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The multiresolution analysis (MRA) strategy for the reduction of a nonlinear
differential equation is a procedure for constructing an equation directly for the
coarse scale component of the solution. The MRA homogenization process is a
method for building a simpler equation whose solution has the same coarse
behavior as the solution to a more complex equation. We present two multireso-
lution reduction methods for nonlinear differential equations: a numerical proce-
dure and an analytic method. We also discuss one possible appproach to the
homogenization method.o 1998 Academic Press

I. INTRODUCTION

There are many difficult, interesting, and important problems which incorporate m
tiple scales and which are prohibitively expensive to solve on the finest scales. In m
problems of this kind it is sufficient to find the solution on a coarse scale only. Howev
we cannot disregard the fine scale contributions as the behavior of the solution on
coarse scale is affected by the fine scales. In these problems it is necessary to ob
procedure for constructing the equations on a coarse scale that account for the con
tions from these scales. This amounts to writing an effective equation for the coarse s
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component of the solution which can be solved more economically. Alternatively,
might want to construct simpler fine scale equations whose solutions have the same ¢
properties as the solutions of more complicated systems. These simpler equations v
also be considerably less expensive to solve. These procedures are generally referre
homogenization, though the specifics of the approaches vary significantly.

An example of a problem which encompasses many scales and which is difficult to s
on the finest scale is molecular dynamics. The highest frequency motion of a polymer c
under the fully coupled set of Newton's equations determines the largest stable integr:
time step for the system. In the context of long time dynamics the high frequency motion
the system are not of interest but current numerical methods (see [1, 17]) which directly ac
the low frequency motions of the polymer @@ hocmethods, not methods which take into
account the effects of the high frequency behavior. The work of Bornemann atieSsiee
[16, 6]) is a notable exception and appears quite promising.

Let us briefly mention several classical approaches to homogenization. The clas
theory of homogenization, developed in part by Bensoussant. [3], Jikov et al. [12],
Murat [15], and Tartar [18], poses the problem as follows: Given a family of differenti
operatord__, indexed by a parameter assume that the boundary value problem

Lu. =f in Q

(with u_ subject to the appropriate boundary conditions) is well-posed in a Sobolev sp
H for all e and that the solutions, form a bounded subset &f so that there is a weak
limit uy in H of the solutionsu,.. The small paramete¢ might represent the relative
magnitude of the fine and coarse scales. The problem of homogenization is to finc
differential equation thau, satisfies and to construct the corresponding differenti
operator. We call the homogenized operatgrand the equatiohiju, = f in Q the
homogenized equation.

There are several methods for solving this problem. A standard technique is to exy
the solution in powers ok, to substitute the asymptotic series into the differentic
equations and associated boundary conditions, and then to recursively solve for
coefficients of the series given the first order approximation to the solution (see [14, 2,
for more details). If we consider a probabilistic interpretation of the solutions to ellip
or parabolic PDEs as averages of functionals of the trajectory of a diffusion process,
homogenization involves the weak limits of probability measures defined by a stoche
process [3]. In [12, 3], the methods of asymptotic expansions al@&tainvergence are
used to examine families of operatdrs Murat and Tartar (see [15, 18]) developed the
method of compensated compactness. Coifietaal. (see [8]) have recently shown that
there are intrinsic links between compensated compactness theory and the too
classical harmonic analysis (such as Hardy spaces and operator estimates).

Using a multiresolution approach, Beylkin and Brewster [7] give a procedure
constructing an equation directly for the coarse scale component of the solution.
process is called reduction. From this effective equation one can determine a sim
equation for the original function with the same coarse scale behavior. Unlike
asymptotic approach for traditional homogenization, the reduction procedure in
consists of a reduction operator which takes an equation at one scale and construc
effective equation at an adjacent scale (the next coarsest scale). This reduction ope
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can be used recursively provided that the form of the equation is preserved undel
transition. For systems of linear ordinary differential equations a step of the multiresc
tion reduction procedure consists of changing the coordinate system to split variables
averages and differences (in fact, quite literally in the case of the Haar basis), expre:s
the differences in terms of the averages, and eliminating the differences from
equations. For systems of linear ODEs there are relatively simple explicit expression:
the coefficients of the resulting reduced system. Because the system is organized s
the form of the equations is preserved, we may apply the reduction step recursivel
obtain the reduced system over several scales.

M. Dorobantu [9] and A. Gilbert [10] apply the technique of MRA homogenization t
the one-dimensional elliptic problem and derive results which relate the MRA appro:
to classical homogenization theory. A multiresolution approach to the reduction of ellif
PDEs and eigenvalue problems has been developed in [5]. It is shown in [5] that
choosing an appropriate MRA for a given problem, the small eigenvalues of the redt
operator differ only slightly from those of the original operator.

In this paper we consider a multiresolution strategy for the numerical reduction :
homogenization of nonlinear equations. This strategy differs from the classical methoc
that we do not require a distinguished parametenor do we form an asymptotic
expansion (or weak limit) in powers &f We demonstrate that the numerical reductiol
procedure can be applied to a small system of nonlinear ordinary differential equati
The main difficulty in performing a reduction step in the nonlinear case as compare:
the linear case is that there are no explicit expressions for the differences in terms o
averages. We offer two basic approaches to address this problem. First, it appears po
not to require an analytic substitution for the differences and, instead, to rely ol
numerical procedure. Second, we use a series expansion of the nonlinear functio
terms of a small parameter related to the discretization at a given scale (e.g., the stef
of the discretization) and obtain analytic recurrence relations for the terms of
expansion. These recurrence relations allow us to reduce repeatedly. A third methoc
hybrid of the two basic approaches.

In the first section we present a derivation of the reduction procedure for nonlin
ODEs and the series expansion of the recurrence relations. In the second sectio
discuss the implementation of the approaches to reduction. We discuss the homoge
tion procedure for nonlinear equations in the final section. We leave detailed discuss
of the results to the appendices.

Il. MRA REDUCTION METHODS

I.1. Linear Reduction Method

Let us briefly review the reduction method for linear systems of differential equatic
presented in [7]. Consider the differential equation

d
gt (GO +qt) = FOx® +p),  tel0, 1],

where F and G are bounded matrix-valued functions apdand q are vector-valued
functions (with elements ih?([0, 1])). We will rewrite this differential equation as an
integral equation
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G(Ox(t) +qt) — B = j (F(s)x(s) + p(s))ds, t€ [0, 1] (2.1)

0
(whereg is a complex or real vector) since we can preserve the form of this equation ur
reduction, while we cannot preserve the form of the corresponding differential equat
To express this integral equation in terms of an operator equation on functibig®
1]), let F andG be the operators whose actions on functions are pointwise multiplicati
by F andG and letK be the integral operator whose kertéels

_ 1, 0==s=t
Ks, t) = 0, otherwise.

Then Eqg. (2.1) can be rewritten as
Gx+q-—B=K(Fx+p).

We will use a general MRA of ([0, 1]) in this discussion. See Appendix B for
definitions. We begin with an initial discretization of our integral equation by applying t
projection operatorP,, and looking for a solutionx, in V,. This is equivalent to
discretizing our problem at a very fine scale. We have

G X, + qn — B = Ky(FoX, + pn)s (2.2)
where

G,= PGP, F,=PFP, K,=PKPy, p,=P,p, and q,=Pg.

We rewritex,, in terms of its averagev/(_, € V,_,) and differencesw,_, € W,_,),
Xn = PnoaXn + QnoaXy = Vg + W, g,
and plug this into our Eq. (2.2):
Gi(Vp1 + Wy +0n— B = Ky(Fo(Vnos + Woy) + Py (2.3)

Next, we apply the operatoRs,_,; andQ,,_, to Eq. (2.3) to split it into two equations, one
with values inV,,_, and the other with values W,,_;, and we drop the subscripts:

(PGP*)v + (PGQ*)w + Pg= PKP*((PFP*)v + (PFQ*)w + Pp)
+ PKQ*((QFP*)v + (QFQ*)w + Qp)

(QGP*)v + (QGQ*)w + Qq = QKP*((PFP*)v + (PFQ*)w + Pp)
+ QKQ* ((QFP*)v + (QFQ*)w + Qp).

Let us denote
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Toj= Pjoj+1p*, Co= Pjoj+1QT
Boj = QO;::P},  Aoj= QO0;::Qf

(see [4] for a discussion of the non-standard form or representation of an op@yatay
that we may simplify the linear system of equationsvriandw. Then we obtain (again
dropping the subscript—1)

Tov + Cow + Pq— B = T(Tev + Cew + Pp) + C(Brv + Acw + Qp) (2.4)

Bav + Aqw + Qq = Bi(Tev + Cew + Pp) + Ac(Bxv + Acw + Qp). (2.5)
Let us assume that
R = AG - BKCF - AKAF

is invertible so that we may solve Eq. (2.5) ferand plug the result into Eq. (2.4), giving
us a reduced equation M,_, for v:
(Te — CkBr — (Cs — CyAr) RH(Bg — BT — AcBp))V
+ (Pg— C«Qp — (Cs — CkA) R™H(Qq — BPp — AQp)) — B
= TK[(TF - CFR_l(BG — ByTe — AKBF))V + Pp - CFR_l(Qq - BKPp - AKQP)]-
(2.6)
This equation fov,,_; = P,_;X, exactly determines the averagepf That is, we have
an exact “effective” equation for the averages@ivhich contains the contribution from
the fine scale behavior of,. Since we have a linear system and since we assumegthe
is invertible, then we can solve Eqg. (2.5) exactly foand substitute the solution into Eq.

