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We present a fast algorithm for the construction of a spectral projector. This al-
gorithm allows us to compute the density matrix, as used in, e.g., the Kohn–Sham
iteration, and so obtain the electron density. We compute the spectral projector by
constructing the matrix sign function through a simple polynomial recursion. We
present several matrix representations for fast computation within this recursion,
using bases with controlled space–spatial-frequency localization. In particular we
consider wavelet and local cosine bases. Since spectral projectors appear in many
contexts, we expect many additional applications of our approach.c© 1999 Academic Press

Key Words:spectral projectors; density matrix; fast algorithms; wavelets; parti-
tioned SVD.

1. INTRODUCTION

The goal of this paper is to introduce fast algorithms for computing spectral projectors.
Although spectral projectors have a wide range of applications, we deal here primarily with
density-matrix computations as they arise in the Kohn–Sham scheme.

The Kohn–Sham scheme provides a way to compute the ground state density of an
arbitrary interacting system ofn electrons. In a typical problem, given the positions and
charges of nuclei, we would like to know the wave function describing then electron ground
state of the system. Since the wave function9 acts on 3n variables, it is too expensive to
obtain. Instead, in density-functional theory (see, e.g., [1]) and other related theories one
asks for the electron density, denotedρn(x), which gives the probability of finding an
electron atx, i.e.,

ρn(x) =
∫
|9(x, x2, . . . , xn)|2 dx2 · · ·dxn. (1)

1 This research was partially supported by DARPA/NASA Grant S43 5-28646 (G.B, N.C., and M.J.M.) and
DARPA/AFOSR Grant DOD F49620-97-1-0017 (G.B.).
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In order to construct the density as the limit of an iterative process, the Kohn–Sham
scheme produces a sequence of densities and potentials. At iterationi we compute a new
(auxillary) potential from the previous density by

Vi (x) = V0(x)+W
(
ρ i−1

n (·), x
)
, (2)

whereV0 is the potential induced by the nuclei. Although the correct functionalW for this
process is not known, various approximations are in use (see, e.g., [1]).

To compute the new density, one finds then smallest eigenvalues (with multiplicities)
{λ j } of the Hamiltonian−∇2+ Vi (x) and their corresponding eigenfunctions{ψ j (x)} and
forms

ρ i
n(x) =

n∑
j=1

|ψ j (x)|2. (3)

If the densitiesρ i
n(x) converge to some function ˜ρn(x), then the function ˜ρn(x) is the density

of the system.
In order to avoid the costly computation of the eigenfunctions, the density can be con-

structed as the diagonal of the density matrix. Given a valueµ such thatλn < µ < λn+1,
the density matrix is defined as

Pµ(x, y) = Pn(x, y) =
∑
λ j<µ

ψ j (x)ψ̄ j (y). (4)

Although we have defined it using the eigenfunctions, the density matrix can be constructed
without computing the eigenfunctions explicitly. The density-matrix approach is used in
several methods. For example, in [2, 3] the density matrix is constructed using a variational
approach. In [4–8], the authors use the Chebyshev polynomials to approximate the density
matrix. Although not directly related to the computation of the spectral projector and density
matrix, we would like to mention [9] and the references therein, where fast methods for the
computation of the density of states are developed.

In our approach we compute the density matrix as a spectral projector by computing
the sign function. The standard methods for computing the sign function may be found in
the survey [10]. More recently in [11, 12], polynomial recursions for the sign function are
applied to the problem of computation of eigensystems, with the goal of parallelizing such
computations. The attractive feature of polynomial recursions versus Chebychev polyno-
mial approximations is that the order of approximation grows exponentially rather than
linearly. The main difficulty in using polynomial recursions is that they require matrix–
matrix multiplications and thus are not suitable for large-size problems. The key point of
our approach is that we consider matrix representations that remain sparse (up to finite but
arbitrary accuracy) throughout the iteration that produces the spectral projector.

We present a set of tools for the fast computation of the sign function within the polynomial
iteration. We observe that it is very important to construct an efficient representation of the
Hamiltonian, which is the starting point for our iteration. To this end we use a “rough”
projection of the operator onto an adapted wavelet subspace sufficient to represent the
density matrix. We show that the wavelet system of coordinates provides a suitable choice
for projectors corresponding to the lowest eigenvalues. Due to physical considerations, the
computational cost will scale cubicly in the number of electronsper atom(which is never
a very large number). Using a sparse representation within this rough subspace allows
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us to obtain linear scaling in thenumber of atoms. The efficiency of the linear scaling
method depends on electron locality, but even when some electrons are poorly localized,
most are well localized, so we can represent the non-local portion of the density matrix
efficiently using singular value decompositions of appropriate pieces. We demonstrate our
basic approach on a one-dimensional example and indicate considerations for two- and
three- dimensional implementations.

For the case where the number of eigenfunctions included is large (in many other appli-
cations of spectral projectors) we present a multilevel partitioned representation of matrices
(a technique due to Rokhlin and his collaborators [13–15]) which is based on singular value
decompositions of submatrices. We explain the computational gain using the Christoffel–
Darboux summation formula (see also [32]). We also present a method for partitioning
the spectrum for the case where different sets of eigenfunctions require different bases for
efficient representation.

Specifically, in Section 2 we define the matrix sign function and present the polynomial
recursion to construct it. In Section 3 we develop tools to keep the matrices sparse during
this recursion. We present the basic ideas within that section, and defer the details to
Appendix A. In Section 4 we consider a numerical example to illustrate the claims of
Section 3. In Section 5 we discuss extensions of these techniques to multiple dimensions
and, finally, make conluding remarks in Section 6.

2. THE SIGN FUNCTION AND ASSOCIATED PROJECTORS

The ordinary sign function is defined on(−∞,∞) by

sign(λ) =


1, λ > 0
0, λ = 0
−1, λ < 0.

