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Abstract

We introduce a new approach, and associated algorithms, for the efficient approximation of functions and se-
quences by short linear combinations of exponential functions with complex-valued exponents and coefficients.
These approximations are obtained for a finite but arbitrary accuracy and typically have significantly fewer terms
than Fourier representations. We present several examples of these approximations and discuss applications t
fast algorithms. In particular, we show how to obtain a short separated representation (sum of products of one-
dimensional functions) of certain multi-dimensional Green’s functions.
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1. Introduction

We consider the problem of approximating functions on a finite real interval by linear combination of
exponentials with complex-valued exponents and discuss several applications of these approximations.
The approximations we obtain in this paper are already being used for constructing Green'’s functions in
guantum chemistry and fluid dynamics [8,15,16], and we expect further applications in computing lattice
sums, approximating Green’s functions in electromagnetics, and addressing some problems of signal
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processing and data compression. In this paper we prove new theoretical results and develop numerica
algorithms for constructing such approximations. Since our numerical results are far better than our
current proofs indicate, we also point out unresolved issues in this emerging theory.
Since our formulation is somewhat unusual, we first provide two examples. Let us consider the identity
o

1_ / o (1)

X
0

for x > 0. This integral representation readily leads to an approximation of the fun%:t'mma sum
of exponentials. In fact, for any fixed> 0, there exist positive weights and nodes (exponents) of the
generalized Gaussian quadrature such that

M
1 —tm X
- — E wyue "
X

m=1

for all x in a finite interval, O< § < x < 1, and where the number of terms\is= O(logd). Theoretically
the existence of such approximations follows from [19-22]. This particular example has been examined
in [27] with the goal of using (2) for constructing fast algorithms. Specific exponents and weights are
provided there for several intervals and values,o that (2) can be verified explicitly. The approxima-
tion (2) has important applications to fast algorithms that we will consider below.

The second example is the Bessel functiigtbx), whereb > 0 is a parameter and € [0, 1]. Using
the approach developed in this paper, we obtain far alh [0, 1],

<% )
X

<e, (3)

M
Jo(bx) =) pme™
m=1

where p,, and t,, are now complex numbers and the number of terMs,is remarkably small and
increases witth ande as M = O(logh) + O(loge™1). In the sum (3) we will refer to the coefficients
om as weights and to the value® as nodes; such terminology is natural since, as it turnsedutare
zeros of a certain polynomial as is usually the case for quadratures. We illustrate (3) in Figs. 1 and 2
by showing the error of the approximation and the location of the weightand (normalized) nodes
e™/® corresponding td = 1007 ande ~ 107, The number of nodes & = 28 and they accumulate
ate’ ande™ as expected from the form of the approximation in (3) and the asymptotigsfof large
argument,
(L—i)el’ + (1 +i)e

PNED) ’
Also, since the real part of the exponents is always negative;,Re: 0, all nodes belong to the unit
disk. The approximation (3) with these 28 terms is remarkable in that there is no obvious integral, as
in (1), to represent the function and, thus, by some quadrature, obtain so few terms for a given accuracy
and parametes. Clearly, there are many possible integrals in the complex plane to represent the Bessel
function but, unfortunately, there is no obvious criteria to choose a particular integral or contour. Finding
such a contour may be attempted via the steepest descent method, in this case starting from, e.g.,

Jo(b) ~

b 1 eihxt

Jo(bx) = —

T __ 42
A V1—t

dt. (4)
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Fig. 1. The function/o(10Qrx) and the error (in logarithmic scale) of its 28-term approximation via (3).
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Fig. 2. The complex nodes (left) and weights (right) for the approximatiafy @f the interval[0, 100z ].
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However, different changes of variables in (4) will result in different contours with no a priori guidance
for the choice. Using, for example= sin(z), we have

/2

1 I
Jo(bx) = ; / esz sin(z) dZ, (5)
—1/2

and, withz = x + iy, we obtain the steepest descent path as the solution taceshi(y) = +1, where

x| <m/2 andy > 0. The discretization of the integral along this path yields (3) but with more terms
than via our method. On the other hand, upon examination of the weights and nodes in Fig. 2, itis clear
that their location is not accidental. It appears as if our algorithm selects a contour on which a possible
integrand is least oscillatory, since that would reduce the number of necessary nodes.

We note that by optimizing the location of the nodes, we reduce their number to keep it well below the
number of terms needed in Fourier expansions or in more general approximations like those discussed
in [11]. We do not have a precise estimate for the optimal number of terms but we have observed that it
only depends logarithmically on the paramédiemd on the accuracy.

