a function of
the initial resolution. If we exclude the errors associated with the initial resolutiondn 5
222 and plot the logarithm of the remaining errors as a function of log(dn), the slope of
the fitted line is 1.9660. We can conclude that the accuracy of our numerical reduction
scheme increases with the square of the initial resolution.

As we described above, we have to interpolate between known function values in the
tables. We used both linear and cubic interpolation methods. We would like to know how
the interpolation affects the error of the method and the minimum number of sample
points ins we need for both interpolation methods. We use Eq. (3.48) again with the same
values forx0 ande. We fix the initial resolution atdn 5 225. For technical reasons, with
cubic interpolation we can reduce only to resolution leveld j 5 222. Table 2 lists the
errors as a function of the number of sample points ins for both linear and cubic
interpolation. In Fig. 1 we have plotted the average error as a function of the number of
sample points ins for the two methods of interpolation. We can see that with cubic
interpolation the minimum number of grid points ins is 15 and that with linear interpo-
lation we can achieve the same accuracy with 50 grid points. We can also see from the

TABLE 1

Errors as a Function of the Initial Resolution

Initial resolution5 dn Average error

222 0.0774
223 0.0290
224 0.0069
225 0.0019
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graph that increasing the number of grid points (past 15) will yield no gain in the accuracy
of the cubic interpolation method.

III.2.2. Hybrid reduction method. In the second example we will combine the ana-
lytic reduction procedure with the numerical procedure. We begin at a very fine resolution
dn0

5 2n0 and reduce analytically to a coarser resolution leveldn1
5 2n1. From this level

we reduce numerically to the final coarse leveld j. The analytic reduction procedure is
computationally inexpensive compared to the numerical procedure and we want to take
advantage of this efficiency as much as possible. However, we must balance computa-
tional expense with accuracy. With this example we will determine the resolution leveldn1

at which this balance is achieved. Again we use a separable equation given by

x9~t! 5 x2~t! cos~t/e!, x0 5 0.1, e 5
1

4p
. (3.49)

TABLE 2

Error as a Function of the Number of Sample Points ins, with Linear Interpolation

and with Cubic Interpolation

No. of sample points ins

Average error

Linear Cubic

6 0.0238 0.0045
10 0.0098 0.0020
15 0.0052 0.0020
25 0.0029 0.0020
30 0.0024 —
50 0.0019 —

FIG. 1. The error as a function of the number of sample points ins for linear and cubic interpolation
methods.
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The solution to Eq. (3.49) is

x~t! 5
x0

1 2 ex0 sin~t/e!
.

We begin with analytic reduction at resolutiondn0
5 2210. We choose the final resolution

level to bed j 5 222 and we letn1, the resolution as which we switch to the numerical
procedure, range from 2 to 5. Table 3 lists the errors as a function ofn1. Note that we have
used cubic interpolation and ten grid points inx. Figure 2 is a graph of the average error
as a function of the intermediate resolution. We can see from this graph that the biggest
gain in accuracy occurs at the intermediate resolutiondn1

5 223. In other words, at the
finer intermediate levels (n1 5 4, 5) we give a small gain in accuracy compared to the
computational expense of the additional resolution levels in the numerical reduction. To
balance accuracy with computational time for this particular example, we should reduce
analytically to resolutiondn1

5 223 and then switch to the numerical reduction to reach
the final leveld j 5 222. The analytic procedure allows us to reduce our problem with
very little computational expense (compared to the numerical procedure) and then for the

TABLE 3

Errors as a Function of the Intermediate Resolution

Intermediate Resolution5 n1 Average error

222 0.00106
223 0.00093
224 0.00092
225 0.00092

FIG. 2. The error as a function of the intermediate resolution level at which we switch from the analytic
reduction method to the numerical reduction method.
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additional accuracy needed we can use only one relatively more expensive numerical
reduction step.

III.2.3. Bifurcation and stability analysis. The third example we will consider is the
equation

x9~t! 5 ~1 2 x2~t!! x~t! 1 A sin~t/e!, x~0! 5 x0, (3.50)

wheree is a small parameter associated to the scale of the oscillation in the forcing term.
If the amplitudeA 5 0, then the solutionx(t) has one unstable equilibrium point atx0 5
0 and two stable equilibria atx0 5 21, 1 (see Fig. 3).

