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Abstract

We introduce a new approach, and associated algorithms, for the efficient approximation of functions
quences by short linear combinations of exponential functions with complex-valued exponents and coe
These approximations are obtained for a finite but arbitrary accuracy and typically have significantly fewe
than Fourier representations. We present several examples of these approximations and discuss appli
fast algorithms. In particular, we show how to obtain a short separated representation (sum of products
dimensional functions) of certain multi-dimensional Green’s functions.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the problem of approximating functions on a finite real interval by linear combinat
exponentials with complex-valued exponents and discuss several applications of these approxi
The approximations we obtain in this paper are already being used for constructing Green’s func
quantum chemistry and fluid dynamics [8,15,16], and we expect further applications in computing
sums, approximating Green’s functions in electromagnetics, and addressing some problems o
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processing and data compression. In this paper we prove new theoretical results and develop n
algorithms for constructing such approximations. Since our numerical results are far better th
current proofs indicate, we also point out unresolved issues in this emerging theory.

Since our formulation is somewhat unusual, we first provide two examples. Let us consider the

1

x
=

∞∫
0

e−tx dt (1)

for x > 0. This integral representation readily leads to an approximation of the function1
x

as a sum
of exponentials. In fact, for any fixedε > 0, there exist positive weights and nodes (exponents) o
generalized Gaussian quadrature such that∣∣∣∣∣1

x
−

M∑
m=1

wme−tm x

∣∣∣∣∣ � ε

x
(2)

for all x in a finite interval, 0< δ � x � 1, and where the number of terms isM = O(logδ). Theoretically
the existence of such approximations follows from [19–22]. This particular example has been ex
in [27] with the goal of using (2) for constructing fast algorithms. Specific exponents and weigh
provided there for several intervals and values ofε, so that (2) can be verified explicitly. The approxim
tion (2) has important applications to fast algorithms that we will consider below.

The second example is the Bessel functionJ0(bx), whereb > 0 is a parameter andx ∈ [0,1]. Using
the approach developed in this paper, we obtain for allx on [0,1],∣∣∣∣∣J0(bx) −

M∑
m=1

ρmeτmx

∣∣∣∣∣ � ε, (3)

whereρm and τm are now complex numbers and the number of terms,M , is remarkably small an
increases withb andε asM = O(logb) + O(logε−1). In the sum (3) we will refer to the coefficien
ρm as weights and to the valueseτm as nodes; such terminology is natural since, as it turns out,eτm are
zeros of a certain polynomial as is usually the case for quadratures. We illustrate (3) in Figs. 1
by showing the error of the approximation and the location of the weightsρm and (normalized) node
eτm/b corresponding tob = 100π andε � 10−11. The number of nodes isM = 28 and they accumulat
at ei ande−i as expected from the form of the approximation in (3) and the asymptotics ofJ0 for large
argument,

J0(b) ∼ (1− i)eib + (1+ i)e−ib

2
√

πb
.

Also, since the real part of the exponents is always negative, Re(τm) < 0, all nodes belong to the un
disk. The approximation (3) with these 28 terms is remarkable in that there is no obvious integ
in (1), to represent the function and, thus, by some quadrature, obtain so few terms for a given a
and parameterb. Clearly, there are many possible integrals in the complex plane to represent the
function but, unfortunately, there is no obvious criteria to choose a particular integral or contour. F
such a contour may be attempted via the steepest descent method, in this case starting from, e.g

J0(bx) = 1

π

1∫
eibxt

√
1− t2

dt. (4)
−1
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Fig. 1. The functionJ0(100πx) and the error (in logarithmic scale) of its 28-term approximation via (3).

Fig. 2. The complex nodes (left) and weights (right) for the approximation ofJ0 in the interval[0,100π ].
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However, different changes of variables in (4) will result in different contours with no a priori guid
for the choice. Using, for example,t = sin(z), we have

J0(bx) = 1

π

π/2∫
−π/2

eibx sin(z) dz, (5)

and, withz = x + iy, we obtain the steepest descent path as the solution to sinx cosh(y) = ±1, where
|x| � π/2 andy > 0. The discretization of the integral along this path yields (3) but with more te
than via our method. On the other hand, upon examination of the weights and nodes in Fig. 2, it
that their location is not accidental. It appears as if our algorithm selects a contour on which a p
integrand is least oscillatory, since that would reduce the number of necessary nodes.

We note that by optimizing the location of the nodes, we reduce their number to keep it well bel
number of terms needed in Fourier expansions or in more general approximations like those di
in [11]. We do not have a precise estimate for the optimal number of terms but we have observe
only depends logarithmically on the parameterb and on the accuracy.

We have obtained similar results for a great variety of functions. The functions may be oscil
periodic, nonperiodic, or singular. For a given accuracy, we have developed algorithms to obt
approximation with optimal or nearly optimal number of nodes and weights.

These examples motivate us to formulate the following approximation problem. Given the ac
ε > 0, for a smooth functionf (x) find the minimal (or nearly minimal) number of complex weightswm

and complex nodesetm such that∣∣∣∣∣f (x) −
M∑

m=1

wmetmx

∣∣∣∣∣ � ε ∀x ∈ [0,1]. (6)

For functions singular atx = 0, we formulate (6) on the interval[δ,1], whereδ > 0 is a small paramete
Depending on the function and/or problem under consideration, we may measure the approximat
in (6) in a different way, e.g., we may use relative error.

As in our paper [11], we reformulate the continuous problem (6) as a discrete problem. Namely
2N + 1 values off (x) on a uniform grid in[0,1] and a target accuracyε > 0, we find the minima
numberM of complex weightswm and complex nodesγm such that∣∣∣∣∣f

(
k

2N

)
−

M∑
m=1

wmγ k
m

∣∣∣∣∣ � ε ∀k, 0 � k � 2N. (7)

The sampling rate 2N has to be chosen as to oversamplef (x) and guarantee that the function can
accurately reconstructed from its samples. The nodes and weights in (7) depend onε andN. Once they
are obtained, the continuous approximation (6) is defined using the same weights while the ex
are set as

tm = 2N logγm,

to match the form in (6). The nonlinear problem of finding the nodes and weights in (7) is split int
problems: to obtain the nodes, we solve a singular value problem and findM roots of a polynomial; to
obtain the weights, we use the nodes to solve a well-conditioned linear Vandermonde system.
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If in (7) we consider the caseε = 0, we would have anexact representation of the sequence
samples as a sum of exponentials, the goal of the so-called Prony’s method. We discuss the p
encountered in Prony’s method in the next section, but we point out here that by avoidingexactrepresen-
tations and incorporating anarbitrary but fixed accuracyε > 0, we manage to control the ill-conditionin
encountered in solving this problem and we significantly reduce the number of terms needed in
proximation.

Historically Gaspard de Prony (circa 1795) was the first to address the problem of repre
sequences by exponential sums. Unfortunately, his method is numerically unstable and numero
ifications were attempted to improve its numerical behavior (see references in the recent surve
We note that the approximation in (6) can sometimes be obtained by optimization strategies. We
[13] for a good review of such approaches. We also note that the approach in [27] is a special p
optimization strategy for computing quadratures as is that in [4,5] for optimizing rational approxim
in the Laplace domain resulting in a particular example of (6). Whereas optimization strategies (e
variable projection method) are applicable to a large variety of problems besides (6), our appr
problems in (6) and (7) makes use of the deep analytic and algebraic structure of these proble
yields fast algorithms for their solution.