(2.4). Note that this reduced equation has half as many unknowns as the original sys
We call this procedure the reduction step.

Remark. There are differential equations for whieh= Ag — BcCr — AcAg is not
invertible. An example of such an equation can be found in [7].

We should point out that under the reduction step the form of the original equation
preserved. Our Eg. (2.6) far,_; has the form

Gn-1Vn-1t Onoa = B = Kpa(FoaVooa + Pa-d),
where
Gy = Te — CBr — (Co — CAr) R™Y(Bg — ByT: — AcBy)
Fooi=Te — CeR Y(Bg — ByTr — ABp)
dn1 = Pg— CQp — (Ce — CkAr) R H(Qq — B«Pp — AQp)
Pn-1= Pp— CeR™(Qq — BPp — AQp).
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This procedure can be repeated umttimes use the recursion formulas:

F" = Tej— CejR(Bs; — BijTrj — AciBry), @2.7)
G" = Tg; — C«jBrj — (Caj — CijAr) R (Bsj — By Tej — AciBr)), (2.8)
g"” =Pa—Cc;QpP— (Csj — G A-) RHQa — Be;Pp — A; QD). (2.9
p” =Pp—Ce;RUQa—By;Pp— A QP (2.10)

The superscript ) denotes the resolution level at which we started the reducti
procedure and the subscriptlenotes the current resolution level.
Let us summarize this discussion in the following proposition.

ProposiTionll.1.  Suppose we have an equation f¢Px = P, ,x” in V4,

Gj(i)lxj(g)l + q]'(Tl - B= Kj+1(Fj(2)1Xj(Tl + pj(Tl) ,

where the operator R= Ag; — By ;Cr; — Ak jAg; is invertible. Then we can write
an exact effective equation fof% = P,x{{” in V;,

G+ 6~ = K+ ).

using the recursion relations (2.7)—(2.10).

Remark. We initialize the recursion relations with the values
G,=P,GP} F,=PFP}, K,=PKP%, p,=P,p, and q,=Pg,

whereG andF are the operators whose actions on functions are pointwise multiplicat
by G and F, bounded matrix-valued functions with elementsLf([0, 1]); K is the
integration operator; anpl andq are vector-valued functions with elements i#([D, 1]).

Remark. This recursion process involves only the matrie¢8, G, andK; and the
vectorsp™ andq(™. In other words, we do not have to solve forat any step in the
reduction procedure.

If we apply the reduction proceduretimes, we get an equation M,
()3, (n) (n) 1 M)y (n) (n)
Go'Xo" + do _BZE(FOXO +pg’)

for the coarse scale behavior xff°’, which is an easily solved scalar equation. If we ari
interested in only this average behavioxothen the reduction process gives us a way c
determining the average afexactly without having to solve the original equation for
and computing its average. This technique is very useful for complicated systems w
are computationally expensive to resolve on the finest scale and which solutions we
interested in on only the coarsest scale.
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I11.2. Nonlinear Reduction Method

We turn now to nonlinear differential equations. Let us begin by highlighting tt
difficulty in the reduction procedure for nonlinear equations. The reduction proc
dure begins with a discretization of the nonlinear equation. We choose the H
basis for illustrative purposes. Just as the initial discretization of a linear ODE i
linear algebraic system, the initial discretization of a nonlinear ODE is a nonline
system

F.(x) = 0. (2.11)

The nonlinear function, mapsR" to RN (for N = 2" and we denote théth
coordinate of%,(x,) by F.(x,)(K). Similarly, we denote theéth coordinate ofx,
by x.(k). We rewritex, in terms of its average®,_,x, = s,_; and its differences
Qn_1%, = d_;. We recall that for the Haar basis the action of the operaRyrs
and Q,_; amounts to forming averages and differences of the odd and even ¢
ments of a vector (normalized by a factor ®f2). We will modify the Haar basis
slightly and normalize the differences bysl/whered, = 27 ". The averages will not
be adjusted by any factor. The averaggs, and the differencesl,_; are given in
coordinate form by

Sk = 5 62k 1)+ %,20)  and  dya) = 5 (x(2k+ D) - x(2K).

We split our Eqg. (2.11) into two equations in the two unknovejs, andd,_,; by
applyingP,_; andQ,,_, to Eq. (2.11). Our two equations are

Pnfl(@n(snfla dnfl)) =0 (212)

Qn-1(Fn(Sy-1, dn-p)) = 0. (2.13)

Notice that the functio®,,_,%,, mapsR™'? x RV'2 to RV'? and similarly forQ,_,%,,
but that we cannot split these functions into their action®gn,x,, = s,_; andP,,_X,

= d,_; (as we did in the linear case). Instead, we can give the coordinate values
P,_1%, andQ,_, %, (dropping subscripts),

(PF(s, d))(k) = % (F(s, d)(2k + 1) + F(s, d)(2k))
1
(QF(s, d))(k) = 5 (F(s, d)(Zk + 1) — F(s, d)(2k))

fork=0,...,27t - 1.

As with the linear algebraic system, we must eliminate the differedcé®m the
nonlinear system (2.12)—(2.13). In other words, we must solve Eq. (2.13] &8 a
function of s. This equation, however, is a nonlinear equation and may not be ea:
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solved (if at all). Let us assume that we can solve Eq. (2.13)lfas a function ok and
let d(s) denote the solution. We then pluat§s) into Eq. (2.12) to get

P%(s, d(s)) = 0

which is the reduced equation for the coarse behavigr ®he form of the original system
is preserved under this procedure and we may write the recurrence relatign &sr

9;171(5) = ijlgj(sj—la ajfl(sj—l))a

whered;_,(s;_,) satisfiesQ, _,F;(s;_1, d;_4(5_1)) = 0 and 0= j = n.

In this subsection we will give the precise form of the nonlinear system (2.13)—(2..
in d ands, state conditions for (2.13)—(2.12) under which we can solvel fas a function
of s, develop two approaches for solving (2.13)—(2.12)dd¢a numerical and an analytic
approach), and derive formal recurrence relations for the nonlinear furtgtion

We now extend the MRA reduction method to nonlinear ODEs of the form

X'(t) = F(t, x(t)), t € [0, 1]. (2.14)

We will address the difficulties raised in the previous discussion with two approache
formal method to be implemented numerically and an asymptotic method. We will asst
thatF is differentiable as a function of and as a function af. The assumption thdt is
Lipschitz as a function of guarantees the existence of uniqueness of the sobttdnFor
the reduction proceduré must be Lipschitz it and differentiable irx. We will rewrite
this differential equation as an integral equation in a slightly unusual form,

G(t, x(t)) — G(0, x(0)) = Jt F(s, x(s))ds, (2.15)

wheredG/o x # 0. The more usual differential equation (2.14) is obtained by se@iftg
X(t)) = x(t) and by differentiating. We choose this integral formulation because we c
maintain this form under the reduction procedure.

In our derivations we find it helpful to use an operator notation in addition to tl
coordinate notation so we write Eq. (2.15) in an operator form,

G(x) = K(F (X)), (2.16)

where

K(y)(t)=J y(s)ds, G(y)(t) = G(t, y(1)), and  F(y)(t) = F(t, y(1)).
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We will use the MRA ofL3([0, 1]) associated with the Haar basis to begin ou
discretization. We discretize Eq. (2.16)tiby applying the projection operatér, to Eq.
(2.16) and seeking a solutiog, € V, to the equation

Gn(Xn) = KiFn(Xp), (2.17)
where
Gn( Xn) = PnG(Xn)a KI"I = PnK Pf], and Fn(xn) = PnF(Xn)

Because we are using the Haar basisis a piecewise constant function with step widtt
8, = 27 ". The functionsG,(x,,) andF(x,) are also piecewise constant functions. Not
thatG,, F,, andK,, mapV, to V,, althoughG, andF, are nonlinear functions. Let,(k)
denote the value of the functiof) on the intervaks, <t < (k + 1)3,, fork =0, ...,
2" — 1. Let g, (x,) (k) andf.(x,)(k) denote the values of the functiois,(x,) and
F.(X,) on the same interval. That is,

0 (x)(K) = 5

n

(k+1)8n
f 9(s, y(k))ds = (P,G(x,)) (1),

kén

whereks,, < t < (k + 1)5,, and similarly forf,(x)(k). We can say that),(x,)(k) is
the average value of the functidd(t, - ) over the time intervalKs,,, (k + 1)6,) and
evaluated ak,(k). Notice thatg,(x,)(k) is shorthand fog,(x,(k))(k).