A small perturbation in the forcing term will effect large changes in the asymptotic
behavior ast tends to infinity. Therefore, the behavior of the solution on a fine scale will
affect the large scale behavior. In particular, if the amplitudeA is nonzero but small, then
the solutionx(t) has three periodic orbits. Two of the periodic orbits are stable while one
is unstable (see Fig. 4). As we increase the amplitudeA, there is a pitchfork bifurcation—
the three periodic orbits merge into one stable periodic orbit (see Fig. 5). We would like
to know if we can determine numerically the initial values of these periodic orbits from
the reduction procedure and if those periodic solutions are stable or unstable. We will
compare these results derived from the reduction procedure with those from the asymp-
totic expansion ofx for initial values nearx0 5 0 and for smalle. Let us begin with the
asymptotic expansion ofx for small values ofe. Assume we have an expansion of the form

x~t; e! , 0 1 ex1~t, t! 1 e2x2~t, t! 1 · · · , (3.51)

where the fast time scalet is given byt 5 t/e. If we substitute the expansion (3.51) into
the Eq. (3.50), we have the equation

­ x1

­t
1 eS­ x1

­t
1

­ x2

­t D 5 A sin t 1 ex1 1 O~e2!.

FIG. 3. The flows for Eq. (3.50) with zero forcing.
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Equating terms of order one ine, we have
­x1

­t
5 A sin t, which has the solutionx1(t,

t) 5 2A cost 1 v(t). The functionv is determined by a secularity condition which
we impose on the terms of ordere. Equating the terms of ordere gives us the equation

­ x2

­t
5 2A cost 1 v~t! 2 v9~t!.

The non-oscillatory termv 2 v9 in the above equation is “secular” because if it were
nonzero, we would have a linear term int which is incompatible with the assumed form

FIG. 4. The flows for Eq. (3.50) with small but nonzero forcing. Notice that there are three periodic orbits:
two stable and one unstable.

FIG. 5. The flows for Eq. (3.50) with large amplitudeA. Notice that there is only one (stable) periodic orbit
in this diagram as the system has undergone a pitchfork bifurcation.
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of the expansion (3.51). Therefore, we set this term equal to zero,v 2 v9 5 0, and
determine thatv(t) 5 C1 et. So we have obtained an asymptotic expansion forx

x~t; e! , 0 1 e~2A cost 1 C1 et!. (3.52)

Note that this asymptotic expansion is valid only fort # ulog eu. We can, however,
determine the behavior ofx for large time by examining the direction of the growth inx
since the direction signifies which stable periodic orbit (1 or21) captures the solution.
Observe that the sign of the coefficientC1 depends on the initial valuex0. In particular,
if x0 . 2Ae then C1 . 0 and if x0 , 2Ae then C1 , 0. In other words, ife is
sufficiently small, there is a separation pointx*0, defined as the largest value such that if
x0 , x*0, then x(t) , 0 as t tends to infinity. According to the asymptotic expansion
(3.52), the separation pointx*0 ase goes to zero is given by

x*0 , 2Ae.

This is an approximation of the initial value of the unstable periodic solution.
Let us derive another approximation for the separation point by linearizing Eq. (3.50)

aboutx0 5 0. The linearized differential equation is the equation

x9~t! 5 x~t! 1 A sin ~t/e!, x~0! 5 x0,

which has the solutionx(t) given by

x~t! 5 etSx0 1 E
0

t

Ae2ssin~s/e!dsD .

The sign of the factorx0 1 *0
t Ae2s sin(s/e)ds as t tends to infinity determines the

direction of growth inx(t). In other words, the separation pointx*0 is the value for which
the following is true

lim
t3` Sx*0 1 E

0

t

Ae2ssin~s/e!dsD 5 0.

If we evaluate the integral in the above expression, we determine thatx*0 satisfies

lim
t3`

Sx*0 1
Ae2

1 1 e2 e2tsin~t/e! 2
Ae

1 1 e2 ~e2t cos~t/e! 2 1!D 5 0.

Thus the separation point is given by

x*0 , 2Ae for e sufficiently small.
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We have derived two approximations for the initial value nearx0 5 0 of the unstable
periodic orbit. We will compare these two approximations with the values we determine
numerically from the reduction procedure.

We now turn to the numerical reduction procedure. Assume that we can reduce
the problem to a resolution leveldj 5 22j where it no longer depends on time (i.e.,
the problem is now autonomous). This means that the tablesgj(s(k, i))(k) and
fj(s(k, i))(k) depend only oni and not onk. Let xj(k) denote the average of the solu-
tion x over the intervalkdj , t , (k 1 1)dj. Observe that for Eq. (3.50) the functions
G and F are given by

G~t, x~t!! 5 x~t! 2 x0 and F~t, x~t!! 5 ~1 2 x2~t!! x~t! 1 A sin~t/e!

so that the initial valuex0 is simply a parameter in the numerical reduction scheme and
we may takeG(t, x(t)) 5 x(t).