The approach in this paper has grown from that in [11] where we used properties of band
functions and of Hermitian Toeplitz matrices to construct solutions of (7). Such a construction
to specific solutions with nodes on the unit circle and positive weights, but not necessarily w
minimal number of terms as, in this case, their number is always constrained by the Nyquist cr
In this paper we circumvent the constraints of Fourier analysis by allowing both nodes and w
to be complex-valued, significantly reducing the number of terms in the approximation. Our ap
is to construct a Hankel matrix using the values of the function or sequence to be approximat
use properties of its singular value decomposition to determine the location of nodes and weig
a given accuracy. These nodes and weights define a low rank Hankel approximation of the
Hankel matrix with an error controlled by the singular values. As it turns out, most of the weigh
smaller that the target accuracy. As we discard the corresponding terms, we obtain a nearly
representation for the matrix. In this sense our approach can be understood as a finite dimensiona
of the theory of Adamjan, Arov, and Kreı̆n (AAK theory), which involves infinite Hankel matrices as
tool for constructing rational approximations [1–3] (for a recent exposition see [25]). We found no
related methods in the literature.

The paper is organized as follows. In the next section we summarize relevant properties of
matrices and then, in Section 3, we formulate and prove a new representation theorem for finite
matrices. We describe the resulting algorithms in Section 4 and provide several examples as
applications to fast algorithms in the following section.

As it turns out, several important applications require approximation of functions with singula
where the approximation should remain valid over an extremely large relative range. We develo
duction approach in Section 6 that allows us to overcome the numerical difficulties of this probl
constructing a nearly optimal approximation from one with a relatively large number of terms (but
is easy to generate). We then apply this approach to approximate the functionf (r) = 1/rα , α > 0 as a
linear combination of Gaussians (needed in a variety of applications); the initial approximation
tained using the trapezoidal rule to discretize an integral representation of 1/rα . We prove the necessa
estimates in Appendix A.
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2. Preliminary considerations: properties of Hankel matrices

Let us summarize properties of complex-valued Hankel matrices. For a vectorh of complex entries
h = (h0, h1, . . . , h2N), let H = Hh be theN + 1× N + 1 Hankel matrix defined byh,

H =




h0 h1 . . . hN

h1 . . . . . . hN+1
...

...

. . . . . . h2N−1

hN . . . h2N−1 h2N


 (8)

that is,Hk,n = hk+n for 0� k,n � N .

2.1. Singular value decomposition and con-eigenvalue problem for Hankel matrices

For a matrixH we will consider the so-called con-eigenvalue problem

Hu = σ ū, (9)

whereu = (u0, . . . , uN) is a nonzero vector andσ is real and nonnegative. We use the bar notatio
indicate complex conjugation. For a Hankel matrix, (9) is equivalent to

N∑
n=0

hk+nun = σ ūk for 0� k � N. (10)

Following [17, p. 245], for an arbitrary matrixH and a complex valueσ, a solutionu �= 0 of (9) is said
to be a con-eigenvector ofH andσ is then its corresponding con-eigenvalue. We can always sel
nonnegativeσ , the unique representative of all con-eigenvalues of equal modulus. We refer to
σ � 0 as ac-eigenvalue, to its corresponding con-eigenvectoru as ac-eigenvector, and we refer to both
of them as ac-eigenpairof the matrix. The c-eigenvalues are also solutions of an eigenvalue probl

Proposition 1 [17, Proposition 4.6.6, p. 246]. Let A be any square matrix andσ a nonnegative numbe
Then,σ is a c-eigenvalue ofA if and only ifσ 2 is an eigenvalue of̄AA.

Since Hankel matrices are symmetric,H = Ht , an orthogonal basis of c-eigenvectors can be obta
from Takagi’s factorization [17, p. 204] which asserts the existence of a unitary matrixU and a real
nonnegative diagonal matrixΣ = diag(σ0, . . . , σN), such that

H = ŪΣŪt = ŪΣU
. (11)

This factorization can also be viewed as a singular value decomposition ofH, where the right singula
vectors are the complex conjugates of the left singular vectors. We note that (11) is valid regard
the multiplicity of each singular value and that, for Hankel matrices, the c-eigenvalues coincide w
singular values; we will refer to them in both ways depending on the context.
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2.2. Fast application of Hankel matrices

For any vectorx = (x0, . . . , xN) denote byPx the polynomialPx(z) = ∑
k�0 xkz

k of degree at mostN.

We want to compute the vectorHx, whereH is the Hankel matrix defined by the vectorh in C
2N+1. Let

L be an integer,L � 2N + 1 andα = ei2π/L a root of unity. We write

hr = 1

L

L−1∑
l=0

Ph
(
α−l

)
αrl, (12)

so that for all entries we have

(Hx)k = 1

L

L−1∑
l=0

Ph
(
α−l

)
Px

(
αl

)
αlk. (13)

This expression can be cast in terms of the discrete Fourier transform (DFT) so that the fast
transform (FFT) provides a fast algorithm to apply Hankel matrices.

2.3. Prony’s method

Let us connect our formulation with the so-called Prony’s method. LetH = Hh be a singular Hanke
matrix and choose a vectorq in the nullspace ofH. Without loss of generality, we set its last nonze
coordinate to−1 so thatq = (q0, . . . , qÑ−1,−1,0, . . . ,0), whereÑ � N. If H were nonsingular, the
we extend the vectorh to a vectorh̃ = (h0, . . . , h2N,h2N+1, h2N+2), whereh2N+1 is a free parameter an
h2N+2 is chosen in such a way thatHh̃ is a singular matrix.

The equationHq = 0 is equivalent to a recurrence relation of lengthÑ for the entries of the Hanke
matrix

hk+Ñ =
Ñ−1∑
n=0

hk+nqn, k � 0. (14)

Such recurrence can be solved as

hk =
Ñ∑

n=1

wnγ
k
n for all k, 0 � k � 2N, (15)

where{γ1, . . . , γÑ } (which, for now, we assume to be distinct) are the roots of the polynomialPq and
where theÑ coefficientswn are the solution of the Vandermonde system given by the firstÑ equations
of (15). If Pq has multiple roots, a similar representation holds wherewn are replaced bypn(k), pn a
polynomial of degree strictly less than the multiplicity of the root. Since we seek numerical repre
tions of the form (15), we will always assume distinct roots. Even if they are not distinct, a num
approximation with distinct roots is always achievable with, perhaps, a few extra terms.

In conclusion, assuming thatPq has distinct roots, any sequenceh (of odd or even length) can be re
resented as in (15), wherẽN is at mostN + 1. These considerations are the essence of Prony’s me
to represent a sequence in the form (15). This construction also points out the numerical diffi
encountered by Prony’s method. First, in most problems of interest, the Hankel matrixH has a large
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numerical nullspace that causes severe numerical problems in obtaining a vectorq. Second, the Van
dermonde system to obtain the weightswn in (15) could be extremely ill-conditioned. As it turns o
from our results, extracting the rootsγn from the polynomialPq and solving the resulting Vandermon
system is equivalent to solving (14) with infinite precision.

In our approach we are not interested in theexactrepresentation (15) but rather in approximate rep
sentations forarbitrary but fixed accuracyε,∣∣∣∣∣hk −

M∑
m=1

wmγ k
m

∣∣∣∣∣ < ε, (16)

with minimal number of termsM . By letting the approximation depend on the accuracy, we are abl
only to avoid the numerical problems we just mentioned but also reduce the number of terms.

3. Representation theorems for finite Hankel matrices

In this section we present two main theoretical results. We show how to represent an arbitrary se
as a linear combination of exponentials and how to describe this representation as a family of a
mations of finite Hankel matrices by a particular class of Hankel matrices of low rank. The error
approximation is expressed in terms of singular values of the Hankel matrix. In this sense our res
similar to AAK theory of infinite-dimensional Hankel operators, see [1–3] and a more recent expo
in [25].

We need some definitions.

• A c-eigenpolynomialof H is the polynomialPu(z) = ∑N
k=0 ukz

k, whereuk are the entries of th
c-eigenvectoru.