(5)

For a matrix or operator of the form

T(x, y) =
∑

j

λ jψ j (x)ψ̄ j (y) (6)

with λ j real and{ψ j } an orthonormal set, we define

sign(T)(x, y) =
∑

j

sign(λ j )ψ j (x)ψ̄ j (y). (7)

We construct the spectral projector from the sign function using

Pµ(x, y) =
∑
λ j<µ

ψ j (x)ψ̄ j (y) = (I − sign(T − µI ))/2. (8)

Remark 2.1. For non-self-adjointT , the sign function in (5) is defined as the sign of the
real part ofλ.

Remark 2.2. We could use the Heaviside function(I − sign(−x))/2 instead of the sign
function in (7) and construct the projector in the analogous way.
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2.1. Recursive Construction

In this paper we use a polynomial recursion (also used in, e.g., [11, 12]) to compute
sign(T). The algorithm consists of the following steps:

T0 = T/‖T‖2
Tk+1 =

(
3Tk − T3

k

)/
2, k = 0, 1, . . . .

(9)

Other polynomials may be used in place of the one above; see [12] for a discussion of the
various choices.

We first demonstrate thatTk → sign(T) in (9). Observe that ifU is the unitary transform
that diagonalizesT0, then it also diagonalizes allTk for k = 1, 2, . . .. Thus, we need only
show that the scalar iterationλk+1 = (3λk − λ3

k)/2 converges to sign(λ0), provided that
−1≤ λ0≤ 1. On the interval [−1, 1] the function(3λ − λ3)/2 is increasing and has the
fixed pointsλ = −1, 0, 1 and no others. Since

λk+1

λk
= 3

2
− 1

2
λ2

k ≥ 1, (10)

we have either 0<λk<λk+1≤ 1 or −1≤ λk+1<λk< 0. Therefore,λk≡ 0 if λ0= 0,
λk→ 1 if 0<λ0≤ 1, and λk→−1 if −1≤ λk< 0. Both −1 and 1 are stable fixed
points.

The number of iterations needed for (9) to converge to accuracyε is O(c log2 κ +
log2 log2(1/ε)), whereκ is the condition number ofT0. At the beginning of the itera-
tion, the smallest (say positive) eigenvalue ofT0 is like κ−1. Expanded aboutλ = 0, the
scalar recursion is approximatelyλk+1 = (3/2)λk. The number of iterations needed forκ−1

to reach some intermediate value like 1/2 is thusO(log(3/2) κ). Now we enter the regime
where(1− λk) is small and convergence is quadratic. From this point to achieve precision
ε takesO(log2 log2(1/ε)) iterations.

The recursion (9) requires matrix–matrix multiplications and so still appears to be costly
as a computational tool. We, however, provide a mechanism for maintaining sparsity of
the matrices during the recursion. In [16], symmetric band reductions are used for this
purpose. Our approach is based on using wavelets or other representations (local cosine,
multiwavelets, partitioned SVD) to maintain sparsity during the recursion. In the future we
plan to investigate whether the approach of [16] can be incorporated into our approach as
well.

One of the advantages of (9) is demonstrated in the proof above, namely, a monotone
evolution of eigenvalues throughout the iteration. We observe that selecting a representation
so that the original Hamiltonian and the resulting sign function are sparse appears to be
sufficient for maintaining sparsity in the intermediate matrices.

One simple but very important observation is that the compressibility (sparse representa-
tion for finite but arbitrary accuracy) of projectors may be different than that of the individual
eigenfunctions. We also note that computation of the projections via (9) has qualitatively
different properties than that of the direct computation of individual eigenfunctions. Namely,
if an eigenvalue has high multiplicity, the algorithms for direct computation of the eigen-
functions have difficulties, whereas the only difficulty that might occur in (9) is a possible
loss of accuracy ifT0 has a nullspace or a high condition number.
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Remark 2.3. The iteration step in (9) is equivalent to the “purification transform” of
McWeeny [17], where it is used as a correction in a variational method rather than as a
recursion.

Remark 2.4. The following recursion (see, e.g., [10]) also provides an algorithm for
computing sign(T) for the matrixT ,

T0 = T
(11)

Tk+1 =
(
Tk + T−1

k

)/
2, k = 0, 1, . . . ,

whereT−1
k is a generalized inverse (ifT has a null space). We avoid this formulation because

it requires computing an inverse, and does not preserve the ordering of the eigenvalues. We
also point to Appendix B where the spectral projector is expressed as an integral of Green’s
function.

3. TOOLS FOR SPARSE REPRESENTATION

In this section we develop several representations for fast matrix–matrix multiplications
within the recursion (9). We present these ideas briefly in this section, and defer estimates
and proofs to Appendix A. We consider only one-dimensional problems here and mention
considerations for multiple dimensions in Section 5.2.

The representations of this section are critical to our approach since they control the
speed of the algorithm. We describe an adapted discretization of the Hamiltonian for a
single atom in Section 3.1. In Section 3.2 we consider the sparsity of the spectral projector
for several atoms and introduce additional structure into the representation. In Section 3.3
we demonstrate a method suitable for projectors wheren, the number of eigenfunctions of
interest, is large (e.g., above the Fermi level).

3.1. The Adapted Representation of the Hamiltonian

In order to construct the spectral projector using the sign function iteration (9) we must
first convert the true HamiltonianH = −∇2 + V(x) to matrix form. This can be done by
either sampling in space or representing the operator in some basis. We will represent it on a
basis because this will allow us access to both the space and the spatial-frequency domains.
We will consider only orthonormal bases. We have observed that (quite naturally) the way
in which the initial discretization is handled has a strong effect.

The representation ofH on some finite set of basis functions can be viewed as a projection
of H onto a subspace. We will call this projectorP a “rough projector” and apply the iteration
(9) to the matrixH̃ = PHP. The projectorP identifies the subspace spanned by the firstn
eigenfunctions. In discretizing the origional Hamiltonian, we would like to project it on a
subspace that (i) includes the subspace indicated byP with controlled accuracy, and (ii) is
not significantly larger than the subspace indicated byP. Formally, these conditions mean
‖PP − P‖ < ε for some desired accuracyε, and the operatorP(I − P) has small rank.