We have obtained similar results for a great variety of functions. The functions may be oscillatory,
periodic, nonperiodic, or singular. For a given accuracy, we have developed algorithms to obtain the
approximation with optimal or nearly optimal number of nodes and weights.

These examples motivate us to formulate the following approximation problem. Given the accuracy
¢ > 0, for a smooth functiory (x) find the minimal (or nearly minimal) number of complex weighis
and complex nodeg" such that

M
[ =) wpe™

m=1

<e Vxel0,1]. (6)

For functions singular at = 0, we formulate (6) on the interv@d, 1], whereé > 0 is a small parameter.
Depending on the function and/or problem under consideration, we may measure the approximation error
in (6) in a different way, e.g., we may use relative error.

As in our paper [11], we reformulate the continuous problem (6) as a discrete problem. Namely, given
2N + 1 values of f(x) on a uniform grid in[0, 1] and a target accuraay> 0, we find the minimal
numberM of complex weightsu,, and complex nodeg, such that

k M
A k
/ < ZN) mzzl o

The sampling rate ® has to be chosen as to oversampla) and guarantee that the function can be
accurately reconstructed from its samples. The nodes and weights in (7) depeaddN. Once they

are obtained, the continuous approximation (6) is defined using the same weights while the exponents
are set as

<e Vk, 0<k<2N. (7)

tn = 2N 10Q Yy,

to match the form in (6). The nonlinear problem of finding the nodes and weights in (7) is split into two
problems: to obtain the nodes, we solve a singular value problem andffirabts of a polynomial; to
obtain the weights, we use the nodes to solve a well-conditioned linear Vandermonde system.
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If in (7) we consider the case = 0, we would have arexactrepresentation of the sequence of
samples as a sum of exponentials, the goal of the so-called Prony’'s method. We discuss the problems
encountered in Prony’s method in the next section, but we point out here that by awmidictgepresen-
tations and incorporating arbitrary but fixed accuracy > 0, we manage to control the ill-conditioning
encountered in solving this problem and we significantly reduce the number of terms needed in the ap-
proximation.

Historically Gaspard de Prony (circa 1795) was the first to address the problem of representing
sequences by exponential sums. Unfortunately, his method is numerically unstable and numerous mod-
ifications were attempted to improve its numerical behavior (see references in the recent survey [13]).
We note that the approximation in (6) can sometimes be obtained by optimization strategies. We refer to
[13] for a good review of such approaches. We also note that the approach in [27] is a special purpose
optimization strategy for computing quadratures as is that in [4,5] for optimizing rational approximations
in the Laplace domain resulting in a particular example of (6). Whereas optimization strategies (e.g., the
variable projection method) are applicable to a large variety of problems besides (6), our approach to
problems in (6) and (7) makes use of the deep analytic and algebraic structure of these problems and
yields fast algorithms for their solution.

The approach in this paper has grown from that in [11] where we used properties of bandlimited
functions and of Hermitian Toeplitz matrices to construct solutions of (7). Such a construction leads
to specific solutions with nodes on the unit circle and positive weights, but not necessarily with the
minimal number of terms as, in this case, their number is always constrained by the Nyquist criterion.
In this paper we circumvent the constraints of Fourier analysis by allowing both nodes and weights
to be complex-valued, significantly reducing the number of terms in the approximation. Our approach
is to construct a Hankel matrix using the values of the function or sequence to be approximated, and
use properties of its singular value decomposition to determine the location of nodes and weights for
a given accuracy. These nodes and weights define a low rank Hankel approximation of the original
Hankel matrix with an error controlled by the singular values. As it turns out, most of the weights are
smaller that the target accuracy. As we discard the corresponding terms, we obtain a nearly optimal
representation for the matrix. In this sense our approach can be understood as a finite dimensional versior
of the theory of Adamjan, Arov, and Kire (AAK theory), which involves infinite Hankel matrices as a
tool for constructing rational approximations [1-3] (for a recent exposition see [25]). We found no other
related methods in the literature.

The paper is organized as follows. In the next section we summarize relevant properties of Hankel
matrices and then, in Section 3, we formulate and prove a new representation theorem for finite Hankel
matrices. We describe the resulting algorithms in Section 4 and provide several examples as well as
applications to fast algorithms in the following section.