• For any c-eigenvectoru of a (N + 1)-dimensional Hankel matrix consider the rational function

Ru(z) = Pū(z
−1)

Pu(z)
,

which has unit modulus on the unit circle. For any integerL, L > 2N, we define the auxiliary
sequencẽd = (d̃0, . . . , d̃L−1) by evaluatingRu on a uniform grid on the unit circle. We set

d̃k = lim
z→αk

Ru(z) for 0� k < L, (17)

whereα = e
2πi
L . The periodic sequenced(L) of entries

d
(L)
k = 1

L

L−1∑
l=0

d̃lα
lk for all k � 0, (18)

describes the error in our constructions.

We prove
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Theorem 2. Let {σ,u} be any c-eigenpair of the(N + 1)-dimensional Hankel matrixH defined by the
complex-valued vectorh = (h0, . . . , h2N). Assume that the c-eigenpolynomialPu hasN distinct roots
{γ1,...,γN } and chooseL > 2N . Then, there exists a unique vector(w1, . . . ,wN) such that

hk =
N∑

n=1

wnγ
k
n + σd

(L)
k for all k, 0� k � 2N, (19)

whered
(L)
k is the sequence of unitl2 norm inC

L defined in(18).

A similar theorem can be formulated in terms of Hankel matrices. Let us write the approxim
sequence as

ak =
N∑

n=1

wnγ
k
n , 0 � k � 2N (20)

and denote as‖ · ‖ the matrix 2-norm.

Theorem 3. With the assumptions of Theorem2, let Hd and Ha be the Hankel matrices defined by t
vectord = (d

(L)

0 , . . . , d
(L)

2N ) in (18)and the vectora = (a0, . . . , a2N) in (20). Then

(1) The Hankel matrixH defined by the vectorh satisfies

H = Ha + σHd. (21)

(2) The Hankel matrixHd has unitary2-norm,

‖Hd‖ = 1. (22)

(3) The relative error of approximating the Hankel matrixH by the Hankel matrixHa is

‖H − Ha‖
‖H‖ = σ

σ0
,

whereσ0 is the largest singular value ofH.

Remark 4. Theorem 2 yields a different representation for eachL > 2N even thoughγn andσ remain the
same. That is, for the same set of nodes we have different choices for the weights. The theorem
that we can obtain the weightsw = (w1, . . . ,wN) as the unique solution of the Vandermonde system

hk − σd
(L)
k =

N∑
n=1

wnγ
k
n for 0� k < N. (23)

Since the last equation is also valid forN � k � 2N, it follows that the least squares solution(ρ1, . . . , ρN)

to the overdetermined problem

hk =
N∑

n=1

ρnγ
k
n for 0� k � 2N, (24)

has error withl2-norm less thanσ .
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Remark 5. The assumption that the c-eigenpolynomial ofu hasN distinct roots{γ1, . . . , γN } can be
relaxed. As explained in Section 2.3, we ask for distinct roots to obtain a sum of exponentia
constant coefficients. Nevertheless, zero could be a multiple root and the representation rema
except for the first termh0. Similarly, the c-eigenpolynomial may have less thanN roots, yielding a
shorter sum in (19).

Remark 6. Theorems 2 and 3 may be viewed as a finite-dimensional analogue of AAK theory for in
dimensional Hankel operators [1–3]. Note that we prove these theorems without any restrictions
Hankel matrices. However, a practical use of the results requires fast decay of their singular
In this paper we do not attempt to characterize conditions leading to this property but rather e
some applications of these representations. In this regard we note that in potential signal pro
applications no singular value may be very small, a fact that indicates the level of noise in the sig

Proof of Theorem 2. We will show that the sequencehk in (19) is the explicit solution of a nonhomo
geneous linear recurrence of lengthN + 1. Such a solution can be expressed as the sum of a soluti
the homogeneous recurrence (the exponential sum) and a particular solution (the sequenceσd

(L)
k ).

We extend the definition of the c-eigenvectoru to a periodic sequence of periodL, where we setuk = 0
for N < k < L, and use this extended sequence to formulate the following problem. Find a sequexk

that is the unique solution of

N∑
n=0

xk+nun = σ ūk for k � 0, (25)

satisfyingxk = hk for 0 � k � N − 1. Such a sequencexk solves a linear recurrence equation w
constant coefficients andN initial conditions. Since we are assuming thatPu(z) hasN distinct roots, we
haveuN �= 0 and thus (25) is equivalent to

xN+k = −
N−1∑
n=0

xk+n

un

uN

+ σ
ūk

uN

for k � 0,

wherex0, . . . , xN−1 are given. Ifx(p)

k is a particular solution of (25), any other solution can be written

xk =
N∑

n=1

wnγ
k
n + x

(p)

k ,

where thewn are uniquely determined by the initial values. In fact, they are the solution of the s
Vandermonde system

N∑
n=1

wnγ
k
n = hk − x

(p)

k for 0� k � N − 1.

To prove the theorem, we only need to show thatσd
(L)
k , for d

(L)
k defined in (18), is a particular solutio

of (25), or because of the periodicity ofu andd(L), show that

N∑
d

(L)
k+nun = ūk for 0� k � L − 1. (26)
n=0
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Using (18) we expand the left-hand side of (26)

N∑
n=0

d
(L)
k+nun = 1

L

L−1∑
l=0

d̃lα
kl

N∑
n=0

unα
nl = 1

L

L−1∑
l=0

d̃lPu
(
αl

)
αkl,

and, due to (17), the last term equals

1

L

L−1∑
l=0

Pū
(
α−l

)
αkl = ūk.

Finally, since|d̃k| = 1 for all k, thel2 norm ofd(L) equals 1. �
Next, we prove Theorem 3.

Proof. Part (1) is a direct consequence of (19), while part (3) follows from the first two. For par
(26) implies

Hdu = ū,

and with the notation‖ · ‖ for both the matrix 2-norm and the vectorl2-norm, we derive‖Hd‖ �
‖Hdu‖
‖u‖ = 1; thus, the norm is at least one. To see that it is at most one, letv ∈ C

N+1 and use (13) and
(18) to write for 0� k � N,

(Hdv)k = 1√
L

L−1∑
l=0

(
d̃lPv(α

l)√
L

)
αkl.

The right-hand side of the last equation is well defined for 0� k � L − 1, and corresponds to the DF

of the vectord̃lPv(α
l)√

L
. Since the DFT is unitary and|d̃l| = 1, we obtain

‖Hdv‖2 �
∥∥∥∥ d̃lPv(α

l)√
L

∥∥∥∥
2

= ‖v‖2.

The last inequality holds for any vectorv, implying that‖Hd‖ � 1. �
3.1. Number of nodes and decay of the singular values

Although Theorem 2 holds for any singular valueσ , we plan to use (20) as an approximation of
given sequencehk with absolute error at mostσ . For this reason we are interested only in small sing
values. Moreover, we discard many terms in the exponential sum (20) because we have obse
most of them have weights with values belowσ . We have already encountered this situation in [1
where the number of terms in the approximation is controlled by the index of the singular value
label the singular values in decreasing order,

σ0 � σ1 � · · · � σN,

and choose the indexM,M � N , in such a way thatσM is close to the accuracy sought, we have obse
that onlyM weights in (20) are larger thanσM . In Fig. 3 we display the locations of all the roots of t
c-eigenpolynomial corresponding toσ ∼ 10−10 using our previous example with the Bessel funct
28
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Fig. 3. Locations of all roots of the c-eigenpolynomial corresponding to the singular valueσ28 in the approximation ofJ0 in
[0,100π ]. In practice, we only use the 28 roots inside the unit disk.