If the solutionx(t) is periodic and ifd j is an integer multiple of that period, the averages
xj(k) will be all equal to the valuexe (call that the average); that is,xj(1) 5 xj(2) 5 . . .

5 xe. Therefore the value ofgj( z )(k) at each averagexj(k) is the same:

gj~ xj!~1! 5 gj~ xj!~2! 5 · · ·5 gj~ xe!.

Since this holds for allk, we will drop the parameter. We will also drop the subscriptj for
clarity. If we take the expressions forg evaluated at two successive averagesx(l ) and
x(l 1 1) and subtract them, we find thatf( xe) must satisfy

0 5 g~ xe! 2 g~ xe! 5 g~ x~l 1 1!! 2 g~ x~l !! 5
d

2
~ f ~ x~l 1 1!! 1 f ~ x~l !!! 5 f ~ xe!.

This gives us a criterion for finding the average valuexe. We know that the average value
of the periodic solutionx is a zero off. Finally, the separation pointx*0 is the initial value
such thatg( xe) 2 x*0 5 0.

To determine if the separation pointx*0 is stable or unstable, we will perturb it
by a small valuel. Set the new initial valuex0 equal tox*0 1 l. Let (Dxe)l denote
the deviation from the average valuexe in the average ofx over the intervalldj , t ,
(l 1 1)dj. Then, the discretization scheme relates the difference between (Dxe)l and
(Dxe)l11:

g~ xe 1 ~Dxe! l11! 2 g~ xe 1 ~Dxe! l! 5
d

2
~ f ~ xe 1 ~Dxe! l11! 1 f ~ xe 1 ~Dxe! l!!.

If we linearize the above equation, the following holds:

g9~ xe!~~Dxe! l11 2 ~Dxe! l! 5
d

2
f 9~ xe!~~Dxe! l11 1 ~Dxe! l!,
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or equivalently, we may use the ratio

~Dxe! l11

~Dxe! l
5

g9~ xe! 1 ~d/ 2! f 9~ xe!

g9~ xe! 2 ~d/ 2! f 9~ xe!
.

to test the stability of the separation pointx*0.
Table 4 below lists several values fore, the amplitudeA, and the corresponding average

valuesxe for the periodic orbits, separation points, and ratios. The separation point which
has a corresponding ratio greater than one is the unstable periodic orbit with initial value
x*0. We reduce to a level where the problem is autonomous and use cubic interpolation.
We compare the calculated separation pointsx*0 with those determined by the two analytic
methods in Table 5. Notice that for the valuesA 5 40 ande 5 1/(8p) we have only one
stable periodic solution. In other words, the two stable periodic orbits have merged with
the unstable one to create one stable periodic solution. Clearly, this merging of solutions
shows that the fine scale behavior of the solution has a large effect on the coarse scale (or
long time) behavior. Furthermore, we have detected numerically this large effect. In order
to determine the value ofx*0 asymptotically forA 5 40 ande 5 1/8p, we had to resort
to a different asymptotic expansion from the one used previously.

IV. HOMOGENIZATION

In the previous sections we discussed only the MRA reduction procedure for nonlinear
ODEs. In this section we construct the MRA homogenization scheme for nonlinear ODEs.
In the multiresolution approach to homogenization, the homogenization step is a proce-

TABLE 4

e A xe Sep. pts. Ratios

4.03 1027 20.0199 1.1354
1

16p
1 1.0006 0.9807 0.7796

21.0006 21.0204 0.7796

4.03 1026 20.1989 1.1276
1

16p
10 0.9746 0.7759 0.7868

20.9746 21.1732 0.7868

4.03 1026 20.3978 1.1056
1

16p
20 0.8927 0.4951 0.8185

20.8927 21.2901 0.8186

3.03 1026 20.0397 1.1345
1

8p
1 0.9991 0.9595 0.7815

20.9991 1.0387 0.7815

1

8p
40 21.43 1025 21.5891 0.7594

Note.The entryxe is the value ofx(t) for the corresponding initial valuex0, which we call a separation point.
If the ratio is greater than one, the separation point is unstable and if the ratio is less than one, the separation point
is stable. These three columns are calculated using the effective equation.
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dure by which the original system is replaced by some other system with desired
properties (perhaps a “simpler” system). By making sure that both systems produce the
same reduced equations at some coarse scale, we observe that as far asthe solutionat the
coarse scale is concerned, the two systems are indistinguishable. We should emphasize
that this is a preliminary investigation of the homogenization method for nonlinear ODEs.
There are many different approaches to homogenizing a nonlinear ODE and many
different possibilities for a “simpler” system depending on the problem. We explore one
of these possibilities.