In order to construct the rough projectorP we need basis functions with controlled
localization in both space and frequency. The necessity of this localization is implied by an
analysis of the instantaneous frequency of the eigenfunctions. It is clear that to be efficient,
P must be adapted to the potentialV(x) and the energy cutoffµ. Near the nucleus the
eigenfunctions are more oscillatory, soP must allow higher frequencies.
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Note thatP does not need to “resolve” or “capture”H itself, but onlyP. Other eigenvalues
and eigenvectors ofH will be changed byP, but an orthogonal projection does not change
thesignof the eigenvalues. See Section A.1 for a more detailed discussion of the effect of
a rough projector.

We chooseP to be a projection onto a collection of wavelets. The design ofP is based
on the potentialV(x) and eigenvalue boundµ only. The size ofµ− V(x) determines the
maximal “instantaneous frequency” and therefore the necessary sampling rate (i.e., wavelet
subspace). The derivative ofV(x) determines how much “frequency spillage” we will
have, and thus how wellP can matchP locally. We will characterize this subspace using
an instantaneous frequency perspective. In Section A.2 we provide a rigorous justification
using the local cosine basis (see, e.g., [18, 19]) and we indicate below how to translate this
to the wavelet basis.

The eigenfunctionψn(x)satisfies (by definition)ψ ′′n (x)=−(λn−V(x))ψn(x). The WKB
(quasi-classical) approximation predicts behavior like

exp

(
±i
∫ x√

λn − V(t) dt

)
(12)

and thus instantaneous frequency
√
λn − V(x). Intuitively this says thatψn “lives” on the

curveξ = νn(x) =
√
λn − V(x) in the x × ξ (space× spatial-frequency) phase plane.

On the phase plane a local cosine basis element is viewed as a rectangle withx-support
on its base interval, shifted inξ by its frequency, with area a constant (depending on the
normalization). Intuitively, those boxes that intersectν(x) should correspond to local cosine
elements that yield significant coefficients (see Fig. 1).

The important conclusion from the estimates in Section A.2 is that for potentials of the
form −C/|x| (in one dimension), the number of local cosine basis functions needed to
constructP is proportional to

√
C ≈ n, wheren is the rank ofP. We can thus represent

FIG. 1. Schematic of instantaneous frequency plots for severalψk with potentialV(x) = −C/x, overlaid
with the local cosine subdivision for the subspace used forP.
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FIG. 2. Schematic of instantaneous frequency plots forψk overlaid with a wavelet phase plane.

H̃ as anO(n× n)matrix in this adapted local cosine coordinate system and computeP in
O(n3) time using the recursion (9). For a single atom this result may already be sufficient
for the fast computation ofP, sincen is never very large. In the following sections we
give further representation techniques to deal with multiple atoms and the case where the
number of eigenfunctions is large.

To translate the above results to a wavelet representation, we need only note that the
wavelet partition of the phase plane is compatible with the type of partition desired forP.
In particular, high frequency is associated with small spatial support and high change in
frequency (see Fig. 2). We therefore can representH̃ and P asO(n × n) matrices in an
adapted wavelet subspace. The constant involved will depend on the choice of wavelet and
the desired precisionε. The dependence onε for a wavelet expansion is generally log(1/ε),
yielding matrices of sizeO(n log(1/ε)× n log(1/ε)).

In what follows we use the standard form of the matrices, which is equivalent to simply
changing our system of coordinates into the wavelet basis, and note that it is also possible
to use the non-standard form of [20, 21].

Remark 3.1. One could constructP using the atomic orbitals. At low precision this
should perform well, since the atomic orbitals match the eigenfunctions well. At higher
precision, however, atomic orbitals are a poor choice because they do not allow local
refinements adapted to the particular potential in use.

Remark 3.2. If we choose the subspace forP “too small” the density constructed will
still be an approximation of the true density (see Section A.1). Early in the Kohn–Sham
iteration it may even be desirable to use an approximate density.

3.2. Multiple Atoms

In this section we consider the case where we haveN nuclei, each withn electrons. Be-
sides the rough projectionP, we will need additional structures for the sparse representation
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of our matrices. We design our representation so that the final answer, the projectorP, will
be sparse. The initial Hamiltonian is banded and so will also be sparse in our represen-
tation. It appears that due to the monotonicity properties of the recursion (9), choosing a
representation so that the initial Hamiltonian and final projector are sparse is sufficient for
maintaining the sparsity of the intermediate matrices. In this section we first produce linear
scaling inN, as others have done. Second we provide additional structures to reduce the
constant in the complexity estimates.

As a first step we note that at any point in the recursion many of the matrix entries
may be less thanε and can be neglected, leaving a sparse matrix. For a single atom and
moderate number of eigenfunctionsn, such a sparse representation may provide only a
limited benefit. However, in the case where we haveN nuclei, each withn electrons, this
sparse representation provides a significant benefit. Without it we would haveO(nN×nN)
matrices and therefore anO((nN)3) algorithm.

As others (e.g., [2, 3, 22–24]) have noted, the locality of the electrons (eigenfunctions)
allows us to obtain linear scaling in the number of nucleiN. The basic argument is as
follows: For an eigenfunction to represent a bound state electron, it must beL2 normalized
and hence decay at infinity. Methods like WKB allow us to estimate the decay of the
eigenfunction and thus the region where it is numerically significant. Suppose the amplitude
of the eigenfunctions is significant ford units, where atoms ares units apart andd > s. If
we use aK point discretization per unit, then the matrix is banded, with bandwidthd · K
and diagonal lengthN · s · K . It thus hasN · s · d · K 2 entries and can be multiplied in the
recursion inN · s · K · (d · K )2 operations. We have obtained linear scaling inN, but the
constants · d · K 2 (or s · K · (d · K )2) may be quite large.