J0(x) in the interval[0,100π ]. The 28 significant weights (see Fig. 2) are associated with the n
inside the unit disk. We note that the nodes corresponding to the discarded terms are located ou
very close to the unit circle. The error of the 28-terms approximation is displayed in Fig. 1.

By keeping only the terms with significant weights, the singular value indexM provides aM-term
approximation of the sequencehk with error of the order ofσM . This behavior matches that of indic
of the singular values in AAK theory, where theM th singular value of the Hankel operator equals
distance from that operator to the set of Hankel operators of rank at mostM .

Currently we do not have a characterization of the conditions under which finite Hankel matrice
satisfy the results of the infinite theory. We only note that assuming fast decay of the singular
and thatN − M terms have small weights in (19), the approximationbk = ∑M

m=1 wmγ k
m has the optima

number of terms. Indeed, letHb be the corresponding Hankel matrix forb. SinceHb has rankM , we
have

σM � ‖H − Hb‖ < σM + δ (27)

for someδ > 0. Under the assumptions ofN − M small weights and of fast decay of the singular valu
it is reasonable to expectδ small enough so thatσM + δ � σM−1, therefore preventing an approximati
with a shorter sum.

The practical value of our approximation depends then on the fast decay of the singular value
Hankel matrixHh. Fortunately, in problems of interest, we have observed such decay. In fact, in
problems the decay is exponential and we obtain approximations where the number of terms in
only logarithmically with the accuracy. In Fig. 4 we illustrate this property for the Bessel functionJ0(x).

3.2. Computation of weights

In our paper [11] weights are computed via a fast algorithm based on implementation of the re
(19) for nodes on the unit circle. We use the fact that the solution of a Vandermonde system is obta
polynomial evaluation on the Vandermonde nodes. The coefficients of the polynomial are compute
the FFT and the evaluation on the nodes is computed via the unequally spaced FFT (USFFT) (s
[7,12]) because the nodes are on the unit circle. We also showed in [11] that even though Vande
systems can be arbitrarily ill-conditioned, the approximation problem on the unit circle is well pose
to the particular location of the nodes and the specific right-hand sides.
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Fig. 4. Example of exponential decay of singular values (we display log of singular values as a function of their index
approximation ofJ0(100πx) in [0,1].

In this paper nodes are typically inside the unit disk, thus preventing the direct use of the U
Nevertheless, since the number of significant terms is small, to solve the Vandermonde system (
polynomial evaluation or the least squares formulation (24) are efficient options. We choose the pa
approach depending on the location of nodes or additional information about the problem.

3.3. Trigonometric moments and Toeplitz matrices

In [11] we have shown how to approximate nonperiodic bandlimited functions as linear combin
of exponentials with imaginary exponents, that is, with nodes on the unit circle. In that paper, sam
the function to be approximated (which can be thought as trigonometric moments of a positive m
are used to build a Hermitian Toeplitz matrix whose eigenpolynomials happen to have roots on
circle. Even though most of the results in [11] are based on the particular properties of band
functions, and as such, cannot be directly obtained by the general method of this paper, som
in [11] are immediate consequences of the general approach presented here. As an example,
T a Toeplitz Hermitian matrix and{σ,u} an eigenpair ofT; we assume that the entries ofu satisfy
uN−k = ūk , 0 � k � N and that the eigenpolynomialPu has distinct roots. LetJ be the matrix with
ones in the antidiagonal. ThenH = JT is a Hankel matrix and{σ,u} is a c-eigenpair ofH; since the
eigenpolynomial ofu satisfiesPū(z

−1) = z−NPu(z), the entries of the sequenced̃ in (17) satisfy

d̃k = e− 2πkiN
L

and so the error sequenced
(L)
k in (19) has zero entries except atk = N , which coincides with our previou

description of the error for a Toeplitz Hermitian matrix [11, Theorem 4.1 and Corollary 4.1].

4. A new algorithm for approximations by sum of exponentials

We now describe how to compute the approximation described in (7). Given the target accuracε and
2N + 1 samples
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)
, 0 � k � 2N (28)

of the function to be approximated in the interval[0,1], our goal is to find an optimal (minimal) numb
of nodesγm and weightswm such that∣∣∣∣∣hk −

M∑
m=1

wmγ k
m

∣∣∣∣∣ < ε ∀k,0� k � 2N. (29)

If the functionf (x) is properly oversampled, we also obtain the continuous approximation (7) off (x)

over the interval[0, b].
Let us describe the steps of the algorithm to obtain an approximation of the functionf with accuracyε.

(1) Sample the functionf as in (28) by choosing appropriateN to achieve the necessary oversampli
Using those samples define the correspondingN + 1× N + 1 Hankel matrixHkl = hk+l .

(2) Find a c-eigenpair{σ,u}, Hu = σ ū, with the c-eigenvalueσ close to the target accuracyε. We use
an algorithm that recovers the c-eigenpairs starting from the largest c-eigenvalue up to the
seek. Because we are interested in functions which exhibit fast decay of their c-eigenvalue
a small number of c-eigenpairs are computed. We label the computed c-eigenvalues in dec
orderσ0 � σ1 � · · · � σM , whereM � N .

(3) If the c-eigenvectoru has entries(u0, . . . , uN), we findM roots of the c-eigenpolynomial
∑N

k=0 ukz
k

in the “significant” region. We denote these rootsγ1, . . . , γM and refer to them asc-eigenroots. In
finding c-eigenroots corresponding to the significant weights, we typically use a priori inform
on their location, such as being inside the unit disk, being close to the unit circle, located on a
etc.

(3) We obtain theM weightswm by solving the Vandermonde system (23) or the overdetermined
dermonde system (24).

Remark 7. If the approximation problem does not involve an explicit function but the goal is to o
the approximation (29) of a given sequencehk, the same algorithm is used but without the first step.

5. Examples

Let us describe how to apply the algorithm in Section 4 to obtain the approximation (3) of the
function J0(bx) in [0,1], whereb = 100π and ε = 10−10. The function and the approximation err
are displayed in Fig. 1. Our choice ofN = 214 includes 16 extra samples to improve the accu
at the edges of the interval. We compute the c-eigenpairs using the power method and the f
c-eigenvectors are orthogonal; see (11) and recall that c-eigenvalues coincide with the singula
of H. In this example, starting withσ0 = 8.34, we compute a total of 29 singular values until we re
the accuracyε. In fact we obtainσ27 = 2.295× 10−10 andσ28 = 7.527× 10−11; the decay of the firs
110 singular values is captured in Fig. 4. To obtain the nodes, we now need to find 28 particula
of the c-eigenpolynomial. In order to show that these roots belong to a well-defined region, we a
compute all 214 roots and display them in Fig. 3. Two distinctive regions can be seen. The first re
outside but very close to the unit circle and the second is inside the unit disk, with 28 roots accum
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Fig. 5. Nodes corresponding to singular values in the range[4.7× 10−15,6.7× 10−9] for the approximation ofJ0(100πx).

at ei and e−i . It is instructive to observe how roots in the first region stay some distance away
these accumulation points. As we have mentioned in the Introduction, this accumulation can be e
from the asymptotics of the Bessel function. More important from a computational perspective
the nodes slowly change their locations as we modify either the approximation interval (parametr
the constantb) or the accuracyε (parametrized by the singular values). In this way, computation of r
can be performed efficiently by, if necessary, obtaining first the nodes for a smallb and using them a
starting points in Newton’s method. To illustrate this property, in Fig. 5 we display the nodes for a
of singular values varying from 6.7× 10−9 to 4.7× 10−15.