As it turns out, several important applications require approximation of functions with singularities
where the approximation should remain valid over an extremely large relative range. We develop a re-
duction approach in Section 6 that allows us to overcome the numerical difficulties of this problem by
constructing a nearly optimal approximation from one with a relatively large number of terms (but which
is easy to generate). We then apply this approach to approximate the furictipe: 1/*, « > 0 as a
linear combination of Gaussians (needed in a variety of applications); the initial approximation is ob-
tained using the trapezoidal rule to discretize an integral representatign®f\lfe prove the necessary
estimates in Appendix A.
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2. Preliminary considerations: properties of Hankel matrices

Let us summarize properties of complex-valued Hankel matrices. For a Yeofocomplex entries
h = (hg, h1, ..., hoy), letH =Hp be theN 4+ 1 x N + 1 Hankel matrix defined bi,

ho hi1 ... hy
hl e “e hN+1
H — . . (8)
han-1
hn ... hay-1  hoy
thatis,Hy , = hyy, forO< k,n < N.
2.1. Singular value decomposition and con-eigenvalue problem for Hankel matrices
For a matrixH we will consider the so-called con-eigenvalue problem
Hu=o0, 9

whereu = (uq, ..., uy) iS @ nonzero vector and is real and nonnegative. We use the bar notation to
indicate complex conjugation. For a Hankel matrix, (9) is equivalent to

N
> ity =ity for 0Kk <N. (10)
n=0

Following [17, p. 245], for an arbitrary matrid and a complex value, a solutionu # 0 of (9) is said

to be a con-eigenvector ¢ ando is then its corresponding con-eigenvalue. We can always select a
nonnegativer, the unique representative of all con-eigenvalues of equal modulus. We refer to such a
o > 0 as ac-eigenvalugto its corresponding con-eigenvectoas ac-eigenvectarand we refer to both

of them as a-eigenpairof the matrix. The c-eigenvalues are also solutions of an eigenvalue problem,

Proposition 1 [17, Proposition 4.6.6, p. 246l etA be any square matrix and a nonnegative number.
Then,o is a c-eigenvalue oA if and only ifa2 is an eigenvalue oAA.

Since Hankel matrices are symmetitit= H’, an orthogonal basis of c-eigenvectors can be obtained
from Takagi’'s factorization [17, p. 204] which asserts the existence of a unitary matamd a real
nonnegative diagonal matriX = diag(oo, ..., oy), such that

H=UxXU =UXU" (11)

This factorization can also be viewed as a singular value decompositidnwhere the right singular
vectors are the complex conjugates of the left singular vectors. We note that (11) is valid regardless of
the multiplicity of each singular value and that, for Hankel matrices, the c-eigenvalues coincide with the
singular values; we will refer to them in both ways depending on the context.
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2.2. Fast application of Hankel matrices

For any vectox = (xo, ..., xy) denote byP, the polynomiaPy(z) = Z@Oxkzk of degree at mosv.
We want to compute the vectétx, whereH is the Hankel matrix defined by the vectoin C?V+1. Let
L be aninteger. > 2N + 1 anda = ¢'%*/% a root of unity. We write

1 L-1
h, = Z Z P, (O{_Z)Olrl, (12)
=0
so that for all entries we have
1 L-1
(HX), = 7 Z P (a_l)PX(al)alk. (13)
=0

This expression can be cast in terms of the discrete Fourier transform (DFT) so that the fast Fourier
transform (FFT) provides a fast algorithm to apply Hankel matrices.

2.3. Prony’s method

Let us connect our formulation with the so-called Prony’s methodH_etHy, be a singular Hankel
matrix and choose a vectgrin the nullspace oH. Without loss of generality, we set its last nonzero
coordinate to—1 so thatq = (qo, ..., q5_1,—1.0,...,0), whereN < N. If H were nonsingular, then
we extend the vectdr to a vectoth = (hq, ..., hay, hona1, honi2), Wherehoy 1 is a free parameter and
hon+2 IS chosen in such a way thilt; is a singular matrix.

The equatiorHq = 0 is equivalent to a recurrence relation of lengthfor the entries of the Hankel
matrix

=

-1
i =Y hisndn, k0. (14)

3
I
o

Such recurrence can be solved as

N
hi=> w,y\ forallk, 0<k<2N, (15)

n=1
where{y, ..., y5} (which, for now, we assume to be distinct) are the roots of the polyndpgiaind
where theN coefficientsw, are the solution of the Vandermonde system given by thefirsjuations
of (15). If P4 has multiple roots, a similar representation holds wheyeare replaced by, (k), p, a
polynomial of degree strictly less than the multiplicity of the root. Since we seek numerical representa-
tions of the form (15), we will always assume distinct roots. Even if they are not distinct, a numerical
approximation with distinct roots is always achievable with, perhaps, a few extra terms.