By using the wavelet coordinate system and the rough projector we can reduce this
constant. The matrix can be organized into a set of blocks, each representing the interaction
between a pair of nuclei (including self-interactions). We will discuss this structure here at
a fixed (wavelet) scale and act as if there were only this scale and a coarse scale. Since the
main estimate used for the blocksize isO(n × n), which includes the contributions from
all scales, in what follows we need not sum over the scales to obtain the overall estimate.
We decompose the projector into matrix blocksBi j , 1 ≤ i, j ≤ N. Letting ψa

k denote
eigenfunctionk of atoma,

Bi j =
N∑

a=1

n∑
k=1

ψ̂a
k(x)

∣∣
x≈i

¯̂ψa
k(y)

∣∣
y≈ j
, (13)

where ˆ· denotes the wavelet transform,x andy are wavelet coordinates, and the restriction
x≈ i means thatx is near nucleusi . Each block is anO(n × n) square of (possibly)
significant entries, surrounded by entries less thanε. This empty area between blocks is
the classically forbidden region. In this regionψk is a smooth (decaying) function, which
can be represented by a small number of coefficients at a coarse scale. The rough projector
P removes from the Hamiltonian those coordinates that are not needed for the projector,
thus deleting the empty space between blocks. For an eigenfunction to contribute toBi j

it must have a significant component near both nucleii and j . The assumptions that all
eigenfunctions are only significant ford units and nuclei ares units apart mean thatBi j

is set to zero if|i − j |> d/s. Our matrix thus is block-banded, withN blocks along the
diagonal,d/s blocks on each row, and with blocks of sizeO(n× n). Thus the matrix has
O(N · (d/s) · n2) entries and can be multiplied in the recursion inO(N · (d/s)2 · n3)
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operations. The constant has been significantly reduced, but may still be too large for some
problems. The fact that wavelets are well suited to representing wave functions has been
noted in [25].

If the number of nuclei in interaction range (d/s) is large, we will need an additional
technique. The blockBi j is formed by eigenfunctions that have a significant component
near both nucleii and j . The number of entries inBi j is determined by the highest energy
eigenfunctionψn. This eigenfunction has the slowest rate of decay, and so we expect the
off-diagonal blocks to remain full (O(n× n)), and decay (perhaps slowly) in amplitude as
|i − j | increases. Lower energy eigenfunctions, however, will decay much more rapidly,
so Bi j , although full, will becomelow rank (up to ε) long before|i − j |> d/s. We can
represent these blocks using the singular value decomposition (SVD) and obtain a much
more efficient representation. This technique takes advantage of the fact that core electrons
interact only at short distances.

3.3. Partitioned SVD Representations

As the number of eigenfuctionsn increases, the cost of computation using wavelet com-
pression may increase liken3. In physical systems the number of eigenfunctions per atom is
never very large, and the localization of the eigenfunctions keeps the representation sparse.
In other applications of projectors, we may have a situation corresponding to keeping a
large number of eigenfunctions (above the Fermi level) on a single atom. For this case,
we propose a technique that should be insensitive ton, or even improve for largen. The
representation we use was developed by Rokhlin and his collaborators [13–15]. We use it
to exploit the implications of the Christoffel–Darboux summation formula (see [32]). This
theorem does not apply in our case, but a similar approximate result does hold. We first
present the Christoffel–Darboux summation formula and a sketch of Rokhlin’s approach.
Then we present the approximate result that holds in our context.

PROPOSITION3.3. Let {pk(x)}∞k=0 be a set of normalized orthogonal polynomials on
[−1, 1] constructed from1, x, x2, . . . by Gramm–Schmidt orthonormalization with re-
spect to some weightw(x) dx. Then{pk(x)}∞k=0 satisfies a three-term recurrence ini-
tialized by p−1(x)= 0, p0(x)=a0, and with general term pn(x)= (anx + bn)pn−1(x) +
(an/an−1)pn−2(x).

THEOREM3.4 (Christoffel–Darboux [26, p. 43]).

n∑
k=0

pk(x)pk(y) = a−1
n+1

pn+1(x)pn(y)− pn(x)pn+1(y)

x − y
. (14)

Since the proof is brief, we present it here.

Proof. Expanding the numerator using the recurrence relation we obtain(
(an+1x + bn+1)pn(x)+ an+1

an
pn−1(x)

)
pn(y)

− pn(x)

(
(an+1y+ bn+1)pn(y)+ an+1

an
pn−1(y)

)
= an+1(x − y)pn(x)pn(y)+ (an+1/an)(pn(x)pn−1(y)− pn−1(x)pn(y)). (15)
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FIG. 3. Partitioned SVD.

Dividing this byan+1(x − y) reveals the top term in the sum, and we are left to prove the
same theorem withn replaced byn− 1. The theorem follows by induction.

This theorem says that the projector onto the firstn polynomials is significantly less com-
plicated than the set{pk(x)}nk=0. The kernel(pn+1(x)pn(y))/(x − y) naturally factors into

pn+1(x)
1

x − y
pn(y) = D1AD2. (16)

The matricesD1, D2 are diagonal and can be applied with ease.A is not diagonal, but is
compressible when partitioned as in Fig. 3. On each off-diagonal squareA is a low-rank
matrix in the sense that its singular value decomposition has only a few singular values above
a given threshold.D1AD2 must then also be of low rank (verified by direct evaluation). To
representD1AD2 on a square, we need to store some number of singular values, and the
corresponding singular vectors, each with length the size of the current square. The cost to
represent the entire matrix is the same as forA in this representation, which isO(K (log K )2)
for a K point discretization. We call this a partitioned SVD representation (PSVD).

Remark 3.5. It might be possible to compress the singular vectors as well. The low rank
of A is not sufficient to imply thatD1AD2 is compressible in a wavelet basis, however. For
compressiblity ofD1AD2 we would also need the vectors which are the diagonals ofD1

andD2 to be compressible. For example, ifD1 andD2 are random diagonal matrices, the
productD1AD2 appears random to the wavelets, and no compression is possible.

When matrices in PSVD form are multiplied, it creates multiple contributions to each
part of the output matrix. To return to the PSVD form, we must add these contributions and
move them to the correct size square. This process is similar to multiplying in non-standard
wavelet form [21].

The projectors we are considering are not formed from orthogonal polynomials and
so Theorem 3.4 does not directly apply. The theorem does hold for objects derived from



42 BEYLKIN, COULT, AND MOHLENKAMP

orthogonal polynomials by changes of variables. In particular it holds for the Chebyshev
polynomialsTn(x), which under the change of variablesx = cosθ becomeTn(cosθ) =
cos(nθ). Theorem 3.4 thus holds for cosines, after the appropriate change of variables.
The cosines are eigenfunctions for the Hamiltonian−∇2 which we will consider as our
prototype, with other Hamiltonians a perturbation of this by a potential.