As we noted for Fig. 2, the locations of nodes and weights suggest the existence of some
representation ofJ0 on a contour in the complex plane where the integrand is least oscillatory; integ
over such contour yields an efficient discretization that would correspond to the output of our algo

The final approximation (6) exhibits an interesting property that we also have observed for othe
latory functions. Suppose that we would like to obtain a decreasing function (an envelope) that t
each of the local maxima of the Bessel function and, similarly, a increasing function going throug
of the local minima. The approximation (6) provides such functions in a natural way. Estimatin
absolute value of an exponential sum, we define its positive envelope env(x) as∣∣∣∣∣

M∑
m=1

wmetmx

∣∣∣∣∣ �
M∑

m=1

|wm|eRe(tm)x = env(x),

and itsnegative envelopeas−env(x). In Fig. 6 we display the Bessel functionJ0(100πx) together with
its envelopes. We note that we are not aware of any other simple method to obtain such envelope

5.1. The Dirichlet kernel

Another representative example is the periodic Dirichlet kernel,

Dn(x) = 1

N

n∑
k=−n

e2π ikx = sinNπx

N sinπx
, (30)

whereN = 2n + 1. We would like to construct an approximation (6) ofDn on the interval[0,1]. Since
Dn is an even function about 1/2 and it approaches 1 nearx = 1 (see Fig. 8), decaying exponentia
are not sufficient to capture this behavior. Therefore, the approximation must have nodes both ins
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Fig. 6. The Bessel functionJ0(100πx) together with its envelope functions.

outside the unit circle. In this case the Vandermonde matrix for computing the weights is extrem
conditioned. As a way to avoid this difficulty, we reduce the problem to that of approximation
auxiliary function with a proper decay.

Using the partial fraction expansion of the cosecant∑
k∈Z

(−1)k

x + k
= π

sin(πx)
,

we have

Dn(x) = sin(Nπx)

Nπ

∑
k∈Z

(−1)k

x + k
=

∑
k∈Z

sin(Nπ(x + k))

Nπ(x + k)
.

Motivated by this identity, we introduce the function

Gn(x) = sin(Nπx)

Nπ

∑
k�0

(−1)k

x + k
=

∑
k�0

sin(Nπ(x + k))

Nπ(x + k)
,

and observe that

Dn(x) = Gn(x) + Gn(1− x). (31)

We then solve the approximation problem forGn in [0,1],∣∣∣∣∣Gn(x) −
M∑

m=1

ρmetmx

∣∣∣∣∣ � ε, (32)

where weights and nodes are complex and|etm | < 1. In Fig. 7 we display the location of the nod
and weights wheren = 50 andε = 10−8. The singular values of the corresponding Hankel matrix
decaying exponentially, similar to the decay in Fig. 4. The number of terms grows logarithmicall
the accuracy and withn, M = O(logn) +O(logε).

Using (31) and (32), we obtain the approximation for the Dirichlet kernel,∣∣∣∣∣Dn(x) −
M∑

ρmetmx −
M∑

ρmetm(1−x)

∣∣∣∣∣ � 2ε. (33)

m=1 m=1
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Fig. 7. The 22 nodes (left) and weights (right) for the approximation of the auxiliary functionG50 in [0,1].

We note that|e−tm | > 1 and, thus, the final approximation ofDn has nodes both inside and outside of
unit disk. In Fig. 8 we display the Dirichlet kernelD50 and the error of the approximation with 44 term
given by this construction. ForD200 we need 50 terms.

5.2. The kernelslog sin2(πx) andcot(πx)

Let us consider two examples of important kernels in harmonic analysis. The function log sin2(πx)

is the kernel of the Neumann to Dirichlet map on the unit circle for functions harmonic outside th
disk whereas cot(πx) is the Hilbert kernel for functions on the unit circle. We note that the Hilbert ke
represents a singular operator.

We first find identities similar to (31). Using the reflection formula for the gamma function,

�(x)�(1− x) = π

sin(πx)
, (34)

we obtain

log�(x) + log�(1− x) = logπ − 1

2
log sin2 πx. (35)

For the cotangent we use the reflection formula for the digamma function,ψ(x) = (ln�(x))′ = �′(x)

�(x)
,

ψ(x) − ψ(1− x) = −π cotπx. (36)

We now solve the approximation problems on[δ,1),∣∣∣∣∣log�(x) −
M∑

m=1

ρ0
me−t0

mx

∣∣∣∣∣ � ε,

and ∣∣∣∣∣−ψ(x) −
M∑

m=1

ρ1
me−t1

mx

∣∣∣∣∣ � ε,

wheret0
m andt1

m are real andδ > 0 is a small number. We then obtain the final approximations as∣∣∣∣∣1

2
log sin2(πx) − logπ +

M∑
ρ0

me−t0
mx +

M∑
ρ0

me−t0
m(1−x)

∣∣∣∣∣ � 2ε, (37)

m=1 m=1
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Fig. 8. Dirichlet kernelD50 (top) and the error (in logarithmic scale) of its 44-term approximation via (33).

and ∣∣∣∣∣π cotπx −
M∑

m=1

ρ1
me−t1

mx +
M∑

m=1

ρ1
me−t1

m(1−x)

∣∣∣∣∣ � 2ε. (38)

5.3. Fast evaluation of one-dimensional kernels

Let us consider computing

g(x) =
1∫
K(x − y)f (y)dy, (39)
0
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g(xn) =
L∑

l=1

K(xn − yl)f (yl), (40)

where we assume that the discretization of the integral (39) has already been performed by som
priate quadrature and we include the quadrature weights inf (yl).

The direct computation of (40) requiresN · L operations. If we first obtain anM-term exponentia
approximation of the kernel, an elegant algorithm [28] computes the sum with accuracyε in O(2M ·
(L + N)) operations, whereM is the number of terms in∣∣∣∣∣K(s) −

M∑
m=1

ρmetms

∣∣∣∣∣ � ε for s ∈ [0,1] (41)

assuming that the kernelK is an even function,K(−s) = K(s). Alternatively, we also need an exp
nential approximation of the kernel on the interval[−1,0] and, in such case, the number of operati
becomesO((M+ + M−) · (L + N)), whereM+ andM− are the number of terms for the approximati
on [0,1] and[−1,0].

For a simplified version of the algorithm, split the sum (40) as

g(xn) =
∑

0�yl�xn

K(xn − yl)f (yl) +
∑

xn�yl�1

K(xn − yl)f (yl), (42)

and compute each term separately. Using (41), we approximate the first term in (42) as

M∑
m=1

wmqn,m, whereqn,m =
∑

0�yl�xn

etm(xn−yl)f (yl)

and similarly for the second term in the sum.
Following [28], we observe that

qn+1,m = etm(xn+1−xn)
∑

0�yl�xn

etm(xn−yl)f (yl) +
∑

xn<yl�xn+1

etm(xn+1−yl)f (yl),

and, thus,qn,m is computed via the recursion

qn+1,m = etm(xn+1−xn)qn,m +
∑

xn<yl�xn+1

etm(xn+1−yl)f (yl).

As long as Re(tm) � 0, we have a stable recursion which takesO(N + L) operations to evaluate. Sinc
we need to computeqn,m for m = 1, . . . ,M for both terms in (42), the resulting computational cos
O(2M · (L + N)).