Suppose we reduce our problem to levelj , using the series expansion of the recurrence
relations, and have a discretization of the form

gj~sj!~k! 5 d j O
k950

k21

fj~sj!~k9! 1
d j

2
fj~sj!~k!, (4.53)

where the functionsgj(sj) and fj(sj) are expanded in powers ofd j,

gj~sj!~k! 5 g0, j~sj!~k! 1 g1, j~sj!~k!d j
2 and fj~sj!~k! 5 u0, j~sj!~k! 1 u1, j~sj!~k!d j

2.

We want to find 2j functionsG̃(s)(k) andF̃(s)(k) (indexed byk 5 0, . . . , 2j 2 1) with
expansions

G̃~s!~k! 5 G̃0~s!~k! 1 d j
2G̃1~s!~k! and F̃~s!~k! 5 F̃0~s!~k! 1 d j

2F̃1~s!~k!

such that for eachk and allsj { Vj we have

gj~sj!~k! 5 g0~sj!~k! 1 dj
2g1~sj!~k! 5 G̃0~sj!~k! 1 dj

2G̃1~sj!~k!

fj~sj!~k! 5 u0~sj!~k! 1 dj
2u1~sj!~k! 5 F̃0~sj!~k! 1 dj

2F̃1~sj!~k!, (4.54)

TABLE 5

e A x*0 (MRA) x*0 (asymp.) x*0 (linear)

1

16p
1 20.0199 20.01989 2

1

16p

1

16p
10 20.1989 20.1989 2

10

16p

1

16p
20 20.3978 20.3978 2

20

16p

1

8p
1 20.0397 20.0395 2

1

8p

1

8p
40 21.5891 21.592 —

Note.We determine the unstable separation pointx*0 with three methods: one numerical method using the
reduced equation and two analytic methods. Fore 5 1/8p andA 5 40 we could not apply the linearization
method and we had to use a different asymptotic expansion.
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where

G̃1~ x!~k! 5
1

24 S F̃0~ x!~k!

G̃90~ x!~k!D
2

G̃00~ x!~k! 1
1

12 S F̃0~ x!~k!

G̃90~ x!~k!D F̃90~ x!~k!

and

F̃1~ x!~k! 5
1

24 S F̃0~ x!~k!

G̃90~ x!~k!D
2

F̃ 00~ x!~k!.

In other words, on each interval (k)22j , t , (k 1 1)22j we want to find two functions
G̃( x)(k) andF̃( x)(k) which depend only onx such that the reduction scheme applied to
these functions on each interval yields the same discretization (4.53) as the original. We
know what the fixed point or limiting value of the reduction process for autonomous
equations is (see Appendix A) so we may use this exact form to specifyG̃1( x)(k) and
F̃1( x)(k) in terms ofG̃0( x)(k) andF̃0( x)(k). We can eliminateG̃1( x)(k) andF̃1( x)(k)
from Eqs. (4.54) to get the following coupled system of differential equations for eachk

gj~ x!~k! 2 G̃0~ x!~k!

d j
2 5

1

24 S F̃0~ x!~k!

G̃90~ x!~k!D
2

G̃00~ x!~k! 1
1

12 S F̃0~ x!~k!

G̃90~ x!~k!D F̃ 00~ x!~k!

fj~ x!~k! 2 F̃0~ x!~k!

d j
2 5

1

24 S F̃0~ x!~k!

G̃90~ x!~k!D
2

F̃ 00~ x!~k!.

We may pick out the non-oscillatory solution to the system of differential equations and
obtain

G̃0 5 g0 1 d j
2Sg1 2

1

24 S u0

g90
D 2

g 00 2
1

12 S u0

g90
Du90D

F̃0 5 u0 1 d j
2Su1 2

1

24S u0

g 00
D 2

u 00D .

This homogenization procedure will yield a simplified equation which is autonomous over
intervals of length 22j and whose solution has the same average over these intervals as the
solution to the original, more complicated differential equation. One can replace the
original equation by this homogenized equation and be assured that the coarse behavior of
the homogenized equation is asymptotically equal to the coarse behavior of the original
solution.