As in [7] we use the integration operatkiy, defined by

1
5 O --- 0
K,=8 ! | 2.1
n— ©“n 0 ( . 8)
1
1 1 3
With this notation, the coordinate form of Eq. (2.17) is
k-1 8
GO (k) = 8y 2 fo(x)(K') + Enfn(xn)(k)- (2.19)
k'=0

This equation gives the precise form of the nonlinear systex) = 0 discussed
previously. We are now ready to begin the reduction procedure.

We first split the Eg. (2.17) into two equations, one with value¥ jn, and the other
with values inW,_,, by applying the projection operatdfs_, andQ,_,. We now have
the two equations

I:)n—lc;n(xn) = Pn—lKn(Fn( Xn)) (220)

Qn-1Gn(Xn) = Qn-1Kn(Fr(Xn)). (2.21)
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At this point let us work with two consecutive levels and drop the ind@dicating
the multiresolution level (assume that §,). We again modify the Haar basis slightly
and normalize the differences bys1The averages will not be adjusted by any factor
By forming successive averages of Eq. (2.19), we can rewrite Eq. (2.20) in coordir
form as

2k

1 0 o
5 (909(2k+ 1) + g(x(2K) = 5 3 1)(K) + 7 F)(@k+ D)

k'=0

k-1

8
5 2 H0K) + 4 (02K, (2:22)

In the same manner we rewrite Eq. (2.21) by taking successive differences normalize
the step sizé:

(f(X)(2k + 1) + f(x)(2K)). (2.23)

N[ =

1
5 (9()(2k + 1) = g(x)(2k) =

Let us rearrange the right-hand side of Eq. (2.22) as

2k—1

2 fOok) + if(X)(Zk)

2k , S
5 EO FOO(K) + 7 f(x)(2k+ 1) + 5

2k—1

8 35

=8 > f(x)(K') + 2 002k + 1) + - f(x)(2K)
k'=0
k-1 8

=5 > (f(X(2k" + 1) + f(x)(2K")) + 5 (fO0(2k + 1) + f(x)(2K))
k'=0

_ 2 (f(x)(2k + 1) — F(x)(2K)).

To simplify our notation, let us defin® andD as “average” and “difference” operators
which act ong(x) andf(x) by taking successive averages and differences of eleme
g(x)(k) andf(x)(k). We defineS andD as

1
Sg(x) (k) =5 (g(x)(2k + 1) + g(x)(2k))

1
Dg(x) (k) =5 (g(x)(2k + 1) — g(x)(2k)).
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Then we may write the coordinate form of Egs. (2.20)—(2.21) in a compact form

2 k-1

Sg(x)(K) + % DF(x)(K) = 26 D SF(x)(K') + 6SF(x)(K) (2.24))
Dg(x)(k) = Sf(x)(k). (2.25)

We have split Eq. (2.19) into two sets and now we split the variables accordingly. "
define the averages,_, and the scaled differencel_, as

Sp—1(k) = % (Xa(2k + 1) + x,(2k)) and dn-1(k) = % (xp(2k + 1) — x,(2K)).

Notice that since,, is a piecewise constant function with step width thens,_, and
d,_, are piecewise constant functions with step widéh, 2 §,_,. We will now change
variables in Eqgs. (2.24) and (2.25) and replacgith

) )
X(2k + 1) = s(k) + éd(k) and X(2k) = s(k) — Ed(k)'
We will abuse our own notation slightly for clarity and denote the change of variables
1 ) 5
Sg(s, d)(k) = 2(9(5 + 2d>(2k +1)+ g(s — 2d>(2k))
1 ) )
Dg(s, d)(k) = B(Q(S + 2d)(Zk +1) — g(s — 2d>(2k)).

Note that when we writg(x)(K), this is shorthand fog(x(k))(k); so g(x)(2k + 1)
stands fog(x(2k + 1))(2k + 1) When we replac&(2k + 1) with s(k) + 2 d(k) and
write g(x)(2k + 1) = g(s + 2 d)(2k + 1), this is shorthand for the expressmn

g(x(2k + 1))(2k + 1) = g(s(k) + zd(k))(Zk +1).

The shorthand notatiog(s — gd)(2k) is similar. Then our system of two equations in
the two variables andd is given by

k=1

Sq(s, d)(k) + 8—Df(s d)(k) =25 3 Sf(s, d)(k') + 8Sf(s, d)(k)  (2.26)
k'=0
Dy(s, d)(k) = Sf(s, d)(K). (2.27)

Our goal, as in the linear case, is to eliminate the variatléem Eqs. (2.26)—(2.27)
to obtain a single equation far We consider (2.27) as an equation ébwhich we have



NUMERICAL REDUCTION AND HOMOGENIZATION 461

to solve in order to findl in terms ofs. Let us assume that we can solve (2.27)dand
let d represent this solution. Notice that Eq. (2.27) is a nonlinear equatiath $orthatd

is a nonlinear function ok. We will discuss how this is implemented numerically in
Section Il and how this is implemented analytically in Subsection I1.3. In the linear ca
d is a linear function o6 and it can be easily computed explicitly. Provided that we ha
d, we substitute this into Eq. (2.26) and obtain

2 k-1
Sq(s, d)(k) + % Df(s, d)(k) = 26 >, Sf(s, d)(k') + 8Sf(s, d)(k).  (2.28)

k'=0
Observe that we may arrange Eq. (2.28) as

k-1

8n—l
On-1(K)(Sh-1) = 81 E foo1(K')(Sh-0) + o fr1(K) (Sn-1), (2.29)
where
- 82 .
In-1(K)(8h-1) = SGn(K)(Sy-1, A1) + 7 DF(K) (851, do-o) (2.30)
and
fo_1(K)(Sn—1) = SFa(K)(Su_1, On_y). (2.31)

In other words, the reduced equation (2.29) is the effective equation for the averages
of x,. It is important to note that this equation has the same form as the origi
discretization.

Let us switch now to operator notation to present the recurrence relations for
reduction procedure. We use the solutiof Eq. (2.27) to write Eq. (2.29) in operator
form as

G i(Sh-1) = KnoaF i a(Sh-0),

wheres,_; = P,_,x and the nonlinear operato®™, and F®, mapV,_, to V,_;.
The superscriptn) on the operators denotes the level at which we start the redu
tion procedure and the subscript — 1 denotes the current level of resolution.
The operatorsG(™, and F!, are defined as the operators which act elementwit
according to Eqgs. (2.30) and (2.31), respectively. Notice that they have the s:
form as the operator&!” and F{"; both functionsG,(s,_;) and F®,(s,_,) are
piecewise constant functions with step wid#y_;. In particular, thekth ele-
ment of G ,(s,_,) depends only on the arguments through #ik element of
s,—1(k). Because the form of the discretization is preserved under reduction, we
consider Egs. (2.31) and (2.30) as recurrence relations for the ope@{d;sand
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F, and, as such, may be applied recursively to obtain a sequence of operz
G™ andF{", j = n. The recurrence relations f@" andF{" (for j < n) in operator
form are given by

2
811

4

G = PG + — QF (2.32)

Fj(n) _ Pij@li (2.33)

provided the solutiord; of the equationQ,G(P; = P,F(?, exists. Observe that the
operator forms of the “average” and “difference” opera®endD, which we introduced
in working with the coordinate forms of our expressions, are the projeddpasdQ;. We
emphasize that this is a formal derivation of the recurrence relations. We show in Sec
Il how to implement numerically this formal procedure. In Subsection 11.3 we deri
analytic expressions for these recurrence relations.

Let us now address the existence of the solutlpto the equatior®,G(?; = P,F(?,.
We will write this equation in coordinate form as follows (dropping subscripts),

F(s, d)(k) = Dg(s, d)(k) — Sf(s, d)(k) = 0,

where%: E — R?, (s, d) € EanopensetilR? x R?, andk =0, ..., 2 — 1. Assume
thatg andf are both differentiable functions so tht € C'(E). Suppose that there is a
pair (s°, d°) € E such that

F(s%, d°) (k) = Dg(s’, d(k) — Sf(s, d°(k) = O

and that the Jacobian & with respect tod at (s°, d°) does not vanish. (We know
that such a pairs, d® ¢ E must exist since a unique solution to our ODE exists.
The Implicit Function Theorem tells us that there is a neighborhad <° in R?
and a unique function: S— R? (d € CX9) such thatd(s®) = d° and F(s, d(s)) = O
fors¢ S

Let us investigate what it means for the JacobiadFofith respect tad at (s°, d°) to
be nonzero. Notice that theh coordinate of¥, F(s, d)(k), depends only on thkth
coordinates of andd

F(s, d)(k) = Dg(s, d)(k) — Sf(s, d)(k).