If the kernel has a singularity atx = y, the splitting in (42) should be done as to maintain an approp
distance from the singularity. This is, in fact, how the algorithm was originally designed in [28
that paper the approximation for the nonsingular Dirichlet kernel (30) is constructed by approxim
1/sin(πx), an approach that introduces an artificial singularity. Algorithmically such singularity fo
an additional term in (42) for the direct evaluation of the kernel near the singularity; this is avoided
use (41) to approximate the Dirichlet kernel.
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6. Reduction of number of terms

The algorithm in Section 4 allow us to find approximations for a large variety of functions bu
not well suited to deal with the extremely large ranges needed in some applications. Also, we
like to have a mechanism to approximate functions that can be expressed in terms of other func
which we already have exponential sum approximations. Clearly, the nodes and weights for the
product of two known approximations are readily available, but their number is suboptimal. Simila
accurate but suboptimal expansion may be available, for example as the result of using some qu
rule or simply applying the discrete Fourier transform of the data to be approximated. We now
how to take advantage of accurate but suboptimal approximations using a general approach on
reduce (optimize) the number of terms of a given exponential sum. It consists of applying the alg
of Section 4 to a function which is already a linear combination of exponentials on the interval[0,1] and
taking advantage of some simplifications which hold for this particular class of functions. We ob
fast algorithm for the following problem. Given

f (x) =
M0∑

m=1

bme−τmx, (43)

andε > 0, let us find a function (of the same form),

g(x) =
M∑

m=1

wme−tmx, (44)

with M < M0 and such that∣∣f (x) − g(x)
∣∣ � ε for x ∈ [0,1]. (45)

Without loss of generality, we assume distinctτm and nonzerobm in (43). Following the algorithm in
Section 4, for some appropriateN  M0, we construct the Hankel matrixH = hn+n′ , n,n′ = 0, . . . ,N ,
where

hn = f

(
n

2N

)
=

M0∑
m=1

bme− τm
2N

n. (46)

Denotingrm = e− τm
2N , m = 1, . . . ,M0, we have

hn =
M0∑

m=1

bmrn
m, (47)

and, therefore, a factorization of the Hankel matrix

H = VBVt, (48)

whereV is theN + 1× M0 Vandermonde matrix

Vkm = rk
m (49)

andB is the diagonal matrix with entries(b1, . . . , bM0). We note that the matrixH has a large nullspace o
dimensionN +1−M0. In fact, the nullspace consists of vectors with coordinates given by the coeffi
of the polynomials

∏M0 (z − r )p(z), wherep(z) is any polynomial of degree at mostN − M .
m=1 m 0
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By excluding the nullspace ofH, which corresponds to zero c-eigenvalues, we now show ho
reduce a c-eigenproblem forH to a c-eigenproblem for an auxiliary matrix of sizeM0 × M0. We also
show how to use this approach to effectively compute the nodes and weights in the approximatiohn.

Considerσ > 0 andu = (u0, . . . , uN) �= 0, a solution of the c-eigenproblem ofH,
N∑

n′=0

hn+n′un′ = σ ūn, n = 0, . . . ,N. (50)

Equation (47) allows us to rewrite (50) as
M0∑

m=1

bmrn
mPu(rm) = σ ūn, (51)

wherePu is the c-eigenpolynomial ofu. Multiplying (51) byzn and summing over the indexn, we obtain
M0∑

m=1

bm

1− (rmz)N+1

1− rmz
Pu(rm) = σPū(z). (52)

Even though the c-eigenpolynomial has degreeN , it has a much shorter, rational-like representat
suitable to compute its zeros. This representation depends on its values on the given locationsrm. We
now obtain those values as solutions of an auxiliary c-eigenproblem.

Let us write the polar decomposition of the coefficientsbm,

bm = ρmeiθm with ρm > 0

and denote their square roots ascm = √
ρmeiθm/2.

Substitutingz = r̄k in (52) and multiplying bȳck we obtain
M0∑

m=1

c̄k

1− (rmr̄k)
N+1

1− rmr̄k

c2
mPu(rm) = σckPu(rk). (53)

Introducing theM0 × M0 matrix A,

Akm = c̄k

1− (rmr̄k)
N+1

1− rmr̄k

cm, (54)

and defining the vectorv of coordinates

vk = ckPu(rk),

we rewrite (53) to obtain

Av = σ v̄. (55)

Sinceu �= 0, (52) guarantees that not allPu(rm) are zero and thusv �= 0. We conclude that if{σ,u}
is a c-eigenpair ofH andσ �= 0, then{σ,v} is a c-eigenpair ofA. In Proposition 8 we show that th
converse result is also true. Thus, instead of solving (50) for a large size matrix, we solve the
size c-eigenvalue problem (55) for an appropriateσ = σM close to the target accuracyε. We use (52) to
describe the c-eigenpolynomialPu of the original matrixH as

Pū(z) = 1

σ

M0∑
cm

1− (rmz)N+1

1− r z
vm. (56)
m=1 m
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Using (56) we find theM zeros in the region of interest,Pu(γm) = 0, 1� m � M . The final exponent
tm for the reduced approximation (44) are thentm = −2N logγm. Finally, we solve forwm, 1� m � M

using the overdetermined system,

hn =
M∑

m=1

wmγ n
m, n = 0, . . . ,2N. (57)

The normal equations of this system are,
2N∑
n=0

γ̄s
nhn =

M∑
m=1

wm

2N∑
n=0

(γmγ̄s)
n =

M∑
m=1

wm

1− (γmγ̄s)
2N+1

1− γmγ̄s

. (58)

Substituting (47) into (58) we obtainwm,1� m � M as the unique solution of
M∑

m=1

1− (γmγ̄s)
2N+1

1− γmγ̄s

wm =
M0∑

m=1

1− (rmγ̄s)
2N+1

1− rmγ̄s

bm.

We note that the auxiliaryM0 × M0 matrix A in (55) is positive definite. In fact, (54) is equivalent t

A = S∗S for S = VC, (59)

whereC is the diagonal matrix with entries(c1, . . . , cM0) andV is the rectangular Vandermonde mat
in (49). Thus, for any nonzero vectorx, the inner product〈Ax,x〉 = ‖VCx‖2 is always positive becaus
V has zero nullspace. Therefore, by [17, Theorem 4.6.11, p. 248], there exist a nonsingular mM
and a diagonal matrixD such thatA = M̄DM−1. The c-eigenvalues ofA are the eigenvalues of̄AA (see
Proposition 1). Note that forA with complex entries, theM0 c-eigenvalues ofA (which are real and
positive) do not need to coincide with their singular values.

Proposition 8. Let H be aN + 1× N + 1 Hankel matrix defined by the vector(47)andA theM0 × M0

positive definite matrix in(54). Consider any c-eigenpair ofA,

Av = σ v̄,

and define the vectoru of entries

uk = 1

σ

M0∑
m=1

cmvmrk
m, (60)

wherevm are the entries of the c-eigenvectorv. Then

(1) The valueσ and the vectoru are a c-eigenpair ofH, Hu = σ ū.
(2) The polynomialPū, with coefficients that are the entries ofū, satisfies the identity(56).
(3) The c-eigenpolynomialPu at any of the original nodesrm has values

Pu(rm) = vm

cm

for 1 � m � M0.

Proof. With S defined as in (59), we haveH = SSt , A = S∗S, andu Sv
σ

. Then,

Hu = SS∗Sv = SAv = Sv = σ ū.