V. CONCLUSIONS

We can extend the MRA reduction and homogenization strategies to small systems of
nonlinear differential equations. The main difficulty in extending the reduction procedure
to nonlinear equations is that there are no explicit expressions for the fine scale behavior
of the solution in terms of the coarse scale behavior. We resolve this problem with two
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approaches; a numerical reduction procedure and a series expansion of the recurrence
relations which gives us an analytic reduction procedure.

The numerical procedure requires somea priori knowledge of the bounds on the solution
since it entails using a range of possible values for the solution and its average behavior and
working with all of them together. The accuracy of this scheme increases with the square of
the initial resolution but it is computationally feasible for small systems of equations only. We
can use the reduced equation, which we compute numerically, to find the periodic orbits of a
periodically forced system and to determine the stability of the orbits.

One reduction step in the analytic method consists of expanding the recurrence relations
in Taylor series about the averages of the solution. We gather the terms in the series which
are all of the same order ind j, the step size, and identify them as one term in the series
so that we have a power series ind j. Then we write recurrence relations for each term in
the series so that the nonlinear functions which determine the solution on the next coarsest
scale are themselves power series in the next coarsest step sized j21. We determine the
recurrence relations for an arbitrary term in this power series, show that the recurrence
relations converge if applied repeatedly, and investigate the convergence of the power
series for linear ODEs.

The homogenization procedure for nonlinear differential equations is a preliminary one.
We replace the original equation with an equation which is autonomous on the coarse
scale at which we want the solutions to agree. If we are interested in the behavior of our
solution only on a scale 22j, then our simpler equation which we use in place of the
original equation does not depend ont over intervals of size 22j. Unlike the linear case
where a constant coefficient equation (or an equation with piecewise constant coefficients)
is clearly simpler than a variable coefficient equation, there are many possible kinds of
“simpler” equations which can replace a nonlinear equation. We present one candidate
type for a simpler equation and leave others untouched.

VI. APPENDIX A

In this appendix we present several detailed discussions of the series expansion of the
recursion relations. The first is a derivation of the fixed point of the recurrence relations
for autonomous equations. The second is an algorithm for generating the relations for
higher order terms in the power series expansions.

More detailed discussions can be found in [11]. The results include the general forms
of the coefficientsg0,j

(n)(s), g1,j
(n)(s), u0,j

(n)(s), andu1,j
(n)(s) in the expansions ofgj

(n)(s) and
f j

(n)(s) for non-autonomous differential equations. Conditions for the convergence asn
tends to2` of the recurrence relations for the two lowest order coefficients are also
discussed. The altered recurrence relations for the case when the left side of the differ-
ential equation (2.14),F(t, x(t)), is not Lipschitz as a function oft are given. Finally, the
recurrence relations for the general coefficientsg i , j

(n) andu i , j
(n) are discussed along with the

convergence of the series expansions

gj
~n!~ x!~k! 5 O

i50

`

g i, j
~n!~ x!~k!d j

2i and f j
~n!~ x!~k! 5 O

i50

`

u i, j
~n!~ x!~k!d j

2i

under the reduction process.
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VI.1. Recursion Relations for Autonomous Equations

We will now apply the reduction procedure to the autonomous integral equation

G~ x~t!! 5 E
0

t

F~ x~s!!ds (6.55)

and examine the series expansions for the recurrence relations when applied to this
autonomous integral equation. We will consider only the first two terms in the expansions;
higher order discretization schemes can be obtained if we keep higher order terms in the
expansions.

THEOREM VI.1. Let us assume that the functions F and G are both twice continuously
differentiable as functions of x and that dG/dxÞ 0. Then the coefficientsg0,j

(n), g1,j
(n), u0,j

(n),
and u1,j

(n) are given by

g0, j
~n! 5 G, g1, j

~n! 5
~1/3!~22m 2 1!

2212m S F

G9DF9 1
~1/3!~22m 2 1!

2312m S F

G9D
2

G0

u0, j
~n! 5 F, u1, j

~n! 5
~1/3!~22m 2 1!

2312m S F

G9D
2

F0,

where m5 n 2 j. Furthermore, in the limit as m tends to infinity, the coefficients
converge to

g0, j
~2`! 5 G, g1, j

~2`! 5
1

12 S F

G9DF9 1
1

24 S F

G9D
2

G0

u0, j
~2`! 5 F, u1, j

~2`! 5
1

24 S F

G9D
2

F0.