In conclusion, assuming th&t has distinct roots, any sequerftéof odd or even length) can be rep-
resented as in (15), wheré is at mostN + 1. These considerations are the essence of Prony’s method
to represent a sequence in the form (15). This construction also points out the numerical difficulties
encountered by Prony’s method. First, in most problems of interest, the Hankel idalvs a large



24 G. Beylkin, L. Monzo6n / Appl. Comput. Harmon. Anal. 19 (2005) 17-48

numerical nullspace that causes severe numerical problems in obtaining aye8grond, the Van-
dermonde system to obtain the weights in (15) could be extremely ill-conditioned. As it turns out
from our results, extracting the roogs from the polynomiaP, and solving the resulting Vandermonde
system is equivalent to solving (14) with infinite precision.

In our approach we are not interested in éxactrepresentation (15) but rather in approximate repre-
sentations foarbitrary but fixed accuracy,

M
§ k
h’k - wlﬂym
m=1

with minimal number of term@/. By letting the approximation depend on the accuracy, we are able not
only to avoid the numerical problems we just mentioned but also reduce the number of terms.

<e, (16)

3. Representation theoremsfor finite Hankel matrices

In this section we present two main theoretical results. We show how to represent an arbitrary sequence
as a linear combination of exponentials and how to describe this representation as a family of approxi-
mations of finite Hankel matrices by a particular class of Hankel matrices of low rank. The error of the
approximation is expressed in terms of singular values of the Hankel matrix. In this sense our results are
similar to AAK theory of infinite-dimensional Hankel operators, see [1-3] and a more recent exposition
in [25].

We need some definitions.

e A c-eigenpolynomiabf H is the polynomialP,(z) = Z,’fzoukz", whereu, are the entries of the
c-eigenvectou.
e For any c-eigenvectar of a (N + 1)-dimensional Hankel matrix consider the rational function

Paz™h
Pu(z) ’

which has unit modulus on the unit circle. For any integerL > 2N, we define the auxiliary
sequence = (dy, ..., d;_1) by evaluatingRr,, on a uniform grid on the unit circle. We set

Ru(z) =

dy = lim Ru(z) forO<k <L, (17)

—a

wherea = . The periodic sequenai® of entries
1 L-1
(L) _ 5 Ik
d;’ = 7 12_0 dia’® forall k >0, (18)

describes the error in our constructions.

We prove
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Theorem 2. Let {0, u} be any c-eigenpair of théV + 1)-dimensional Hankel matriil defined by the
complex-valued vectdn = (hq, ..., hoy). Assume that the c-eigenpolynomigl has N distinct roots

{y1....yn} and choosd. > 2N. Then, there exists a unique vectary, ..., wy) such that
N
he=Y w,yi +od” forallk, 0<k<2N, (19)
n=1

whered " is the sequence of urit norm inC* defined in(18).

A similar theorem can be formulated in terms of Hankel matrices. Let us write the approximation
sequence as

N
ac=>» wpyy, O<k<2N (20)
n=1

and denote ap- || the matrix 2-norm.

Theorem 3. With the assumptions of Theoré&nlet Hy and H, be the Hankel matrices defined by the
vectord = (d"”, ..., dsx)) in (18)and the vector= (ap, . .., azy) in (20). Then

(1) The Hankel matriH defined by the vectdr satisfies

H=Ha+oHaq. (21)
(2) The Hankel matriHq4 has unitary2-norm,
Hall = 1. (22)
(3) The relative error of approximating the Hankel matkixby the Hankel matriX , is
IH — Hall _o
IHl o0’

whereoy is the largest singular value ¢f.

Remark 4. Theorem 2 yields a different representation for each 2N even thougly, ando remain the
same. That is, for the same set of nodes we have different choices for the weights. The theorem implies

that we can obtain the weighis= (w, ..., wy) as the unique solution of the Vandermonde system
N
hk—adIEL)=anynk forO<k < N. (23)
n=1

Since the last equation is also valid fgr< k < 2N, it follows that the least squares solutign, ..., py)
to the overdetermined problem

N
he=Y_payy forO<k<2n, (24)
n=1

has error with2-norm less thaw .
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Remark 5. The assumption that the c-eigenpolynomialuofhas N distinct roots{yx, ..., yn} can be
relaxed. As explained in Section 2.3, we ask for distinct roots to obtain a sum of exponentials with
constant coefficients. Nevertheless, zero could be a multiple root and the representation remains valid
except for the first ternkg. Similarly, the c-eigenpolynomial may have less thdrroots, yielding a
shorter sum in (19).