σ σ
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For the second part we mimic the steps used to obtain (52) and we also use (60). The last part
from (56) withz = r̄l ,

Pu(rl) = (Av)l

σ c̄l

= v̄l

c̄l

. �

7. Approximation of power functions and separated representations

Let us discuss how to approximate the power functionsr−α, α > 0, with a linear combination o
Gaussians,∣∣∣∣∣r−α −

M∑
m=1

wme−pmr2

∣∣∣∣∣ � r−αε (61)

for r ∈ [δ,1]. This approximation provides an example of an analytic construction of a separate
resentation as introduced in [9] and discussed in [10,23]. It also has ubiquitous applications a
already been used in the construction of a multiresolution separated representation for the Poisso
[8,15,16] and for the projector on the divergence free functions [8]. Settingα = 1 in (61), we obtain the
approximation of the Poisson kernel inR

3 as a sum of separable functions,∣∣∣∣∣ 1

‖x‖ −
M∑

m=1

wme−pm‖x‖2

∣∣∣∣∣ � ε

‖x‖ (62)

for 0< δ � ‖x‖ � 1. It turns out that in some important applications, it is essential to obtain this ap
imation for smallδ. By replacingr by r1/2 in (61), the approximation becomes that in Section 4,∣∣∣∣∣r−α/2 −

M∑
m=1

wme−pmr

∣∣∣∣∣ � r−α/2ε (63)

for δ2 � r � 1. Unfortunately, the algorithm of Section 4 is ill-suited to obtain (63) due to the l
number of samples necessary to cover the range of interest. On the other hand, if we use the r
procedure of Section 6, we only need an accurate, initial approximation to then minimize the n
of nodes without experiencing the size constraints. Such initial approximation for (61) has been
[8,15,16] and is based upon the discretization of the integral

r−α = 2

�(α/2)

∞∫
−∞

e−r2e2s+αs ds. (64)

In this paper we analytically estimate the number of terms in (61) as a function of the accuracy
range.

Since the integrand (64) has either exponential or super-exponential decay at the integration lim
a given accuracy and range 0< δ � r � 1, we selecta < 0 andb > 0, the end points of the finite interv
of integration, so that the discarded integrals are small and, ata andb both the integrand and a sufficie
number of its derivatives are smaller than the desired accuracy. We also selectK , the number of points
in the quadrature, so that we can accurately discretize (64) by the trapezoidal rule, namely, by
p = e2sk andw = 2 eαskh, wheres = a + kh, k = 0, . . . ,K andh = b−a .
k k �( α

2 ) k K
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n pro-
e error
ber of
Fig. 9. Relative error (in logarithmic scale) of approximating the Poisson kernel in the range 10−9 � ‖x‖ � 1 as a linear
combination of 89 Gaussians.

Such explicit discretization is readily available but it is suboptimal. We then use the reductio
cedure of Section 6 to minimize the number of terms and, if necessary, adjust the type of relativ
in the estimate. As an example, in Fig. 9 we display the error in (62) after optimization. The num
terms is onlyM = 89 providing an uniform error in the whole range.

In order to estimate the number of terms in the approximation (61) ofr−α we demonstrate

Theorem 9. For anyα > 0, 0 < δ � 1, and0 < ε � min
{

1
2,

8
α

}
, there exist positive numberspm andwm

such that∣∣∣∣∣r−α −
M∑

m=1

wme−pmr2

∣∣∣∣∣ � r−αε for all δ � r � 1 (65)

with

M = logε−1
[
c0 + c1 logε−1 + c2 logδ−1

]
, (66)

where ck are constants that only depend onα. For fixed powerα and accuracyε, we haveM =
O(logδ−1).

The proof (see Appendix A) is based on the fact that in (64) the integrand function

g (s) = e−r2e2s+αs (67)
α,r
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satisfy

Dngα,r (s) = pα
n

(−r2e2s
)
gα,r (s),

wherepα
n(x) are polynomials of degreen.

Before ending this section, we would like to remark on another application of the reduction alg
to the summation of slowly convergent series. These results will appear separately and here we o
that our approach yields an excellent rational approximation of functions liker−α, α > 0, providing a
numerical tool to obtain best order rational approximations as indicated by Newman [24] (see a
p. 169]).

8. Conclusions

We have introduced a new approach, and associated algorithms, for the approximation of functi
sequences by linear combination of exponentials with complex-valued exponents. Such approxi
obtained for a finite but arbitrary accuracy may be viewed as representations of functions which a
efficient (significantly fewer terms) than the standard Fourier representations. These representat
be used for a variety of purposes. For example, if used to represent kernels of operators, these ap
tions yield fast algorithms for applying these operators to functions. For multi-dimensional operato
have shown how the approximation ofr−α, α > 0 leads to separated representations of Green’s func
(e.g., the Poisson kernel).

We note that we just began developing the theory of such approximations and there are sti
questions to be answered. We have indicated some of these questions but, in this paper, instea
centrating on the theoretical aspects we have chosen to emphasize examples and applications
remarkable approximations.
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Appendix A

We show how to choose the parameters involved in the approximation ofr−β, β > 0 by linear com-
bination of exponentials as well as estimate the number of terms. Theorem 9 follows by subs
β �→ α

2 , r �→ r2, δ �→ δ2 and choosingN = O(logε−1) in the next

Theorem A.1. For anyβ > 0, 0 < δ � 1, and0 < ε � min
{

1
2,

4
β

}
, there exist positive numberspm and

wm such that∣∣∣∣∣r−β −
M∑

wme−pmr

∣∣∣∣∣ � r−βε for all δ � r � 1 (A.1)

m=1
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,

te the
with

M � cβ(2N + 1)

π

[
β−1 log 4(βε)−1 + log 2qδ−1 + log

(
logq(δε)−1

)]
, (A.2)

where

cβ =
{

1, 0 < β < 1,

β, 1 � β,
(A.3)

N is any positive integer chosen to satisfy

2N !
(2N + 1)2N

� ε

4
, (A.4)

andq = 2N − 1+ β.
For fixed powerβ and accuracyε, we thus haveM = O(logδ−1).

The approximation is based on the discretization of the integral representation of the functionr−β for
Re(β) > 0 andr > 0,

�(β)r−β =
∞∫

−∞
fβ,r(t)dt, (A.5)

where

fβ,r (t) = e−ret+βt .

The integral in (A.5) follows by substitutingx = ret in the standard definition of the Gamma function

�(β) =
∞∫

0

e−xxβ−1 dx.

Note that (64) is obtained substitutingβ �→ α
2 andr �→ r2 in (A.5).

Using the Euler–Maclaurin formula (see [6] or [14, pp. 469–475] for example), we approxima
integral of a smooth functionf (t) by the trapezoidal rule,

T K
h = h

(
K−1∑
k=1

f (a + kh) + f (a) + f (b)

2

)
,

with the error given by

b∫
a

f (t)dt − T K
h = h2N+1

K∫
0

B2N(t − [t])
2N ! D2Nf (a + th)dt

−
N∑ b2n

2n!h
2n

(
D2n−1f (b) − D2n−1f (a)

)
, (A.6)
n=1
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,
14,

te
whereh = b−a
K

is the step size,[t] is the integer part of the real numbert , bn are the Bernoulli numbers
andBn(t) the Bernoulli polynomials. For allx ∈ [0,1] andn � 1 we have the inequalities (see, e.g., [
p. 474]),

|B2n(x)|
2n! � |b2n|

2n! = 2

(2π)2n

∑
k�1

k−2n � 4(2π)−2n.

We then estimate the error in (A.6) as∣∣∣∣∣
b∫

a

f (t)dt − T K
h

∣∣∣∣∣ � 4

(
h

2π

)2N
b∫

a

∣∣D2Nf (t)
∣∣dt + 4

N∑
n=1

(
h

2π

)2n(∣∣D2n−1f (b)
∣∣ + ∣∣D2n−1f (a)

∣∣).
(A.7)

Using (A.7) and (A.5), we obtain∣∣�(β)r−β − T K
h

∣∣ � Ia + Ib + I + Sa + Sb, (A.8)

where

Ia =
a∫

−∞
fβ,r(t)dt, Ib =

∞∫
b

fβ,r (t)dt,

St = 4
N∑

n=1

(
h

2π

)2n∣∣D2n−1fβ,r(t)
∣∣, I = 4

(
h

2π

)2N
∞∫

−∞

∣∣D2Nfβ,r(t)
∣∣dt.