We note that for the eigenfunctions of−∇2 we could bypass Christoffel–Darboux and
use instead the formula for the projector onto exponentials (valid in any dimension),

n∑
k=0

eikxe−iky = 1− ei (n+1)(x−y)

1− ei (x−y)
. (17)

The approximate version of Theorem 3.4 that holds in our case is based on the claim that
−∇2 and−∇2 + V(x) are “spectrally equivalent” in the following sense: LetRm be the
projector onto the firstm cosines (or exponentials). We will decomposeP as

P = Rm − (I − P)Rm + (I − Rm)P (18)

(see Fig. 4). The Christoffel–Darboux theorem applies toRm, so it can be represented
efficiently in the PSVD. We claim that there is anm so that(I − Rm)P and(I − P)Rm

are either low rank or highly localized. Supposing that(I − Rm)P or (I − P)Rm is of
rankr , it adds at mostr singular values to each PSVD square, and thus at mostr K log K
additional coefficients in the PSVD representation. If(I −Rm)P or (I − P)Rm were highly
localized, it would interact with only a few squares, and thus add few additional coefficients
in the PSVD representation. It is also acceptable for(I − Rm)P or (I − P)Rm to consist
of a low-rank part plus a localized part. Estimates for this spectral equivalence appear in
Section A.3.

FIG. 4. Schematic of instantaneous frequency plots and the boundaries of the projectorsP andRm.
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4. NUMERICAL EXAMPLES

In this section we test our methods on a simple one-dimensional example. The first
question we wish to answer is how many iterations are required for convergence, as a function
of the condition number of the initial matrix. Second we test how well our wavelet and PSVD
representations compare to direct (sparse) matrix multiplications. This comparison is done
for both high and lowµ (equivalentlyn).

To determine the number of iterations required we consider the operatorT , a 512× 512
discretization of−∇2 with periodic boundary conditions. Since the smallest eigenvalue of
T is 0,T0 = T/‖T‖+κ−1I has condition numberκ. (In the general problem, the condition
number is the band gap divided by the matrix norm.) We then see how many iterations it
takes forT0 to converge to the identity to accuracyε for several values ofκ. According
to Section 2.1, we should have convergence inO(logκ + log log(1/ε)) iterations, and
theO(logκ) portion is confirmed in Table I. See [12] for a more detailed analysis of the
convergence of this iteration.

To test the sparsity of our representations we consider a 512× 512 finite-difference
discretization of the operator−∇2 − 300/|x| on the interval [−1/2, 1/2] with periodic
boundary conditions. In our first example, we chooseµ= 0 and construct the projector onto
the 15 eigenfunctions with eigenvalues less thanµ. In our second example, we chooseµ
so that we project onto 70 eigenfunctions. In all cases we use a fifth-order finite difference
approximation for the second derivative and arrange for the singularity in the potential
to occur between sample points. The wavelets used were coiflets with seven vanishing
moments.

EXAMPLE 4.1. First we useµ = 0(n= 15) and produce Fig. 5. Plotted is the number
of coefficients used to represent the matrix as a fraction of the size of the full matrix, 5122.
The first plot is using standard coordinates and representing the matrix in sparse form, with
truncation at 10−8. Initially the matrix is banded and so sparse, but by the end of the iteration
it is full. The second plot is again a sparse matrix representation with truncation at 10−8, but
is in wavelet coordinates. Initially it mimics the banded form of standard coordinates, but
it remains sparse throughout the iteration, improving at the end. In the third plot we use the
rough projector to reduce the size of the matrix and then use the sparse structure as before,
in wavelet coordinates. The subspace we use forP is given by all wavelet coordinates that
the eigenfunctions we wish to capture use at level 10−8, and has dimension 322. In the
true problem the eigenfunctions are not known, but this choice forP allows us to prove the
principle without addressing the problem of the construction ofP (see Section A.2). By using

TABLE I

Number of Iterations Required

for the Cubic Sign Recursion (9) to

Converge with 10−7 Accuracy

Condition
number ofT0 Iterations

101 11
102 15
103 21
104 26
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FIG. 5. (Example 4.1) Ratio of the number of significant coefficients above the threshold 10−8 to the total
number of matrix elements during the cubic sign recursion (9).

this rough projector, we have eliminated the bump in the number of wavelet coefficients in
the middle of the iteration. The fourth plot is similar to the third, except the rough projector
is set to level 10−5, givingP rank 133. The number of coefficients is cut further, without an
increase in error, as discussed below. This final method gives about a factor of 16 savings
in the size of the matrix and a factor of 64 in the number of computations.

In Fig. 6 we plot the error in the density for the methods in Fig. 5. This error is computed
as theL2 norm of the difference in the computed density from the actual density (computed
from the eigenfunctions), divided by theL2 norm of the actual density. We see convergence
after 35 iterations, with some loss of accuracy due to conditioning (κ ≈ 5× 105). The use
of wavelet coordinates yields an extra digit of accuracy. The threshold used for the rough
projector need not be tied to the condition number of the matrix. In this example, we are
able to use a rough projector to only five digits without increasing the final error.

EXAMPLE 4.2. In Fig. 7 we perform a similar test but withµ such that we capture 70
eigenfunctions. The first plot is using standard coordinates and truncating at 10−8. The
second plot uses wavelet coordinates with the same truncation. As predicted in Section 3.1,
wavelet compression starts to fail, since the eigenfunctions are now more oscillatory. The
rough projector at the 10−6 level is of full rank 512, and so provides no relief. The third
plot is the number of coefficients needed for the PSVD representation at four levels of
subdivision, including storage of the singular vectors, with truncation at 10−8. We have not
implemented the recursion in PSVD form, so we compute the PSVD from the full matrix
constructed at higher precision at each iterate. (Truncation of the matrix tends to produce
a large number of singular values just above the threshold.) As suggested in Section 3.3,
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FIG. 6. (Example 4.1) Relative error in the density generated in Fig. 5.