Remark 6. Theorems 2 and 3 may be viewed as a finite-dimensional analogue of AAK theory for infinite-
dimensional Hankel operators [1-3]. Note that we prove these theorems without any restrictions on the
Hankel matrices. However, a practical use of the results requires fast decay of their singular values.
In this paper we do not attempt to characterize conditions leading to this property but rather explore
some applications of these representations. In this regard we note that in potential signal processing
applications no singular value may be very small, a fact that indicates the level of noise in the signal.

Proof of Theorem 2. We will show that the sequendg in (19) is the explicit solution of a nonhomo-
geneous linear recurrence of length+ 1. Such a solution can be expressed as the sum of a solution of
the homogeneous recurrence (the exponential sum) and a particular solution (the se@l,ﬁ@l)ce
We extend the definition of the c-eigenveatido a periodic sequence of peridgd where we set; =0
for N < k < L, and use this extended sequence to formulate the following problem. Find a seguence
that is the unique solution of
N

Zxk+nu,1 =ou fork>0, (25)

n=0
satisfyingx, = h, for 0< k < N — 1. Such a sequence solves a linear recurrence equation with
constant coefficients and initial conditions. Since we are assuming tRgtz) hasN distinct roots, we
haveu # 0 and thus (25) is equivalent to

N-1 _
u Ur

XNtk =— E xk+nu—n +o*u— fork >0,
‘o N N

wherexg, ..., xy_1 are given. Ifx,ﬁ”) is a particular solution of (25), any other solution can be written as

N
X = any,f +x”,
n=1

where thew, are uniquely determined by the initial values. In fact, they are the solution of the square
Vandermonde system

N
Y wayf=h—x” foro<k<N-1
n=1

To prove the theorem, we only need to show thé{"’, for 4"’ defined in (18), is a particular solution
of (25), or because of the periodicity ofandd®’, show that

N

> df =i foro<k<L-—1. (26)
n=0
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Using (18) we expand the left-hand side of (26)
N

= N =
Zd,ﬁi)nun = 7 Za’;ockl Zuna”l = 7 ZdIPu (oz[)akl,
n=0 =0 n=0 =0

and, due to (17), the last term equals

Finally, since|d,| = 1 for all k, thel? norm ofd™ equals 1. O
Next, we prove Theorem 3.
Proof. Part (1) is a direct consequence of (19), while part (3) follows from the first two. For part (2),
(26) implies
Hqu =0,

and with the notation| - || for both the matrix 2-norm and the vectt#-norm, we derive||Hqy| >
“'ﬁ'%”” = 1; thus, the norm is at least one. To see that it is at most ong,detN+! and use (13) and
(185 to write for O k < N,

1 & dPyh
(Hav) = —— ( )akl.
VL ; VL
The right-har]d side of the last equation is well defined faf ®< L — 1, and corresponds to the DFT
of the vectorleV—J%’]). Since the DFT is unitary and;| = 1, we obtain

2

Czva(Oll) _ ||V||2

VL

The last inequality holds for any vecteyimplying that||Hg|| < 1. O

2
[LaFI /S

3.1. Number of nodes and decay of the singular values

Although Theorem 2 holds for any singular valwewe plan to use (20) as an approximation of the
given sequenceg, with absolute error at most. For this reason we are interested only in small singular
values. Moreover, we discard many terms in the exponential sum (20) because we have observed tha
most of them have weights with values belew We have already encountered this situation in [11],
where the number of terms in the approximation is controlled by the index of the singular value. If we
label the singular values in decreasing order,

00 =012 20N,

and choose the indei, M < N, in such a way that,, is close to the accuracy sought, we have observed
that only M weights in (20) are larger thar,. In Fig. 3 we display the locations of all the roots of the
c-eigenpolynomial corresponding s ~ 10~ using our previous example with the Bessel function
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Fig. 3. Locations of all roots of the c-eigenpolynomial corresponding to the singular a#gdua the approximation offg in
[0, 100Qr]. In practice, we only use the 28 roots inside the unit disk.