Proof. Because the functionsG and F do not depend explicitly on time, the terms
gn( xn)(k) and fn( xn)(k) in the initial discretization

gn~ xn!~k! 5 dn O
k950

k21

fn~ xn!~k9! 1
dn

2
fn~ xn!~k!

are simply the values ofG and F evaluated atxn(k). In the non-autonomous case, the
termsgn( xn)(k) and fn( xn)(k) are the averages of the functionG(t, z ) andF(t, z ) over
the time intervalkdn , t , (k 1 1)dn and evaluated atxn(k). Because the values
gn(sn21(k))(2k 1 1) andgn(sn21(k))(2k) are equal, the difference operatorD applied to
gn and evaluated atsn21 yields zero,

Dgn~sn21!~k! 5
1

d
~ gn~sn21~k!!~2k 1 1! 2 gn~sn21~k!!~2k!! 5 0,
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and the average operatorS applied togn and evaluated atsn21 yields gn(sn21)(k),

Sgn~sn21!~k! 5
1

2
~ gn~sn21~k!!~2k 1 1! 1 gn~sn21~k!!~2k!! 5 gn~sn21!~k!.

We will drop the parameterk in what follows for this reason and simply writeG( xn) and
F( xn) instead ofgn( xn)(k) and fn( xn)(k) and we will simplify the recursion relations.

We begin with an initial discretization of our integral equation at resolution leveln 5
1 and initialize the coefficients as

g0,1
~1!~ x1! 5 G~ x1!, g1,1

~1!~ x1! 5 0

u0,1
~1!~ x1! 5 F~ x1!, u1,1

~1!~ x1! 5 0.

We reduce one level toj 5 0 so that the difference in resolution (n 2 j ) is one. Using
the simplified recursion relations, we calculate the reduced coefficients:

g0,0
~1!~ x0! 5 G~ x0!, g1,0

~1!~ x0! 5
1

16 S F~ x0!

G9~ x0!
DF9~ x0! 1

1

32 S F~ x0!

G9~ x0!
D 2

G0~ x0!

u0,0
~1!~ x0! 5 G~ x0!, u1,0

~1!~ x0! 5
1

32 S F~ x0!

G9~ x0!
D 2

F0~ x0!.

We want to find the forms of the coefficients for an arbitrary difference in resolution
(n 2 j ) 5 m. We proceed by induction. Assume that for (n 2 j ) 5 m we have

g0, j
~n! 5 G, g1, j

~n! 5
~1/3!~22m 2 1!

2212m S F

G9DF9 1
~1/3!~22m 2 1!

2312m S F

G9D
2

G0 (6.56)

u0, j
~n! 5 F, u1, j

~n! 5
~1/3!~22m 2 1!

2312m S F

G9D
2

F0. (6.57)

We will apply the simplified recursion relations to these coefficients and reduce one more
level so thatn 2 ( j 2 1) 5 m 1 1. It is clear thatg0,j21

(n) 5 G andu0,j21
(n) 5 F. The

simplified recursion relations tell us that

g1, j21
~n! 5

1

4
Sg1, j

~n! 1
1

16 S F

G9DF9 1
1

32 S F

G9D
2

G0

5 F9S F

G9DS 1

16
1

1

4

~1/3!~22m 2 1!

2312m D 1 G0S F

G9D
2S 1

32
1

1

4

~1/3!~22m 2 1!

2312m D
5

~1/3!~22~m11! 2 1!

2212~m11! S F

G9DF9 1
~1/3!~22~m11! 2 1!

2312~m11! S F

G9D
2

G0,
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and

u1, j21
~n! 5

1

4
Su1, j

~n! 1
1

32 S F

G9D
2

F0 5 F0S F

G9D
2S 1

32
1

1

4

~1/3!~22m 2 1!

2312m D
5

~1/3!~22~m11! 2 1!

2312~m11! S F

G9D
2

G0.

This proves the formulas (6.56)–(6.57) for allm 5 (n 2 j ). Note that these forms depend
only on the difference in resolution levelsn 2 j . In the limit asm tends to infinity, we
find that the coefficients converge to

g0, j
~2`! 5 G, g1, j

~2`! 5
1

12 S F

G9DF9 1
1

24 S F

G9D
2

G0

u0, j
~2`! 5 F, u1, j

~2`! 5
1

24 S F

G9D
2

F0.