FIG. 7. (Example 4.2) Ratio of the number of significant coefficients above the threshold 10−8 to the total
number of matrix elements during the recursion (9) forµ capturing 70 eigenvectors.
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FIG. 8. (Example 4.2) Relative error in the density generated in Fig. 7.

the PSVD still performs well. In Fig. 8 we plot the error in the density for this example.
We choseµ between two eigenvalues that are paired, so the band gap is small andκ ≈ 106.
We achieve slightly better performance than in Fig. 6 simply because we measure relative
error.

5. EXTENSIONS

5.1. Partitioning the Spectrum

In this section we describe a method for partitioning the spectrum and indicate a situation
when such a partition may be appropriate. We expect its greatest utility will be for other
applications for spectral projectors, such as in wave propagation.

Letµ′<µ<0. We will partition the spectrum into(−∞, µ′), (µ′, µ), and(µ,∞). Con-
struct the spectral projectorP′(x, y) onto the interval(−∞, µ′) as above. Then construct

H ′ = (I − P′)H(I − P′). (19)

The eigenvectors corresponding to eigenvalues ofH less thanµ′ now have zero eigenvalue
with respect toH ′. We can then project onto the(µ′, µ) portion of the spectrum ofH by
computing

P′′ = (I − sign(H ′ − µI ))/2. (20)

The electron densityρn(x) is recovered by taking the diagonals ofP′′ andP′ and adding.
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The case whereµ>0 can be treated by applying an appropriate shift and then using the
construction above.

Such partitioning is useful if for some reason computingP′(x, y) and thenP′′(x, y) is
easier than simply computingPn(x, y). Within the Kohn–Sham scheme, the lower parts of
the spectrum, which correspond to densities which are localized around the nucleus, should
converge more quickly under the DFT-LDA iteration than other parts of the spectrum. We
may then be able to fixP′ early in the iteration process and save some work. This idea is sim-
ilar to the use of pseudopotentials except that we have not modified the potential, but instead
the entire operator. We note thatH ′ is no longer of the form “Laplacian plus potential.”

5.2. Multidimensional Implementations

Efficient implementation of both wavelet and PSVD representations in multiple dimen-
sions requires careful attention. The straightforward generalization, although available, is
not efficient.

In Example 4.1 we demonstrated that choosing a good initial adapted representation was
crucial for efficiency. In multidimensional problems the treatment of the singularities (e.g.,
the Coulomb potential of the ions) will also become critical. We plan to use multiwavelets as
a tool of discretization in multiple dimensions. These bases allow us to position boxes so that
the point singularities of the ionic potential coincide with the corners of the parallelograms
where the multiwavelets are supported. At these corners the multiwavelets are discontinuous
already and so should be able to match the singularity with fewer scales than any overlapping
wavelet basis. A paper on this topic which is a follow-up to [27, 28] is in preparation [29].

In addition, in a separate work [30] it is shown that for a large class of operators the
difference between the operator and its projection on a coarse scale can be represented
as a (small) sum of separable operators. This approach is shown to produce an efficient
generalization for multidimensional implementation in, e.g., wavelet bases. We plan to use
these results as a way of implementing the constructions of this paper in multiple dimensions.

6. CONCLUSIONS

We have presented a fast algorithm for the construction of a spectral projector. This
algorithm allows us to compute the density matrix, as used in, e.g., the Kohn–Sham iteration,
and so obtain the electron density. We computed the spectral projector by constructing the
matrix sign function through a simple polynomial recursion. We have presented several
techniques for fast computation within this recursion, using bases with controlled space–
spatial frequency localization.

Since spectral projectors appear in many contexts, we expect many additional applications
of our approach. In particular we expect this basic approach to work in molecular dynamics
simulations and homogenized wave propagation. We note that the details of the appropriate
representation to maintain sparsity may vary.

APPENDIX A: MATHEMATICAL ESTIMATES

A.1. The Effect of a “Rough” Projection

In this section we examine the effect of the rough projector from Section 3.1. We show
that the signs of the eigenvalues are preserved. This fact is closely related to the law of
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inertia for a symmetric matrix, but we demonstrate it with a simple example. This example
also shows the effect of this projection on the eigenvectors. Suppose thatµ= 0,λ1<µ<λ2

and we have an operator

T = λ1ψ1(x)ψ1(y)+ λ2ψ2(x)ψ2(y)

= λ1(a1φ1(x)+ b1φ2(x))(a1φ1(y)+ b1φ2(y))

+ λ2(a2φ1(x)+ b2φ2(x))(a2φ1(y)+ b2φ2(y)), (21)

where{ψ1, ψ2} are the normalized eigenfunctions and{φ1, φ2} is some basis. Assuming
that|b1| < ε we letP be the projection ontoφ1. Our operator becomes

T̃ = PTP = λ1(a1φ1(x))(a1φ1(y))+ λ2(a2φ1(x))(a2φ1(y))

= (λ1a2
1

)
φ1(x)φ1(y)+

(
λ2a2

2

)
φ1(x)φ1(y). (22)

In the subspace we wanted to keep, the eigenvalueλ1 becomesλ1a2
1 = λ1(1−O(ε2)) < 0

and the eigenfunctionψ1(x) becomesφ1(x) = (ψ1(x)−O(ε)φ2(x))/(1−O(ε2)). In the
complementary subspace,λ2 becomesλ2a2

2 ≥ 0.

A.2. The Instantaneous Frequency Perspective

In this section we examine how closeP can be toP, justifying the arguments of
Section 3.1. We use the local cosine basis and the quantitative quasi-classical method of
[31] because they allow rigorous bounds. Local cosine is difficult to orthogonalize in higher
dimensions, so we do not use it in practice.

A local cosine basis (see e.g., [18, 19]) is constructed as follows: We begin with a sequence
of points on the line (interval, circle)· · · xi < xi+1 · · ·. Let Ii = [xi , xi+1]. We have a set of
compatible bells, indexed by their interval,{bi (x)}. These bells have the properties that
bi (x)bi−1(x) is even aboutxi , bi (x)bi ′(x)= 0 if i ′ 6= i ± 1, and

∑
i b2

i (x)= 1. On each
interval we have a set of cosines of the proper scaling and shift, denoted{

cp
i (x) =

√
2

xi+1− xi
cos

(
(p+ 1/2)π(x − xi )

xi+1− xi

)}∞
p=0

. (23)

The set{bi (x)c
p
i (x)} forms an orthonormal basis for the line.