In turn, s(k) andd(k) depend orx(2k + 1) andx(2k) and we may write¥(s, d)(k) in
terms ofx(2k + 1) andx(2k). In particular, we can write

1
Dy(s, d)(k) = 5 (9(x)(2k + 1) — g(x)(2k))

Sf(s, d)(k) = % (f(x)(2k + 1) + f(x)(2k)),
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where
) )
X(2k + 1) = s(k) + > d(k) and x(2k) = s(k) — > d(k).

When we differentiatér (s, d)(k) with respect tad(k), we can apply the chain rule and
differentiate with respect t®®(2k + 1) andx(2k) instead. Therefore, the derivative of the
term Dg(s, d)(k) with respect tad(k) is

1dg(x)(2k + 1) 1dg(x)(2k)

Pols O =5 guak+ 1) T2 dz 9 D

6d(k)

We calculate a similar expression for the derivativest(fs, d)(k). Hence, the Jacobian
of & with respect tad is given by the matrixdg with entries &, 1):

% (k) ]
35(s Dk 1) = G4y = gy (PI(s D) — Si(s, d)(K)

_ [Sg’(s, d)(k) — 8ZDf’(s, d)(k), k=1,
0, k#1I.

Requiring the Jacobian & to be nonsingular atsf, d°) is equivalent to stipulating that
the product below be nonzero; i.e.,

21 . 82 .
I1 (Sg’(so, d% (k) — n Df’(s°, d°)(k)> #0

k=0

In other words, the quantitgg’ (s°, d°) (k) — %sz’(so, d®) (k) must be nonzero for every
k=0, , 2 — 1 to find a solutiond(s) for eachk. If &% is sufficiently small, the
productH 1 Sg'(s%, d9) (k) # 0 dominates the condition. We will see this conditior
reappear in the analytic reduction procedure.

We summarize the above derivation as

ProrosiTion|l.2.  Given an equation of the form (2.19) on some scafe jL (with
dyadic intervals of siz8 U 1), we arrange the reduction of this equation to an equatiol
at scale j as

k—1

gi(k)(s) = 5, E fik')(s) + 5 f(k)(a) (2.34)

where

2
6J+1

gi(K(s) = Sgj1(K)(s;, d) + —;~ Dfia(K) (s, dy (2.35)
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and
fi()(s) = Sfi.1(K)(s;, dy). (2.36)

The solutionNgjto the equatiorDg; . 1(K) (s}, d;) — SFj, 1(K)(s;, d;) exists provided there
is a pair (sjo, dj°) which satisfies the equation and the product below does not vanist

2i-1 2
j+1

~ ) ~
Il (ngﬂ(k)(%-o, df) — 4 Dfia(k)(s), df’)) # 0. (2.37)

k=0

Remark. We have stated the proposition for a scalar differential equation but it a
holds for a system of differential equations, assuming that the product (2.37) is r
singular.

I1.3. Series Expansion of the Recurrence Relations

In the previous subsection we derived recurrence relations for the fundjtogs;)
andf;(k)(s;) (2.35)—(2.36) which depended on the existence,ofn this subsection we
derive analytic expressions for these recurrence relations (2.35)—(2.36) and an ex
expression fod,.

Let us begin at the initial discretization scale= 2™ " and examine the reduction from
scalen to scalen — 1. We will not include the subscriptsandn — 1 unless they are
necessary for clarity. Assume théit= 8,,. The equation which determines_, is given

by
Dgn(snfla dnfl)(k) = an(snflv dnfl)(k)- (238)

Below it will be convenient to expand(x)(2k + 1) as
g(x(2k + 1))(2k + 1) = g(s(k) + g d(k))(Zk +1)
)
= g(s(k))(2k + 1) + g'(s(k))(2k + 1) > d(k) + O(8?.

We will then use a slight abuse of notation and wgte(k))(2k + 1) asg(s)(2k + 1)
(andg’(s(k))(2k + 1) asg’'(s)(2k + 1)). Thereader should beware that the notatior
convention forg(x) andg(s) is thus slightly different. To solve this equation foy we
will first expandg(s, d) andf(s, d) in Taylor series abouw(k) (foreachk =0, ..., 2" 1!

— 1) and keep only the terms which are of or@¥r) in 8. Observe that we may expand
the left side of Eq. (2.38) as

;<g<s+ 2d)(2k+ 1) — g(s— 2d>(2k))

1 d(k
=5 (9(8)(2k+ 1) — g(s)(2k)) + % (g'(9(2k + 1) + g'(s)(2k)) + O(8Y),
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and similarly for the right side. After expanding both sides of Eq. (2.38) and retaining o
terms of orderO(1) in §, we have the equation

Dg(s)(k) + Sg'(s)(k)d(k) = Sf(s)(k),
which we may solve fod(s)(Kk):

Sf(s)(k) — Dg(s)(k)

4900 = sgs109

+ O(8?).

Next we expand the recursion relations pr_,(s,_4) andf,,_,(s,_,) in Taylor series
abouts,_; and keep only the terms which are of ord®f1) in ,_,. This gives us the
following expressions fog,_, andf,_;:

On-1(Sn-)(K) = Sgn(sp-) (k) and  fi_i(s,-1)(K) = Sfi(s,-1)(K).

Notice that if we retain terms which are only of ord®(1) in ,_;, the recursion
relations do not depend ah,_,! These equations simply reproduce the discretizatic
procedure without incorporating any information from the fine scale. In operator for
we have done nothing other than project onto the next coarsest scale, redu
P.G(x,) = K P.F(x,) to P_:G(X,—1) = K,_1Pn_1F(X,—1). Therefore, we have to
include higher order terms in the recurrence relations to determine any contribu
from the fine scales.

Let us expand the recurrence relationsdgr 1(s,_1) andf,_4(s,_1) in Taylor series
again, but this time we will retain terms of ord@(1) and O(82_,). This gives us
recurrence relations of the form

dis)(k) | ,
In-1(8)(K) = Sgu(s)(K) + | 15— (Du(S)(K) + SFi(s)(K))

1 d(s)(k) _ ) 2
+EDfn(s)(k)+ 37 Sgr(s)(K) | 85-1

9100 = S0 + (“on D9k + o S0 5

Notice that these equations do include information from the fine scale. If we solve
(2.38) ford,,_,(s)(k) to orderO(1) and substitutel,,_,(s)(k) into the recursion relations
for g,,_1(s) andf,_,(s), we may split the functiong,,_,(s) andf,_,(s) into two terms,
one of orderO(1) in 8,,_, and one of orde©(82_,),

In-1(8)(K) = ¥o()(K) + va(s)(K)&71  and  f_y(S)(K) = Bo(S)(K) + 0:(s)(K) 57,
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where

Yo = Sgn

90 = an
d 1 d?

V1= 6(DgnJran)Jr—Df +—Sg
a f/ az f!l

0, 16 Df] + 32 S

an - Dgn

4="5qg

We summarize the previous discussion in the following proposition.

ProrosiTionll.3.  If F and G are twice continuously differentiable as functions of x and
F is a Lipschitz function in both t and x, then we can obtain analytic expressions, at leas
to order612, for the recurrence relations and for tet us again introduce a superscrigt) on
the functions to denote the level at which we started the reduction procedure, the subsct
as beforesignifies the current level of resolutioti the functions ﬁ‘gl(s) and f(”)l(s) at some
scale j+ 1 consist of two terms, one of ordel(T) and the other of order (BJH),

gj(i)l(s)(k) = 701+1(S)(k) + 71]+1(S)(k)81+1 (2.39)

and
f72(9)(K) = 65},1(s)(K) + 61}, 1(5)(K) &1, (2.40)
then we may arrange the reduction of these function to funct@(s) gnd fj‘”)(s) at scale j as

g"(9)(k) = yi(s)(K) + ¥Ij(s)(k)§7  and  f"(s)(k) = 65)(s)(K) + 67)(s)(K) Y,

(2.41)
where (dropping superscripts)
0j = SYo,j-1 (2.42)
001 = 860'1'71 (243)
d 1 ()?
Y = 45’711 1t 6(D701 1+ S 1)+16D60‘ 1t ZSY(), 1 (2.44)
1 ! (d)?
4801J l+16D0OJ l+§seoj 1 (2.45)
~ S6yj-1—D
g = ot Yot (2.46)

SVOJ 1
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In other words, at level j, we arrange the function® @nd f{ so that they consist
of two terms of the appropriate orders and we write recurrence relations for each
these two terms.

Remark. We usually initialize the reduction procedure with t®¢1) terms,
YouS) (k) = g (9)(K),  BEx(s) (k) = f(s)(K),
and theO(82) terms,
YiNe)(kK) =0,  6f(s)(k = 0.

This can be modified, however.

Remark. Higher order expansions may be obtained in the same manner. We suppl
algorithm implemented in Maple in Subsection VI.2 to compute the recurrence relati
for sufficiently high order terms.