Additionally, the limiting values of these coefficients eliminate the error of the initial discreti-
zation, give us expressions independent of resolution levelj, and contribute errors only from
the truncations of the original Taylor series. The reduced equation at levelj is then given by

gj~ xj!~k! 5 d j O
k950

k21

fj~ xj!~k9! 1
d j

2
fj~ xj!~k!, where~droppingj ! (6.58)

g~ x!~k! 5 g0
~`!~ x~k!! 1 g1

~`!~ x~k!!d2 (6.59)

and

f~ x!~k! 5 u0
~`!~ x~k!! 1 u1

~`!~ x~k!!d2. ■ (6.60)

VI.2. Algorithm to Generate Recurrence Relations

In Subsection II.3, we limited our expansions toO(d2) terms. In this subsection we
present an algorithm (implemented in Maple) to compute the recurrence relations for the
terms of the power series expansions including higher powers ofd

gj~sj!~k! 5 O
i50

I

g i, j~sj!~k!d j
2i, (6.61)

fj~sj!~k! 5 O
i50

I

u i, j~sj!~k!d j
2i, (6.62)

d̃j~sj!~k! 5 O
i50

I

h i, j~sj!~k!d j
2i. (6.63)
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In other words, if we group the terms ingj, fj, andd̃j by their order ind j and if we stipulate
that the terms ingj21 and fj21 must be grouped in the same fashion, then we can
determine the recurrence relations for the coefficientsg i , j21(sj21)(k) (i 5 0, . . . , I ) in
the series expansion ofgj21 (and similarly for the coefficientsu i , j21).

In the program shown in Fig. 6, we first specify the orderI of the expansions. In the
example program the order is four. Next the four quantitiesge, go, fe, andfo are
defined. Notice that we are using the fact that

~Sg!~ x!~k! 5
1

2
~g~ x!~2k 1 1! 1 g~ x!~2k!!

~Dg!~ x!~k! 5
1

d
~g~ x!~2k 1 1! 2 g~ x!~2k!!

to expressge 5 g( x)(2k), the even-numbered values ofg( x), andgo 5 g( x)(2k 1 1),
the odd-numbered values. The step-sized is accorded the variableh in the program. Next
we form the two sides of the equationQG 2 QF 5 0 which determinesd̂; at the same time
we substitutex(2k 1 1) 5 s(k) 1 h/2d(k) andx(2k) 5 s(k) 2 h/2d(k) into
ge andfe (respectively,go andfo). Into the expressionQG 2 QF, we substitute the
series expansion ford̃,

d5sum(d(i)*(2*h)(2*i), i50 . . . ord).

We expand the expressionQG 2 QF in a Taylor series and we peel off the zeroth-order
coefficient inh and solve ford(0), which gives us the first term in our expansion for
d̃. This is the recurrence relation forh̃0. To determine higher order terms in the expansion
of d̃, we use, for example,

simplify(solve(coeff(eq1, h, 2), d(1)));

FIG. 6. Maple code to compute recurrence relations for coefficients up to any specified order in series
expansions ofg andf. The specified order for the example is ord:5 2. The variable h stands for thed used in
the text.
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Recall that the recurrence relation forfj is fj 5 Sfj11 and notice thatSfj11 is the same
asQF so we simply substitute the expansion ford̃ intoQF. Then we leth 5 h/2 to adjust
the resolution size for the next step and finally expand the expression in a Taylor series.
(Recall thatgj11 and fj11 are expanded in powers ofd j11 5 d j/ 2 andgj and fj are
expanded in powers ofd j.) To determine the recurrence relation for the coefficient
u i(s)(k), we peel off thei th coefficient (fori # ord):

coeff(newf, h, i);.

The recurrence relation forgj is given bygj 5 Sgj11 1 h2/4Dfj11 which we denote
by PG. Again we substitutex(2k 1 1) 5 s(k) 1 h/2d(k) andx(2k) 5 s(k) 2
h/2d(k) into ge andfe (respectively,go andfo) and we substitute the expansion for
d̃ intoPG. Finally we rescaleh and expandPG in a Taylor series. We determine recurrence
relations forg i(s)(k) in the same fashion as before:

coeff(newg, h, i);.

We should point out that this is an algorithm for determining the recurrence relation for
the coefficients in the series (6.61)–(6.63); however, it does not give a closed form for the
recurrence relations.

VII. APPENDIX B

A multiresolution analysis (MRA) ofL2([0, 1]) is adecomposition of the space into a
chain of closed subspaces

V0 , V1 , · · ·, Vn · · ·

such that

ø
j$0

Vj 5 L2~@0, 1#!

and

ù
j$0

Vj 5 $V0%.