The use of cosines instead of exponentials and the half-integer frequenciesp+ 1/2 is
crucial for the orthogonality of these functions but has no effect on the decay estimates we
need. To simplify the proof, we provide estimates using the exponentials{

ep
i (x) =

√
1

xi+1− xi
exp

(
i

pπ(x − xi )

xi+1− xi

)}∞
p=0

. (24)

For simplicity we also considerbi to be supported onIi , rather than overlapping with the
neighboring interval.

In Section 3.1 we introduced the notion that those local cosine boxes that intersect the
instantaneous frequencyν(x) should correspond to basis functions that yield significant
coefficients (see Fig. 1). To make this notion rigorous, we can apply an integration by parts
argument as in [31].
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THEOREM A.1. Let I be an interval of length l, ψi the normalized eigenfunction as
above, V∗ ∈ R, and bI a dilation and translation to I of a bell b on[0, 1]; then

∣∣〈ψn, bI e
p
I

〉∣∣ ≤ l 2‖λn − V(x)− V∗‖L∞(I ) + ‖b′′‖L∞([0,1]) + 2|pπ | · ‖b′‖L∞([0,1])

|l 2V∗ − (pπ)2| . (25)

We can manipulate (25) to determine for whichp we have|〈ψn, bI e
p
I 〉| ≤ ε, whereε is

the desired accuracy. If we choose the constantV∗ to minimize‖λn−V(x) − V∗‖L∞(I ),
then
√

V∗ is the central frequency in the instantaneous frequencyνn(x) for ψn(x), and we
can interpret our estimates onp as defining a band aroundνn(x) on whichψn(x) lives. In
Section A.3 we will use this band to show spectral equivalence. For the results of the current
section, we are interested only in largep, so it would be sufficient to takeV∗ = 0.

Ignoring constant factors, we can conclude|〈ψn, bI e
p
I 〉| ≤ ε when

p > max

{
l

√
V∗ + ‖λn − V(x)− V∗‖L∞(I )

ε
,

√
l 2V∗ + ‖b

′′‖L∞([0,1])

ε
,

‖b′‖L∞([0,1]) +
√
‖b′‖2L∞([0,1]) + 2ε2l 2V∗

ε

}
. (26)

The role of the second and third terms in (26) is to give a minimum value forp consistent
with the uncertainty principle. Even in a region whereV(x) is nearly constant, the act of
localizing with a bell implies that we will need a certain number of frequencies to represent
ψn. We will ignore these two terms for our main analysis. In order to satisfy the first term
in (26) it is sufficient to take

p > l
√

V∗ + l
√‖λn − V(x)− V∗‖L∞(I )

ε
. (27)

Since
√

V∗ is the typical local frequency, the first term in (27) defines the basic sampling
rate. The second term in (27) measures the “frequency spillage” due to the variation in
V(x). If λn is not available, we can useµ in (27). Applying this theorem on a properly
chosen partition allows us to constructP as in Fig. 1.

We wish to calculate the total number of basis functions needed to constructP satisfying
‖PP− P‖<ε. We will show that this number is the same order as the dimension of
P, and thusP(I − P) does not have large rank. On any given partition, the contribution
of the l

√
V∗ term in (27) to the number of basis functions needed, when summed over

the intervals in the partition, takes the form of a Riemann sum which can be estimated by∫ 1
0

√
C/x dx= 2

√
C. On an interval [xi , xi+1] of lengthl i , the second term in (27) is bounded

by l i
√

l i |V ′(xi )|/ε= (
√

C/ε)l 3/2
i /xi . By choosingl 3/2

i =αxi we make the number of basis
functions needed per interval constant. Summing over the intervals, the total number can
then be estimated by

∫ 1
0 (
√

C/ε)α1/3x−2/3 dx= (3√C/ε)α1/3. If we could chooseα→ 0
then this term would not contribute at all. The second and third terms in (26), however,
boundα from below by a universal constant. These estimates really hold only on(0, 1]
since an interval which includesx= 0 would haveV∗ =∞.

In order to improve the dependence onε from ε−1 to log(1/ε), one can apply the integra-
tion by parts technique used for Theorem A.1k times and minimize overk. This technique
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fails only if (|V (k)(x)|)1/(k+1)/k increases as a function ofk, which is not the case in our
example.

One conclusion we may draw is that the sampling rate remains finite as we approach the
singularity, as long as we only wish to captureψn up toε. The second, more important, con-
clusion is thatP is representable in a local cosine subspace with dimension proportional to√

C. The number of eigenfunctionsn is also proportional to
√

C (by, e.g., WKB estimates),
so there is no fundamental obstruction toP closely matchingP.

Proof of Theorem A.1.We will suppose our interval is [0, l ], so

〈
ψn, bI e

p
I

〉 = ∫ l

0
ψn(x)b(x/ l )

√
1

l
exp

(
i
xpπ

l

)
dx. (28)

Integrating twice by parts, we obtain

=
∫ l

0

[
(b′′(x/ l )/ l 2)ψn(x)+ 2(b′(x)/ l )ψ ′n(x)+ b(x)ψ ′′n (x)

]√1

l

exp(i xpπ/ l )

−(pπ/ l )2
dx. (29)

Considering theb′ψ ′ term separately and integrating by parts again, we have

= 1

−(pπ/ l )2

√
1

l

∫ l

0

[
−b′′(x)

l 2
− (λn−V(x))b(x)+ i 2

pπ

l

b′(x)
l

]
exp

(
i
xpπ

l

)
ψn(x) dx.