Jo(x) in the interval[0, 100z ]. The 28 significant weights (see Fig. 2) are associated with the nodes
inside the unit disk. We note that the nodes corresponding to the discarded terms are located outside bu
very close to the unit circle. The error of the 28-terms approximation is displayed in Fig. 1.

By keeping only the terms with significant weights, the singular value indeprovides aM-term
approximation of the sequenég with error of the order ot,,. This behavior matches that of indices
of the singular values in AAK theory, where théth singular value of the Hankel operator equals the
distance from that operator to the set of Hankel operators of rank at¥host

Currently we do not have a characterization of the conditions under which finite Hankel matrices may
satisfy the results of the infinite theory. We only note that assuming fast decay of the singular values
and thatV — M terms have small weights in (19), the approximatpr= fozl w,,y* has the optimal
number of terms. Indeed, I&t, be the corresponding Hankel matrix for SinceHy has rankM, we
have

oy < |H—Hpll <oup +6 (27)

for somes > 0. Under the assumptions &f — M small weights and of fast decay of the singular values,
it is reasonable to expeétsmall enough so that), + § < o1, therefore preventing an approximation
with a shorter sum.

The practical value of our approximation depends then on the fast decay of the singular values of the
Hankel matrixHy. Fortunately, in problems of interest, we have observed such decay. In fact, in many
problems the decay is exponential and we obtain approximations where the number of terms increases
only logarithmically with the accuracy. In Fig. 4 we illustrate this property for the Bessel funggian.

3.2. Computation of weights

In our paper [11] weights are computed via a fast algorithm based on implementation of the relations
(19) for nodes on the unit circle. We use the fact that the solution of a Vandermonde system is obtained as
polynomial evaluation on the Vandermonde nodes. The coefficients of the polynomial are computed using
the FFT and the evaluation on the nodes is computed via the unequally spaced FFT (USFFT) (see, e.g.
[7,12]) because the nodes are on the unit circle. We also showed in [11] that even though Vandermonde
systems can be arbitrarily ill-conditioned, the approximation problem on the unit circle is well posed due
to the particular location of the nodes and the specific right-hand sides.
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Fig. 4. Example of exponential decay of singular values (we display log of singular values as a function of their index) in the
approximation of/g(10Qr x) in [0, 1].

In this paper nodes are typically inside the unit disk, thus preventing the direct use of the USFFT.
Nevertheless, since the number of significant terms is small, to solve the Vandermonde system (23) both
polynomial evaluation or the least squares formulation (24) are efficient options. We choose the particular
approach depending on the location of nodes or additional information about the problem.

3.3. Trigonometric moments and Toeplitz matrices

In [11] we have shown how to approximate nonperiodic bandlimited functions as linear combinations
of exponentials with imaginary exponents, that is, with nodes on the unit circle. In that paper, samples of
the function to be approximated (which can be thought as trigonometric moments of a positive measure)
are used to build a Hermitian Toeplitz matrix whose eigenpolynomials happen to have roots on the unit
circle. Even though most of the results in [11] are based on the particular properties of bandlimited
functions, and as such, cannot be directly obtained by the general method of this paper, some results
in [11] are immediate consequences of the general approach presented here. As an example, conside
T a Toeplitz Hermitian matrix ando, u} an eigenpair ofT; we assume that the entries wfsatisfy
uy_r = g, 0< k < N and that the eigenpolynomi&l, has distinct roots. Led be the matrix with
ones in the antidiagonal. Theth = JT is a Hankel matrix ando, u} is a c-eigenpair of4; since the
eigenpolynomial ofi satisfiesP;(z 1) = z7VPy(z), the entries of the sequenden (17) satisfy

~ _ 2nkiN
di=e L

and so the error sequemt,%) in (19) has zero entries exceptat N, which coincides with our previous
description of the error for a Toeplitz Hermitian matrix [11, Theorem 4.1 and Corollary 4.1].

4. A new algorithm for approximations by sum of exponentials

We now describe how to compute the approximation described in (7). Given the target accanacy
2N + 1 samples
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he=f k 0<k<2N (28)
k — N ) X
of the function to be approximated in the interyd) 1], our goal is to find an optimal (minimal) number
of nodesy,, and weightaw,, such that

M
hy — Z wm)/,],(,

m=1

<& Vk,0<k<2N. (29)

If the function f (x) is properly oversampled, we also obtain the continuous approximation (7(of
over the interval0, b].
Let us describe the steps of the algorithm to obtain an approximation of the furfotitth accuracy.