If we let Pj denote the orthogonal projection operator ontoVj, then limj3`Pj f 5 f for all
f { L2([0, 1]). We have the additional requirements that each subspaceVj ( j . 0) is a
rescaled version of the base spaceV0:

f { Vj N f~2j z ! { V0.

Finally, we require that there existsf { V0 (called the scaling function) so thatf

forms an orthonormal basis ofV0. We can conclude that the set {fj,kuk 5 0, . . . , 2j 2
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1} is an orthonormal basis for each subspaceVj. Herefj,k denotes a translation and
dilation of f:

f j,k 5 2j/ 2f~2jx 2 k!.

As a consequence of the above properties, there is an orthonormal wavelet basis

$c j,ku j $ 0, k 5 0, . . . , 2j 2 1%

of L2([0, 1]), c j ,k( x) 5 2j / 2c(2jx 2 k), such that for allf in L2([0, 1])

Pj11 f 5 Pj f 1 O
k50

2 j21

^ f, c j,k&c j,k.

If we defineWj to be the orthogonal complement ofVj in Vj11, then

Vj11 5 Vj % Wj.

We have, for each fixedj , an orthonormal basis {c j ,kuk 5 0, . . . , 2j 2 1} for Wj.
Finally, we may decomposeL2([0, 1]) into a direct sum

L2~@0, 1#! 5 V0 %
j$0

Wj.

The operatorQj is the orthogonal projection operator onto the spaceWj.
The Haar waveletc and its associated scaling functionf are defined as follows:

f~ x! 5 H 1, x { @0,1!
0, elsewhere and c~ x! 5 H 1, x { @0, 1/ 2!

21, x { @1/ 2, 1!
0, elsewhere.

REFERENCES

1. A. Askar, B. Space, and H. Rabitz, The subspace method for long time scale molecular dynamics, preprint,
1995.

2. C. M. Bender and S. A. Orszag, “Advanced Methods for Scientists and Engineers,” McGraw–Hill, New
York, 1978.

3. A. Bensoussan, P. L. Lions, and G. Papnicolaou, “Asymptotic Analysis for Periodic Structures,” North-
Holland, The Netherlands, 1978.

4. G. Beylkin, R. Coifman, and V. Rohklin, Fast wavelet transforms and numerical algorithms, I,Comm. Pure
Appl. Math.44 (1991).

5. G. Beylkin and N. Coult, A multiresolution strategy for reduction of elliptic PDE’s and eigenvalue problems,
preprint, 1996.

6. F. Bornemann and C. Schu¨tte, Homogenization of hamiltonian systems with a strong constraining potential,
Phys. D102,Nos. 1–2 (1997).

7. M. E. Brewster and G. Beylkin, A multiresolution strategy for numerical homogenization,Appl. Comput.
Harmon. Anal.2 (1995).

485NUMERICAL REDUCTION AND HOMOGENIZATION



8. R. Coifman, P. L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and hardy spaces,J. Math.
Pures Appl.72 (1993).

9. M. Dorobantu, “Wavelet-Based Algorithms for Fast PDE Solvers,” Ph.D. thesis, Royal Institute of
Technology, Stockholm University, 1995.

10. A. C. Gilbert, A comparison of multiresolution and classical one-dimensional homogenization schemes,
Appl. Comput. Harmon. Anal.5 (1998), 1–35.

11. A. C. Gilbert, “Multiresolution Homogenization Schemes for Differential Equations and Applications,”
Ph.D. thesis, Princeton University, 1997.

12. V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, “Homogenization of Differential Operators and Integral
Functionals,” Springer-Verlag, New York, 1994.

13. J. Kervorkian and J. D. Cole, “Perturbation Methods in Applied Mathematics,” Springer-Verlag, New York,
1985.

14. P. A. Lagerstrom, “Matched Asymptotic Expansions, Ideas and Techniques,” Springer-Verlag, New York,
1988.

15. F. Murat, Compacite´ par compensation,Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)5 (1978).

16. C. Schu¨tte and F. Bornemann, Homogenization approach to smoothed molecular dynamics, preprint, 1997.

17. B. Space, H. Rabitz, and A. Askar, Long time scale molecular dynamics subspace integration method
applied to anharmonic crystals and glasses,J. Chem. Phys.99, No. 11 (1993).

18. L. Tartar, Compensated compactness and applications to partial differential equations,in “Heriot-Watt
Sympos., IV, 1979.”

486 BEYLKIN, BREWSTER, AND GILBERT