We will derive conditions on the parametersa, b, K , andN so that the first four terms in the estima
(A.8) are less thanε6 and the last term is less than�(β)r−β ε

6 for all r , δ � r � 1. Since forβ > 0 and
0< r � 1, r−β�(β) � �(β) � 0.886. . . > 4/5, we obtain∣∣�(β)r−β − T K

h

∣∣ � 4
ε

6
+ �(β)r−β ε

6
< �(β)r−βε,

and (A.1). To obtain these estimates, we use some auxiliary results collected in

Lemma A.2. The derivatives of the functionfβ,r are

Dnfβ,r (t) = Fβ
n

(−ret
)
fβ,r(t), (A.9)

whereF
β
n (x) are polynomials of degreen, satisfying the recurrence

F
β

n+1(x) = xFβ+1
n (x) + βFβ

n (x), (A.10)

with F
β

0 (x) = 1. These polynomials can be written as

Fβ
n (x) =

n∑
k=0

An
k(β)xk, (A.11)

with nonnegative coefficients

An
k(β) =

n∑(
n

j

)
S

j

k βn−j , (A.12)

j=k
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l

6,
whereS
j

k are the Stirling numbers of the second kind,S
j

0 = δj0 andS
j

k = 0 if k > j . These combinatoria
numbers satisfy[14, Eq. 6.15 and 7.47],

n∑
j=k

(
n

j

)
S

j

k = Sn+1
k+1, (A.13)

∞∑
n=k

Sn
k zk = 1∏k

l=1(z
−1 − l)

for |z| < 1

k
. (A.14)

Properties of the polynomialsFβ
n can be easily derived from the relationships

Fβ
n (x) = a(β)

n (−x) =
n∑

j=0

(
n

j

)
βn−jφj (x),

wherea
(β)
n are the actuarial polynomials [26, pp. 123–125] andφj are the exponential polynomials [2

pp. 63–69]. Let us now establish conditions, to bound each of the five terms in (A.8).

A.1. Condition forIa < ε

We have
∫ a

−∞ e−ret

eβt dt �
∫ a

−∞ eβt dt = eβa

β
< ε, if the left end of the interval of integration satisfies

a <
ln(εβ)

β
. (A.15)

A.2. Condition forIb < ε

If we denoteL = [β], thenIb = ∫ ∞
b

e−ret

eβt dt �
∫ ∞
b

e−δet

e(L+1)t dt = δ−L−1
∫ ∞
δeb e−ssL ds. Integrating

by partsL times, we have

δ−L−1

∞∫
δeb

e−ssL ds = δ−L−1EL

(
δeb

)
e−δeb

,

whereEL(x) = ∑L
l=0

xl

l! . Note thatEL(x) � exL for x � 1. Assuming

δeb � e, (A.16)

we obtainIb < ε provided the right end of the interval of integration satisfies

e([β]+1)be−δeb

< ε. (A.17)

A.3. Estimates forSt < ε, for t = a and t = b

Using (A.9) and (A.11), forr � 1, we have

St � 4fβ,r(t)

N∑(
h

2π

)2n 2n−1∑
A2n−1

k (β)rketk � 4eβt−ret
N∑(

h

2π

)2n 2n−1∑
A2n−1

k (β)etk. (A.18)

n=1 k=0 n=1 k=0
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.

Denoting

dh =
N∑

n=1

(
h

2π

)2n 2n−1∑
k=0

A2n−1
k (β),

let us show thatdh � 1/cβ if

c = hcβ

2π
� 1

2N + 1
. (A.19)

Using (A.12) and (A.13), we obtain

dh �
N∑

n=1

(
h

2π

)2n

c2n−1
β

2n−1∑
k=0

2n−1∑
j=k

(
2n − 1

j

)
S

j

k = 1

cβ

N∑
n=1

c2n

2n∑
k=1

S2n
k

= 1

cβ

2N∑
k=1

N∑
n=1

S2n
k c2n � 1

cβ

2N∑
k=1

∞∑
n=k

Sn
k cn.

Since we have assumed (A.19), with (A.14) for all 1� k � 2N , we estimate

2N∑
k=1

∞∑
n=k

Sn
k cn =

2N∑
k=1

1∏k
l=1(c

−1 − l)
�

2N∑
k=1

1∏k
l=1(2N + 1− l)

� 1,

where the last inequality follows by induction onN .
Under the condition (A.19), we consider two cases in (A.18). Ift = a < 0,

Sa � 4eβadh � 4

cβ

eβa

and to obtainSa < ε, we need

a <
1

β
ln

(
εcβ

4

)
.

Sinceβ � cβ , we obtain both the last inequality and (A.15) by requiring

a <
1

β
ln

(
εβ

4

)
, (A.20)

which, due to the assumptions onε, ensures that the left end of the interval of integration is negative
If t > 0 and denotingq = 2N − 1+ β � [β] + 1, we have

St � 4eβt−ret

dh � 4

cβ

eβte−δet

e(2N−1)t = 4

cβ

eqte−δet � 4eqte−δet

,

and thus we obtain both, inequality (A.17) andSb < ε provided that

ln

(
2qδ−1 ln

(
qδ−1

(
ε
)− 1

q
))

< b,

4
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l of

le

n, we
a condition that follows from Lemma A.3 below. Sinceε � 1
2, assumption (A.4) implies thatN � 2 and,

therefore,
(

ε
4

)− 1
q � ε−1. Therefore, we set the following condition for the right end of the interva

integration,

ln
(
2qδ−1 ln

(
q(δε)−1

))
< b, (A.21)

which also implies (A.16).

Lemma A.3. Let p, δ, andε be positive numbers such thatpδ−1ε
− 1

p � e
1
2 and definet0 = ln 2pδ−1 ×

ln(pδ−1ε
− 1

p ). Then the inequality

epte−δet

< ε (A.22)

holds for all t � t0.

Taking the logarithm in both sides of (A.22) we gett − δet

p
< ln ε

p
, and introducing the new variab

x = δet

p
� 1, we obtain

ln
(
pδ−1x

) − x <
ln ε

p
(A.23)

or

c = lnpδ−1ε
− 1

p < x − lnx.

Since 1− x � − lnx for positivex, we have

c < 2c − ln2+ (1− c) � 2c − ln(2c),

and, thus, (A.23) holds forx � 2c sincex − lnx is increasing forx � 1.

A.4. Condition forI and selection of the step sizeh

Let us show by induction onn � 0, that for allβ > 0
∞∫

−∞

∣∣Dnfβ,r(t)
∣∣dt �

∞∫
−∞

∣∣Fβ
n

(−ret
)∣∣fβ,r(t)dt � �(β + n)r−β2n. (A.24)

The casen = 0 follows from (A.5) and, using the recurrence (A.10) and the induction assumptio
have∫ ∣∣Fβ

n+1

(−ret
)∣∣fβ,r (t)dt � r

∫ ∣∣Fβ+1
n

(−ret
)∣∣fβ+1,r (t)dt + β

∫ ∣∣Fβ
n

(−ret
)∣∣fβ,r(t)dt

� r�(β + 1+ n)r−β−12n + β�(β + n)r−β2n

� �(β + n + 1)r−β2n + (β + n)�(β + n)r−β2n.

Observing that

�(β + n) � n!�(β)cn, (A.25)
β
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wherecβ is defined in (A.3) and denotingL = 2N , we estimateI as

I � 4

(
h

2π

)L

�(β + L)r−β2L � 4

(
hcβ

π

)L

L!�(β)r−β � ε�(β)r−β,

provided

hcβ

2π
� 1

2

(
ε

L!4
) 1

L

.

Using (A.4), we satisfy both the last inequality and (A.19) if the step size satisfies

h � 1

cβ

π

2N + 1
. (A.26)

Finally, the sampling rateK = b−a
h

and, therefore, the number of terms in (A.1) can be chosen as to v
(A.2) if we collect the estimates (A.20), (A.21), and (A.26).
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