(1) Sample the functiorf as in (28) by choosing appropriadeto achieve the necessary oversampling.
Using those samples define the corresponding 1 x N + 1 Hankel matrixH,, = hy;.

(2) Find a c-eigenpaifo, u}, Hu = o0, with the c-eigenvalue close to the target accuraey We use
an algorithm that recovers the c-eigenpairs starting from the largest c-eigenvalue up to the one we
seek. Because we are interested in functions which exhibit fast decay of their c-eigenvalues, only
a small number of c-eigenpairs are computed. We label the computed c-eigenvalues in decreasing
orderog > o1 > -+ > oy, WhereM <« N.

(3) Ifthe c-eigenvector has entriesuo, ..., uy), we find M roots of the c—eigenpolynomiﬂj,’f:O upz~
in the “significant” region. We denote these rogts..., yy and refer to them as-eigenrootsin
finding c-eigenroots corresponding to the significant weights, we typically use a priori information
on their location, such as being inside the unit disk, being close to the unit circle, located on a curve,
etc.

(3) We obtain theM weightsw,, by solving the Vandermonde system (23) or the overdetermined Van-
dermonde system (24).

Remark 7. If the approximation problem does not involve an explicit function but the goal is to obtain
the approximation (29) of a given sequerigethe same algorithm is used but without the first step.

5. Examples

Let us describe how to apply the algorithm in Section 4 to obtain the approximation (3) of the Bessel
function Jo(bx) in [0, 1], whereb = 100r ande = 107°. The function and the approximation error
are displayed in Fig. 1. Our choice &f = 214 includes 16 extra samples to improve the accuracy
at the edges of the interval. We compute the c-eigenpairs using the power method and the fact that
c-eigenvectors are orthogonal; see (11) and recall that c-eigenvalues coincide with the singular values
of H. In this example, starting withy = 8.34, we compute a total of 29 singular values until we reach
the accuracy. In fact we obtainr,; = 2.295 x 10710 ando,g = 7.527 x 10~%; the decay of the first
110 singular values is captured in Fig. 4. To obtain the nodes, we now need to find 28 particular roots
of the c-eigenpolynomial. In order to show that these roots belong to a well-defined region, we actually
compute all 214 roots and display them in Fig. 3. Two distinctive regions can be seen. The first region is
outside but very close to the unit circle and the second is inside the unit disk, with 28 roots accumulating
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Im

Fig. 5. Nodes corresponding to singular values in the réadex 1015, 6.7 x 10~9] for the approximation ofig(1007 x).

ate’ ande™'. It is instructive to observe how roots in the first region stay some distance away from
these accumulation points. As we have mentioned in the Introduction, this accumulation can be expected
from the asymptotics of the Bessel function. More important from a computational perspective is that
the nodes slowly change their locations as we modify either the approximation interval (parametrized by
the constanb) or the accuracy (parametrized by the singular values). In this way, computation of roots
can be performed efficiently by, if necessary, obtaining first the nodes for a sraall using them as
starting points in Newton’s method. To illustrate this property, in Fig. 5 we display the nodes for a range
of singular values varying from.B x 1072 to 4.7 x 10715,

As we noted for Fig. 2, the locations of nodes and weights suggest the existence of some integral
representation afp on a contour in the complex plane where the integrand is least oscillatory; integration
over such contour yields an efficient discretization that would correspond to the output of our algorithm.

The final approximation (6) exhibits an interesting property that we also have observed for other oscil-
latory functions. Suppose that we would like to obtain a decreasing function (an envelope) that touches
each of the local maxima of the Bessel function and, similarly, a increasing function going through each
of the local minima. The approximation (6) provides such functions in a natural way. Estimating the
absolute value of an exponential sum, we define its positive envelojie)eas

M
E w,,em*

m=1

and itsnegative envelopas—enux). In Fig. 6 we display the Bessel functiol(10Qr x) together with
its envelopes. We note that we are not aware of any other simple method to obtain such envelopes.