IIl. IMPLEMENTATION AND EXAMPLES

In this section we present the numerical implementation of our formal reducti
procedure, which we derived in Subsection 1.2, and three examples to evaluate
accuracy of our reduction methods and to explore “patching” together the se
expansion of the recursion relations and the numerical reduction procedure. We
determine numerically the long-term effect of a small perturbation in a nonline
forced equation.

lll.1. Implementation of the Reduction Procedure

We initialize our numerical reduction procedure with two tables of values, one tal
for each of the discretizations of the functiof®ndG at the starting resolution level
n. The first coordinaté in our table enumerates the averages in time of the functio
F andG, the functionsy,(s,)(K) andf.(s,)(K), for k = 0, ..., 2' — 1. Notice that these
are still functions ofs, which is unknown, so we also discretizedn In other words,
from the start, we look at a range of possible valggk, i) (i = 0, . . . ,N — 1) for each
k, and work with all of them together. This discretization gives us the seco
coordinate for our tables. We then have valuggs,(k, i))(K) andf.(s,(k, i))(k) for k =
0,...,2—-1andi=0,...,N— 1. To look at a range of possible valuessjk),
we must have some priori knowledge of the bounds on the solution of the
differential equation.

Next we form the equation (dropping the subscriptwhich determinedd on the
intervalké,,_; <t < (k + 1)8,_, (see Eq. (2.27)):

Dg(s(k, i), d(k, I))(K) = Sf(s(k, i), d(k, i))(K). (3.47)

Notice that this is a sampled version of Eq. (2.27) and for each sample s(&lug and
for eachk = 0, ..., 2% — 1 we must solve (3.47) fai(k, i). That is, our unknowns
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d(k, i) form a two-dimensional array. To solve for eatffk, i) we must interpolate among
the known valuegy(s(k, i))(k) since we need to know the valugs(k, i) + d(k
i))(2k + 1) (and similarly forg(s(k i) — —d(k i))(2k)) and we only have the values
at the sample points(k, i) for i = 0, , N — 1. For higher order interpolation
schemes, we need fewer grid pointssito achieve a desired accuracy which reduces tf
size of the system with which we have to work.

Once we have computed the valul{, i), we calculate the reduced tables of value
9n_1(s(k, ))(k) andf,_,(s(k, i))(k), wherek =0, ..., 2 —1andi=0,... ,N—
1, according to the sampled versions of the recurrence relations (2.35)—(2.36):

2

on
gn-1(s(k, D)) (K) = Sgn(k)(s(k, i), d(k, 1)) + Dfn(k)(S(k i), d(k, i)
fa(s(k, 1))(K) = S(K)(s(k, i), d(k, i)).

Notice that the tables are reduced in widttkiby a factor of two and that this procedure
can be applied repeatedly.

Remark. Observe that when= 0 (respectivelyj = N —1), we cannot interpolate
to calculate the valueg(s(k, i) — ga(k, i)) (respectively,g(sk, i) + ga(k, i))). We
must either extrapolate (and then ignore the resulting “boundary effects” wh
propagate through the reduction procedure) or adjust the grid ia¥heiable at each
resolution level. An alternate approach could be to use asymptotic formulas valid
larges.

We implemented this algorithm in Matlab as a prototype to test the following exampl

I1l.2. Examples

I11.2.1. Accuracy. With the first example we verify our numerical reductionr
procedure and determine how the accuracy of the method depends on the step
8, = 2 " of the initial discretization. We also evaluate the accuracy of the line
versus cubic interpolation in the context of our approach. We use a simple separ
equation

X'(t) = (1/€) x3(t) codt/e) and  x(0) = %, (3.48)

with the solution available analytically. We observe that the soluti@h to Eq. (3.48)
oscillates about its initial value,. We choose = 1/(44) and the initial value, = 1/2.
The exact solution is given by

t Xo
X0 = 1= sintie)
which we use to verify our reduction procedure. In particular we check if the average:
X(t) satisfy the difference equation derived via reduction.

Let us assume that we reduce to resolution léyet 27! so that we have two tables
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TABLE 1
Errors as a Function of the Initial Resolution

Initial resolution= §,, Average error
272 0.0774
273 0.0290
274 0.0069
2-5 0.0019

of values forf;(s(k, i))(k) andg;(s(k, i))(K). If x;(Kk) is the average of over the interval
k27l <t < (k + 1)27J, then the following equation should hold

k-1

J
gi(x) (k) = §; E fi(x) (k") + Efj(xj)(k)-
k=0

We denote byg(k) the error over each intervdly, < t < (k + 1), and define
§(K) by

k-1

g
ej(k) = gj(X,-)(k) — 9 E fj(Xj)(k/) - Efj(xj)(k) .
K=0

Note that we have only sampled valuesdgiis(k, i)) (k) andf;(s(k, i))(k) and so we must
interpolate among these values to calculte;) (k) for a specific value(k). We want
to know how the errorg;(k) depend on the level of resolution at which we begin th
reduction procedure. We reduce to resolution level wjtk 2~ 1 and calculate the errors
€;(0) ande;(1) using the averages(0) = x;(1) = 0.5774. We fix thewumber of sample
points ins to be 50 and use linear interpolation. Table 1 lists the errors as a functior
the initial resolution. If we exclude the errors associated with the initial resoldtion
272 and plot the logarithm of the remaining errors as a function ofdgg(the slope of
the fitted line is 1.9660. We can conclude that the accuracy of our numerical reduc
scheme increases with the square of the initial resolution.

As we described above, we have to interpolate between known function values in
tables. We used both linear and cubic interpolation methods. We would like to know
the interpolation affects the error of the method and the minimum number of sar
points ins we need for both interpolation methods. We use Eq. (3.48) again with the s¢
values forx, ande. We fix the initial resolution a8,, = 2~ °. For technical reasons, with
cubic interpolation we can reduce only to resolution ledek= 272, Table 2 lists the
errors as a function of the number of sample pointssifor both linear and cubic
interpolation. In Fig. 1 we have plotted the average error as a function of the numbe
sample points irs for the two methods of interpolation. We can see that with cub
interpolation the minimum number of grid points$ris 15 and that with linear interpo-
lation we can achieve the same accuracy with 50 grid points. We can also see fron
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TABLE 2
Error as a Function of the Number of Sample Points ins, with Linear Interpolation
and with Cubic Interpolation

Average error

No. of sample points is Linear Cubic
6 0.0238 0.0045
10 0.0098 0.0020
15 0.0052 0.0020
25 0.0029 0.0020
30 0.0024 —
50 0.0019 —

graph that increasing the number of grid points (past 15) will yield no gain in the accur
of the cubic interpolation method.

[11.2.2. Hybrid reduction method. In the second example we will combine the ana
Iytic reduction procedure with the numerical procedure. We begin at a very fine resolu
8, = 2™ and reduce analytically to a coarser resolution léel= 2™. From this level
we reduce numerically to the final coarse leggl The analytic reduction procedure is
computationally inexpensive compared to the numerical procedure and we want to
advantage of this efficiency as much as possible. However, we must balance com
tional expense with accuracy. With this example we will determine the resolutiondgvel
at which this balance is achieved. Again we use a separable equation given by

X' (t) = x4(t) cogt/e), Xo= 0.1, €= i (3.49)

0.025 T T T T

T T T T

linear interpolation ——
cubic interpolation ----

0.02 -

0.015 |

error

0.005 +

0 1 L 1 ! s L L L

5 10 15 20 25 30 35 40 45 50
grid points in x

FIG. 1. The error as a function of the number of sample points ifor linear and cubic interpolation
methods.
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TABLE 3
Errors as a Function of the Intermediate Resolution

Intermediate Resolutior n; Average error
272 0.00106
273 0.00093
274 0.00092
27 0.00092

The solution to Eg. (3.49) is

Xo
X(1) = 1 — ex, sin(t/e)
We begin with analytic reduction at resolutiép = 271% We choose the final resolution
level to bes; = 272 and we letn,, the resolution as which we switch to the numerica
procedure, range from 2 to 5. Table 3 lists the errors as a functinpn dfote that we have
used cubic interpolation and ten grid pointsxinFigure 2 is a graph of the average errol
as a function of the intermediate resolution. We can see from this graph that the big
gain in accuracy occurs at the intermediate resoludipn= 273, In other words, at the
finer intermediate levelsng = 4, 5) we give a small gain in accuracy compared to th
computational expense of the additional resolution levels in the numerical reduction.
balance accuracy with computational time for this particular example, we should red
analytically to resolutiors,, = 273 and then switch to the numerical reduction to reac
the final levels; = 272, The analytic procedure allows us to reduce our problem wi
very little computational expense (compared to the numerical procedure) and then fol

0.00106 T T T T

0.00104 - error —— m

0.00102 | -

0.001 -1

ernor

0.00098 |- 1

0.00096 |- T

0.00094 -

0.00092 . L t L
[o] 0.05 0.2 0.25

0.1 0.1
intermediate resolution

FIG. 2. The error as a function of the intermediate resolution level at which we switch from the analy
reduction method to the numerical reduction method.
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t =time

FIG. 3. The flows for Eq. (3.50) with zero forcing.

additional accuracy needed we can use only one relatively more expensive nume
reduction step.