(30)

Choosing anyV∗ we have

〈
ψn, bI e

p
I

〉(
1+ V∗

−(pπ/ l )2

)
= 1

−(pπ/ l )2

√
1

l

∫ l

0

[
−b′′(x)

l 2
− (λn − V(x)− V∗)b(x)+ i 2

pπ

l

b′(x)
l

]
× exp

(
i
xpπ

l

)
ψn(x) dx (31)

〈
ψn, bI e

p
I

〉 = 1

V∗ − (pπ/ l )2

√
1

l

∫ l

0

[
−b′′(x)

l 2
− (λn − V(x)− V∗)b(x)+ i 2

pπ

l

b′(x)
l

]
× exp

(
i
xpπ

l

)
ψn(x) dx. (32)

Applying Hölder’s inequality with the dual exponents (1,∞) and then the triangle inequality
yields

∣∣〈ψn, bI e
p
I

〉∣∣ ≤ 1

|V∗ − (pπ/ l )2|

√
2

l

×
(∥∥∥∥b′′

l 2

∥∥∥∥
∞
+ ‖λn−V(x)−V∗‖∞ + 2

pπ

l

∥∥∥∥b′

l

∥∥∥∥
∞

)
‖ψn(x)‖L1([0,l ]). (33)

Since‖ψn(x)‖L2([0,1])= 1 we have‖ψn(x)‖L1([0,l ])≤
√

l . Rearranging thel ’s yields the
theorem.
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A.3. Spectral Equivalence

For the techniques in Section 3.3 to be valid in our case, we need estimates to show that
−∇2 and−∇2+V(x) are “spectrally equivalent.” In this section we give estimates showing
to what degree this is true. Interpreting these results as good or bad will depend on the
particular situation.

Theorem A.1 gives decay of local cosine coefficients like|l 2V∗−(pπ)2|−1. In Section A.2
we used this for smallV∗ and largep, but it can also be used for largeV∗ and smallp. It is
slightly more convenient to compute the length of the set{p : |〈ψn, bI e

p
I 〉| > ε} than upper

and lower bounds on this set, since the decayV∗ − (pπ)2 is not symmetric about
√

V∗.
Fixing 0< x1, Theorem A.1 bounds the length of this set for the interval [x1, 1], (l = 1−x1)
by (ignoring constants)

max

{
min

{
l

√
‖V(x)− V∗‖∞

ε
, l
‖V(x)− V∗‖∞

ε
√

V∗

}
,
‖b′‖∞
ε

,min

{√
‖b′′‖∞
ε

,
‖b′′‖∞
ε
√

l 2V∗

}}
.

(34)

As in (26) the second and third terms ensure that we do not violate the uncertainty principle
whenV is nearly constant. Sincep ≈ lm, we can translate the second part of the first term
in (34) to a bound onk − m, whereRk P≈ P and P Rm≈ Rm on [x1, 1]. This estimate
then bounds the rank of(I − Rm)Rk which in turn bounds the rank of(I − Rm)P. For the
potential−C/|x| we obtain

|C/x1|
ε
√
µ− C/x1

= C

ε
√

x1
√

x1µ− C
. (35)

This bound goes to 0 asµ→∞, but increases asx1→ 0. Using this method the other term
(I − P)Rm is negligible on [x1, 1].

We note finally that the Christoffel–Darboux summation formula is really a local result.
We could partition [0, 1] and apply bounds as above on each interval, obtaining a tighter
result. Due to the difficulties of interpreting these results on the partition in Fig. 3, we will
not pursue this idea. It does suggest, however, that the performance of this algorithm may
be better than predicted via (35).

APPENDIX B: GREEN’S FUNCTION AND SPECTRAL PROJECTORS

One approach to constructing the electron density uses contour integrals,

ρn(x) = 1

2π i

∫
C

G(x, x, z) dz, (36)

whereG= (H − z)−1 and the contourC has the eigenvalues of interest in its interior. This
approach shifts the difficulty from solving an eigenvalue problem at each step in the Kohn–
Sham iteration to that of computing Green’s functionG and integrating over an appropriate
contour to obtainρn(x). In this appendix we show that our sign function formulation is
equivalent to the contour integral (36), namely

(I − sign(T − µI ))/2= − 1

2π i

∫
C
(T − z I)−1 dz, (37)
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FIG. 9. The contourC, composed ofCI andCII .

where the contourC is shown in Fig. 9,T is a self-adjoint matrix, and at no point on the
contourC is the matrixT − z I singular.

We can write the integral (37) as

− 1

2π i

∫
C
(T − z I)−1 dz= − 1

2π i
U ∗
(∫

C
(D − z I)−1

)
dzU, (38)

whereU is a unitary transformation which diagonalizesT andD is a diagonal matrix such
thatT = U ∗DU . The integral (37) may then be evaluated element-by-element onD, as in

− 1

2π i

∫
C
(λ− z)−1 dz, (39)

whereλ is a diagonal element ofD.
We define the parts of the contourC as in Fig. 9. The vertical part,CI , runs fromµ− i M

toµ+ i M . The part labeledCII is a circular arc running through−i M and connecting with
the endpoints ofCI . We take the limit asM→∞.

First consider the integral overCII . For M large enough, we may write the series repre-
sentation

(λ− z)−1 = −z−1
∞∑

k=0

(
λ

z

)k

. (40)

This series is uniformly convergent for allzonCII . By writing z=Mei θ anddz= i Mei θ dθ ,
we obtain

− 1

2π i

∫
CII

(λ− z)−1 dz= 1

2π

∞∑
k=0

∫ π/2

−π/2

(
λ

Mei θ

)k

dθ. (41)
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As M→∞ only the termk= 0 remains, leaving us with

lim
M→∞

− 1

2π i

∫
CII

(λ− z)−1 dz= 1

2
. (42)

ForCI we havez=µ+ i t anddz= i dt ,

lim
M→∞

− 1

2π i

∫
CI

(λ− z)−1 dz= lim
M→∞

− 1

2π

∫ M

−M

λ− µ+ i t

(λ− µ)2+ t2
dt. (43)

The imaginary part of the integrand in (43) is odd, so the imaginary part of the integral is
zero. For the real part, we have

lim
M→∞

− 1

2π

∫ M

−M

λ− µ
(λ− µ)2+ t2

dt=− 1

π
lim

M→∞
tan−1

(
M

λ− µ
)
=−1

2
sign(λ− µ), (44)

and obtain (37).
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