[11.2.3. Bifurcation and stability analysis. The third example we will consider is the
equation

X' (t) = (1 — x3&(t)) x(t) + A sin(t/e), x(0) = X, (3.50)

wheree is a small parameter associated to the scale of the oscillation in the forcing te
If the amplitudeA = 0, then the solutiox(t) has one unstable equilibrium pointxgt =
0 and two stable equilibria af; = —1, 1 (see Fig. 3).

A small perturbation in the forcing term will effect large changes in the asympto
behavior ag tends to infinity. Therefore, the behavior of the solution on a fine scale w
affect the large scale behavior. In particular, if the amplithde nonzero but small, then
the solutionx(t) has three periodic orbits. Two of the periodic orbits are stable while ol
is unstable (see Fig. 4). As we increase the amplitidinere is a pitchfork bifurcation—
the three periodic orbits merge into one stable periodic orbit (see Fig. 5). We would |
to know if we can determine numerically the initial values of these periodic orbits frc
the reduction procedure and if those periodic solutions are stable or unstable. We
compare these results derived from the reduction procedure with those from the as
totic expansion ok for initial values neax, = 0 and for smalle. Let us begin with the
asymptotic expansion affor small values ot. Assume we have an expansion of the forn

X(t; €) ~ 0+ exy(t, ) + eXy(t, ) + - - -, (3.51)

where the fast time scaleis given byt = t/e. If we substitute the expansion (3.51) into
the Eq. (3.50), we have the equation

P9 [P0 2 _ Asing + ex, + O(e
Fpa e gr | =ASINT+ ex (€.
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FIG. 4. The flows for Eq. (3.50) with small but nonzero forcing. Notice that there are three periodic orbi
two stable and one unstable.

IX
Equating terms of order one i we havea—T1 = Asin 7, which has the solutiow,(t,
T) = —A cost + o(t). The functionw is determined by a secularity condition which
we impose on the terms of order Equating the terms of ordergives us the equation

Pe_ A + o) — o'(t
e cosT + w(t) — w'(1).

The non-oscillatory ternw — o' in the above equation is “secular” because if it were
nonzero, we would have a linear termanwvhich is incompatible with the assumed form

s L L L n L L n n
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG.5. The flows for Eg. (3.50) with large amplitude Notice that there is only one (stable) periodic orbit
in this diagram as the system has undergone a pitchfork bifurcation.
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of the expansion (3.51). Therefore, we set this term equal to zere, o' = 0, and
determine that(t) = C, €. So we have obtained an asymptotic expansiorxfor

X(1; €) ~0+ e(—Acost+ C, €). (3.52)

Note that this asymptotic expansion is valid only tor= |log €|]. We can, however,
determine the behavior of for large time by examining the direction of the growthxin
since the direction signifies which stable periodic orbit (1-dr) captures the solution.
Observe that the sign of the coefficiedf depends on the initial valwe,. In particular,

if Xo > —Ae thenC; > 0 and ifx, < —Ae thenC; < 0. In other words, ife is
sufficiently small, there is a separation poid, defined as the largest value such that i
Xo < X%, thenx(t) < 0 ast tends to infinity. According to the asymptotic expansior
(3.52), the separation point;, as e goes to zero is given by

X5~ —Ae.

This is an approximation of the initial value of the unstable periodic solution.
Let us derive another approximation for the separation point by linearizing Eq. (3.
aboutx, = 0. The linearized differential equation is the equation

x'(t) = x(t) + A sin (t/e), x(0) = X,,

which has the solution(t) given by

x(t) = e‘(x0+ J Ae‘ssin(s/e)ds> .

The sign of the factox, + [ Ae ® sin(s/e)ds ast tends to infinity determines the
direction of growth inx(t). In other words, the separation poit; is the value for which
the following is true

t—o0

t
lim (x’fJ + J Ae‘ssin(s/e)ds) =0.
0
If we evaluate the integral in the above expression, we determinecthsdtisfies

i . Ae? it/ Ae L / _
im x0+me sin(t/e) —m(e cogt/le) — 1) = 0.

t—

Thus the separation point is given by

X5~ —Ae for e sufficiently small.
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We have derived two approximations for the initial value near= 0 of the unstable
periodic orbit. We will compare these two approximations with the values we determ
numerically from the reduction procedure.

We now turn to the numerical reduction procedure. Assume that we can red
the problem to a resolution leve| = 271 where it no longer depends on time (i.e.,
the problem is now autonomous). This means that the tabjestk, i))(k) and
fi(s(k, 1))(k) depend only oni and not onk. Let x(k) denote the average of the solu-
tion x over the intervakg; <t < (k + 1)§,. Observe that for Eq. (3.50) the functions
G andF are given by

G(t, x(t)) = x(t) — X, and F(t, x(t)) = (1 — x¥()) x(t) + A sin(t/e)

so that the initial value, is simply a parameter in the numerical reduction scheme a
we may takeG(t, x(t)) = x(t).

If the solutionx(t) is periodic and i®; is an integer multiple of that period, the average:
X;(k) will be all equal to the valug, (call that the average); that ig(1) = x;(2) = - - -
= Xe. Therefore the value afj( - )(k) at each averagg(k) is the same:

gi(x)(1) = gi(x)(2) = - - -= gi(Xy).

Since this holds for ak, we will drop the parameter. We will also drop the subsdrijotr
clarity. If we take the expressions fgrevaluated at two successive averag@y and
x(I + 1) and subtract them, we find thi{tx,) must satisfy

o
0=g(x) = g(xd = g(x(I + 1)) = g(x(1) = 5 (F(x(I + 1)) + f(x(1))) = F(xo).

This gives us a criterion for finding the average vatyeWe know that the average value
of the periodic solutiorx is a zero off. Finally, the separation point, is the initial value
such thatg(x,) — x§ = 0.

To determine if the separation poir} is stable or unstable, we will perturb it
by a small valuer. Set the new initial valueg, equal toxs + A. Let (Ax), denote
the deviation from the average valygin the average ok over the intervalg, <t <
(I + 1)§;. Then, the discretization scheme relates the difference betwee) and

(AXg) 41"
)
9(Xe + (AXehir1) = 9(Xe + (AX) = 5 (F(Xe + (AXe)ird) + F(Xe + (AXo))).

If we linearize the above equation, the following holds:

b)
9" (X (AXe)1r1 = (Ax)) = 5 ' (Xe) (AX1es + (AXe)),
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TABLE 4

€ A Xe Sep. pts. Ratios
1 40x 1077 —0.0199 1.1354
16m 1 1.0006 0.9807 0.7796
—1.0006 —1.0204 0.7796
1 40x 10°° —0.1989 1.1276
16m 10 0.9746 0.7759 0.7868
—0.9746 -1.1732 0.7868
1 40x 10°° —0.3978 1.1056
16m 20 0.8927 0.4951 0.8185
—0.8927 —1.2901 0.8186
1 3.0x 10°° —0.0397 1.1345
8 1 0.9991 0.9595 0.7815
—0.9991 1.0387 0.7815

1
8 40 -1.4x10°° —1.5891 0.7594

Note.The entryx, is the value ok(t) for the corresponding initial value,, which we call a separation point.
If the ratio is greater than one, the separation point is unstable and if the ratio is less than one, the separatior
is stable. These three columns are calculated using the effective equation.

or equivalently, we may use the ratio

(AXeirr  9'(Xe) + (8/2) f'(Xe)
(Axr g (%) = (8/2)F'(xd)

to test the stability of the separation poii.

Table 4 below lists several values fgrthe amplitude, and the corresponding average
valuesx,, for the periodic orbits, separation points, and ratios. The separation point wt
has a corresponding ratio greater than one is the unstable periodic orbit with initial v:
X5 We reduce to a level where the problem is autonomous and use cubic interpola
We compare the calculated separation paiftwith those determined by the two analytic
methods in Table 5. Notice that for the values= 40 ande = 1/(8m) we have only one
stable periodic solution. In other words, the two stable periodic orbits have merged \
the unstable one to create one stable periodic solution. Clearly, this merging of solut
shows that the fine scale behavior of the solution has a large effect on the coarse sca
long time) behavior. Furthermore, we have detected numerically this large effect. In ol
to determine the value off asymptotically forA = 40 ande = 1/8m, we had to resort
to a different asymptotic expansion from the one used previously.

IV. HOMOGENIZATION

In the previous sections we discussed only the MRA reduction procedure for nonlir
ODEs. In this section we construct the MRA homogenization scheme for nonlinear OC
In the multiresolution approach to homogenization, the homogenization step is a pr
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TABLE 5

€ A X5 (MRA) X% (asymp.) X% (linear)
! 0.0199 0.01989 L
167 ! -ool —ool ~ T6n
! 10 0.1989 0.1989 10
167 e e "~ 16w
1 ) ; . 20
= 0 —0.3978 —0.3978 ~ 16n
! 1 0.0397 0.0395 !
8 e e T 8w
1
. 40 —1.5891 —1.592 —
8w

Note.We determine the unstable separation peiftwith three methods: one numerical method using the
reduced equation and two analytic methods. Eer 1/8m andA = 40 we could not apply the linearization
method and we had to use a different asymptotic expansion.

dure by which the original system is replaced by some other system with des
properties (perhaps a “simpler” system). By making sure that both systems produce
same reduced equations at some coarse scale, we observe that dbdasastionat the
coarse scale is concerned, the two systems are indistinguishable. We should empt
that this is a preliminary investigation of the homogenization method for nonlinear OD!
There are many different approaches to homogenizing a nonlinear ODE and
different possibilities for a “simpler” system depending on the problem. We explore c
of these possibilities.

Suppose we reduce our problem to lejalising the series expansion of the recurrenc
relations, and have a discretization of the form

k-1

gi(s)(k) = 3, 2 fi(s) (k) + *f(SJ)(k) (4.53)

where the functiong(s;) andfi(s;) are expanded in powers 6f,

9i(s)(K) = vo,(5)(K) + y1(5) (K& and  fi(s)(K) = 0o(s)(K) + 61,(5)(K) 5.

We want to find 2 functionsG(s)(k) andF(s)(k) (indexed byk = 0, ..., 2 — 1) with
expansions

G()(k) = Gy(s)(K) + 82G4(s)(K) and  F(9)(k) = Fo(9)(k) + 82F1(9)(K)
such that for eack and alls; € V; we have

9K = %K + Fn§)K = Gy)K + FGi(5)K
()00 = 05)(K + 501K = Fo()(K) + &F.(5)(K), (4.54)
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where
~ 1 (R0, 1 (Fo(0(K) .,
Gu(x)(k) = 24 (GB(X)(k)) Go(x)(k) + 12 (é(')(x)(k))FO(X)(k)
and
o 1 Fo(x)(k)\2.
Fi(x)(k) = 24 (é(’)(x)(k)) Fo(x)(K).

In other words, on each intervat)2 ! < t < (k + 1)2~! we want to find two functions
G(x)(k) andF(x)(k) which depend only ox such that the reduction scheme applied t
these functions on each interval yields the same discretization (4.53) as the original.
know what the fixed point or limiting value of the reduction process for autonomo
equations is (see Appendix A) so we may use this exact form to sp&gify)(k) and
F.(X)(K) in terms ofGy(x)(k) andF,(x)(k). We can eliminaté5, (x)(k) andF,(x)(k)
from Egs. (4.54) to get the following coupled system of differential equations for leacl

gi()(K) — G(x) (k) 1 (ﬁo(X)(k)

5 ~24\Gy(0(K)

1 (rzo(X)(k)

) Gyx)(k) + 12 é(,)(x)(k))rz’é(x)(k)

OOk — Fo()( 1 (IN:O(X)(k)

82 ~ 24\ By(x) (k)

) FaO0 (k).

We may pick out the non-oscillatory solution to the system of differential equations ¢

obtain
~ ) 1 /6 2 , 1 /6, )
Go:70+5j 71_271 % 'YO_E %90

. ) 1 002”
Fo= 6o + 9 91_2*4% 05].

This homogenization procedure will yield a simplified equation which is autonomous o
intervals of length 2! and whose solution has the same average over these intervals a:
solution to the original, more complicated differential equation. One can replace
original equation by this homogenized equation and be assured that the coarse behax
the homogenized equation is asymptotically equal to the coarse behavior of the oric
solution.

V. CONCLUSIONS

We can extend the MRA reduction and homogenization strategies to small systerr
nonlinear differential equations. The main difficulty in extending the reduction proced
to nonlinear equations is that there are no explicit expressions for the fine scale beh:
of the solution in terms of the coarse scale behavior. We resolve this problem with
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approaches; a numerical reduction procedure and a series expansion of the recur
relations which gives us an analytic reduction procedure.

The numerical procedure requires soapriori knowledge of the bounds on the solution
since it entails using a range of possible values for the solution and its average behavio
working with all of them together. The accuracy of this scheme increases with the squat
the initial resolution but it is computationally feasible for small systems of equations only. \
can use the reduced equation, which we compute numerically, to find the periodic orbits
periodically forced system and to determine the stability of the orbits.

One reduction step in the analytic method consists of expanding the recurrence rela
in Taylor series about the averages of the solution. We gather the terms in the series v
are all of the same order i}, the step size, and identify them as one term in the seri
so that we have a power seriesdn Then we write recurrence relations for each term i
the series so that the nonlinear functions which determine the solution on the next coa
scale are themselves power series in the next coarsest stef) sjz&Ve determine the
recurrence relations for an arbitrary term in this power series, show that the recurre
relations converge if applied repeatedly, and investigate the convergence of the p
series for linear ODEs.

The homogenization procedure for nonlinear differential equations is a preliminary ¢
We replace the original equation with an equation which is autonomous on the co
scale at which we want the solutions to agree. If we are interested in the behavior of
solution only on a scale 2, then our simpler equation which we use in place of th
original equation does not depend baver intervals of size 2. Unlike the linear case
where a constant coefficient equation (or an equation with piecewise constant coefficie
is clearly simpler than a variable coefficient equation, there are many possible kind
“simpler” equations which can replace a nonlinear equation. We present one candi
type for a simpler equation and leave others untouched.

VI. APPENDIX A

In this appendix we present several detailed discussions of the series expansion ¢
recursion relations. The first is a derivation of the fixed point of the recurrence relati
for autonomous equations. The second is an algorithm for generating the relations
higher order terms in the power series expansions.

More detailed discussions can be found in [11]. The results include the general fo
of the coefficientsy§)(s), ¥{")(s), 65)(s), and6{")(s) in the expansions af”(s) and
fj(”)(s) for non-autonomous differential equations. Conditions for the convergenne a
tends to—o of the recurrence relations for the two lowest order coefficients are a
discussed. The altered recurrence relations for the case when the left side of the d
ential equation (2.14%(t, x(t)), is not Lipschitz as a function dfare given. Finally, the
recurrence relations for the general coefficieyft8 and 6" are discussed along with the
convergence of the series expansions

g"()(k) = X ¥k and (K = 3 67 (0 (K]

under the reduction process.
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VI.1. Recursion Relations for Autonomous Equations

We will now apply the reduction procedure to the autonomous integral equation
t

G(x(t)) = f F(x(s))ds (6.55)
0

and examine the series expansions for the recurrence relations when applied to
autonomous integral equation. We will consider only the first two terms in the expansic
higher order discretization schemes can be obtained if we keep higher order terms i
expansions.

THeorem VI.1. Let us assume that the functions F and G are both twice continuou
differentiable as functions of x and that 4% # 0. Then the coefficientg$?), v{"), 6§,
and 6{") are given by

. . (1/13)(2*"-1) ( F , (1/3)(2"— 1) [ F\? ,
6} = G, Y = —zm \g/)F Ttz g C
. . (1/3)(2*" - 1) ,
OE)] = Fr 65.} = 23+2m G F
where m= n — j. Furthermore, in the limit as m tends to infinity, the coefficient

converge to

oo)_G —) _ T 1 F F/ 1 F ZGU
w’=6  n'=ple)f tale

0( ®) =F 9(*}0) — i i 2|:H
C M T 2a\6) T

Proof. Because the functionG andF do not depend explicitly on time, the terms
gn(Xx,)(K) andf,(x,)(Kk) in the initial discretization

k—1

gn(xn)(k) - 8 E fn(xn)(k ) + 7fn(xn)(k)

k'=0

are simply the values o6 andF evaluated ak,(k). In the non-autonomous case, the
termsg,(x,) (k) andf.(x,)(k) are the averages of the functi@t, - ) andF(t, - ) over
the time intervalks,, < t < (k + 1)8, and evaluated ax,(k). Because the values
On(s,—1(K))(2k + 1) andg,(s,—1(k))(2k) are equal, the difference operaapplied to
g, and evaluated &,,_, yields zero,

1
Dn(sh-)(K) = 5 (Ga(Sn-1(K) (2k + 1) = ga($y-1(K))(2K)) = O,
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and the average operatBrapplied tog,, and evaluated a,_, yields g,(S,—1)(K),

1
Sgn(Sn-2)(K) = 5 (Ga(Sn-1(K) (2K + 1) + ga($y-1(K))(2K)) = Gn(S7-1) (K).

We will drop the parametét in what follows for this reason and simply wri@&(x,,) and
F(x,) instead ofg,(x,) (k) andf,(x,)(k) and we will simplify the recursion relations.

We begin with an initial discretization of our integral equation at resolution level
1 and initialize the coefficients as

'Ygl)l( X1) = G(Xy), ‘Y(ll)l (x) =0

<1)()(1) = F(xy), (l)(xl) =

We reduce one level tp= 0 so that the difference in resolution ¢ j) is one. Using
the simplified recursion relations, we calculate the reduced coefficients:

-G 1(F<>>F S (F(o)>G,,
’YOO(XO)_ (XO)! YIO(XO)_ 6 G( ) ( 0) G’ (X) (XO)

(59 oo

We want to find the forms of the coefficients for an arbitrary difference in resoluti
(n — j) = m. We proceed by induction. Assume that for ¢ j) = m we have

w‘,_\

(l) 050( X0) = G(Xo), ( Xo) =

. L@y - F\_, (1/3)(2*"-1)(F)\?

o) = G, Yy = W G’ F T omm IR G" (6.56)
1/3)(2>"— 1) [ F\?

foj=F, 0= ()2(37) <G> F". (6.57)

We will apply the simplified recursion relations to these coefficients and reduce one
level so than — (j — 1) = m + 1. Itis clear thaty§)_, = G and6{)_, = F. The
simplified recursion relations tell us that

(n) —18 (n) 1 F F’ 1 F ZG//
T gt el\e)t Ta2le

RVl 1@3@-1\  (F\Y1l  1(L3"-1)
()1 o £ )

2(m+1) 2(m+1) _
_ W32 1) ( F )F, ERL 1) (G ) o

22+2(m+1) el 23+2m+1)

G!
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and

© 1 o 1 /(F\2 , [ F 201 1(1/3)(2™—1)
=4St g\ e Fle) a2t e e

2(m+1) _ 2
_ w32 1) ( F) o

23+2m+1) el

G/

This proves the formulas (6.56)—(6.57) formll= (n — j). Note that these forms depend
only on the difference in resolution levats— j. In the limit asm tends to infinity, we
find that the coefficients converge to

(=) e L (FN_ 1 /F 2 ,
wi=G s Mt le)F tale) ©

6(*“) =F 9(*30) — i i 2|:"
o = P Taogle) T

Additionally, the limiting values of these coefficients eliminate the error of the initial discre
zation, give us expressions independent of resolution |eeeld contribute errors only from
the truncations of the original Taylor series. The reduced equation afj lsvidlen given by

k—1

o
gi(x) (k) = E fi(x)(K') + 5’f,—(xj)(k), where(droppingj ) (6.58)
k'=0

g(x) (k) = v67(x(k)) + ¥ (x(k)) 8 (6.59)
and

f(x)(k) = 057(x(k)) + 07 (x(k))&%. m (6.60)

VI.2. Algorithm to Generate Recurrence Relations

In Subsection 11.3, we limited our expansions@§52) terms. In this subsection we
present an algorithm (implemented in Maple) to compute the recurrence relations for
terms of the power series expansions including higher poweés of

gi(s)(K) = X ¥ii(s)(k) 87, (6.61)

i=0

fi(s) () = 2 60,;(s) (087, (6.62)

i=0

di(s)(k) = 2 () (K87 (6.63)
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ord := 2:

ge := sum((SG(i,x) + h*DG(i,x)/2)*h"(2%i), i = 0..ord):
go := sum((SG(i,x) - h*DG(i,x)/2)*h~(2%i), i = 0..ord):

fe := sum((SF(i,x) + h*DF(i,x)/2)*h~(2*i), i = 0..ord):
fo := sum((SF(i,x) - h*DF(i,x)/2)*h~(2*i), i = 0..ord):

QG := (subs(x = s + h/2*d,ge) - subs(x = s - h/2xd,go))/h:
QF := (subs(x = s + h/2%d,fe) + subs(x = s - h/2%d,fo))/2:

dsub := {d = sum(d(i)*(2*h)"(2%i), i=0..ord)}:

eql := taylor(subs(dsub, QG - QF), h, 2%ord + 2):

solve(coeff(eql, h, 0), d(0));

newf := taylor(subs(h = h/2, subs(dsub, QF)), h, 2*ord + 2):

coeff (newf, h, ord);

PG := (subs(x = s + h/2%d, ge) + subs(x = s - h/2+d, go))/2 +
h/4*(subs(x = s + h/2xd, fe) - subs(x = s - h/2*d,fo)):

newg := taylor(subs(h = h/2, subs(dsub, PG)), h, 2*ord + 2):

coeff (newg, h, ord);

FIG. 6. Maple code to compute recurrence relations for coefficients up to any specified order in se
expansions 0§ andf. The specified order for the example is ord:2. The variable h stands for tféeused in
the text.

In other words, if we group the termsgp, f;, andaj by their order in5; and if we stipulate
that the terms ing;_, andf;_; must be grouped in the same fashion, then we cz
determine the recurrence relations for the coefficignts ,(s;_;)(k) (i = 0, ...,1)in
the series expansion of _; (and similarly for the coefficients; ;_,).

In the program shown in Fig. 6, we first specify the ortl@f the expansions. In the
example program the order is four. Next the four quanties go, fe, andfo are
defined. Notice that we are using the fact that

1
(Sg)(x)(k) = 5 (9(x)(2k + 1) + g(x)(2k))

1
(DY (X)(k) = 5 (g(x)(2k + 1) — g(x)(2k))

to expresse = g(x)(2k), the even-numbered values@(fx), andgo = g(x)(2k + 1),
the odd-numbered values. The step-dize accorded the variable in the program. Next
we form the two sides of the equatia — QF = 0 which determines!; at the same time
we substitutex (2k + 1) = s (k) + h/2d (k) andx (2k) = s (k) — h/2d (k) into
ge and fe (respectively,gso and fo). Into the expressionG — QF, we substitute the
series expansion fat,

d=sum(d(i)*(2*h) (2*1i), i=0 ... ord).
We expand the expressi@G — QF in a Taylor series and we peel off the zeroth-orde
coefficient inh and solve ford (0) , which gives us the first term in our expansion fot
d. This is the recurrence relation fé@. To determine higher order terms in the expansio

of d, we use, for example,

simplify(solve(coeff(eql, h, 2), d(1)));
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Recall that the recurrence relation foiis f; = Sf;_; and notice tha&f, , ; is the same
asQF so we simply substitute the expansiondinto QF . Then we leth = h/ 2 to adjust
the resolution size for the next step and finally expand the expression in a Taylor se
(Recall thatg; ., andf;; are expanded in powers @&, = §;/2 andg; andf; are
expanded in powers of;.) To determine the recurrence relation for the coefficier
0,(s)(k), we peel off theth coefficient (fori = ord):

coeff(newf, h, 1i);

The recurrence relation fa; is given byg; = Sg;.; + h2/4DfJ-+1 which we denote
by PG. Again we substitutex (2k + 1) = s (k) + h/2d (k) andx (2k) = s (k) —
h/2d (k) into ge andfe (respectivelygo andfo) and we substitute the expansion for
d into PG. Finally we rescalé and expandG in a Taylor series. We determine recurrenc:
relations fory;(s)(k) in the same fashion as before:

coeff(newg, h, i);.
We should point out that this is an algorithm for determining the recurrence relation

the coefficients in the series (6.61)—(6.63); however, it does not give a closed form for
recurrence relations.

VII. APPENDIX B

A multiresolution analysis (MRA) oE2([0, 1]) is adecomposition of the space into a
chain of closed subspaces

VoCV,C---CV,---

such that

U V;=L*[0, 1))
j=0
and

NV, = {Vq

j=0

If we let P; denote the orthogonal projection operator owfothen lim_,..P; f = f for all
f € L?([0, 1]). We have the additional requirements that each subspa¢e > 0) is a
rescaled version of the base spage

Finally, we require that there exists ¢ V, (called the scaling function) so that
forms an orthonormal basis &f. We can conclude that the sepflk = 0,...,2 —
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1} is an orthonormal basis for each subspateHere ¢, denotes a translation and
dilation of ¢:

b= 2"2¢(2x — k).
As a consequence of the above properties, there is an orthonormal wavelet basis
{(Yj=0,k=0,...,2-1}

of L¥([0, 11), ¢ «(x) = 22y(2'x — K), such that for alf in L*([0, 1])
2i—1
Piaf=Pif+ X (f, Y00
k=0
If we defineW, to be the orthogonal complement \éf in V;, ;, then

We have, for each fixeq, an orthonormal basis¢{jyk|k =0,...,2 — 1} for W,.
Finally, we may decomposie®([0, 1]) into a direct sum

L2[0, 1) = Vo ® W,
j=0

The operatoQ; is the orthogonal projection operator onto the spéte
The Haar wavelets and its associated scaling functignare defined as follows:

1, x€[0,1/2
and P(x) =4 —1, x€[1/2,1)
0, elsewhere.

1, x €[0,1)
b(x) = {0, elsewhere
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