M
<D w0 = enwt),

m=1

5.1. The Dirichlet kernel

Another representative example is the periodic Dirichlet kernel,

1 & - SinNmx
D, i 2mikx _ i , 30
=% kzzne Nsinzx (30)

whereN = 2n + 1. We would like to construct an approximation (6)@f on the intervalO, 1]. Since
D, is an even function about/2 and it approaches 1 near= 1 (see Fig. 8), decaying exponentials
are not sufficient to capture this behavior. Therefore, the approximation must have nodes both inside and
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Fig. 6. The Bessel functiorip (1007 x) together with its envelope functions.
outside the unit circle. In this case the Vandermonde matrix for computing the weights is extremely ill
conditioned. As a way to avoid this difficulty, we reduce the problem to that of approximation of an

auxiliary function with a proper decay.
Using the partial fraction expansion of the cosecant

Z (—D* T
x+k  sin(rx)’

keZ
we have
Sin(Nmx) (—D)¥ SiN(Nm(x + k))
D, (x) = > =2 -
Nm =~ x+k ~ Nm(x +k)

Motivated by this identity, we introduce the function

Sin(Nmx) Z (—DF Z SiN(Nm(x + k))

N k>ox+k 0 Nr(x +k)

G,(x)=

and observe that
D,(x)=G,(x) +G,(1—x). (31)

We then solve the approximation problem @&y in [0, 1],

M
Gu(x) = D pue™| <. (32)

m=1

where weights and nodes are complex #&fid| < 1. In Fig. 7 we display the location of the nodes
and weights where = 50 ande = 10°8. The singular values of the corresponding Hankel matrix are
decaying exponentially, similar to the decay in Fig. 4. The number of terms grows logarithmically with
the accuracy and with, M = O(logn) + O(loge).

Using (31) and (32), we obtain the approximation for the Dirichlet kernel,

M M
Dn(x) - Z pmermx - Z pmetm(l_X)
m=1

m=1

< 2. (33)




G. Beylkin, L. Monzén / Appl. Comput. Harmon. Anal. 19 (2005) 17-48 33

-1 0.4 1 -0.15 0.15

-1 0.4 1 -0.15

Fig. 7. The 22 nodes (left) and weights (right) for the approximation of the auxiliary fun€tigyin [0, 1].

We note thate~"=| > 1 and, thus, the final approximation bf, has nodes both inside and outside of the
unit disk. In Fig. 8 we display the Dirichlet kernélso and the error of the approximation with 44 terms
given by this construction. FdP,oo Wwe need 50 terms.

5.2. The kerneltogsirf(rx) andcot(r x)

Let us consider two examples of important kernels in harmonic analysis. The functiondegsin
is the kernel of the Neumann to Dirichlet map on the unit circle for functions harmonic outside the unit
disk whereas cdtr x) is the Hilbert kernel for functions on the unit circle. We note that the Hilbert kernel
represents a singular operator.
We first find identities similar to (31). Using the reflection formula for the gamma function,
b/

rxrdl—x)=— 34
(Or@—x) Sinr)” (34)
we obtain
logI'(x) 4+ logI'(1 — x) = logw — %Iog Sirf 7 x. (35)
')

For the cotangent we use the reflection formula for the digamma fungtion,= (InT"'(x))" = Ok
Y(x)—¢Y(1—x)=—mcotrx. (36)
We now solve the approximation problems[énl),

M
logI'(x) — Z ,o,%e_tgx

m=1

<eg,

and

<&,

M
—p @) = > phe
m=1

wherer? and:! are real and > 0 is a small number. We then obtain the final approximations as

1 M M
> log sirf(rx) — logm + Z p,?le_"?”‘ + Z p,?,e_"?“(l_") < 2e, (37)

m=1 m=1
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Fig. 8. Dirichlet kernelDsg (top) and the error (in logarithmic scale) of its 44-term approximation via (33).

and

M M
7 cotmx — Z pLe~'n* + Z pLe =] < D¢ (38)
m=1

m=1

5.3. Fast evaluation of one-dimensional kernels

Let us consider computing

1

() = / K(x — ) f () dy, (39)

0
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at points{x, ,’:’:l, x, € [0, 1]. In practice, we need to compute the sum

L
) = Ko —y) f (), (40)
=1
where we assume that the discretization of the integral (39) has already been performed by some appro-
priate quadrature and we include the quadrature weighfgyp.
The direct computation of (40) requir@s - L operations. If we first obtain am/-term exponential
approximation of the kernel, an elegant algorithm [28] computes the sum with aceumadc (2M -
(L 4+ N)) operations, wherd/ is the number of terms in

M
K(s) — mee’ms <e¢ forse]0,1] (41)
m=1

assuming that the kerndl is an even functionk (—s) = K (s). Alternatively, we also need an expo-
nential approximation of the kernel on the interyall, 0] and, in such case, the number of operations
becomeD(M* + M~) - (L + N)), whereM™ andM~ are the number of terms for the approximation
on[0, 1] and[-1, 0].

For a simplified version of the algorithm, split the sum (40) as

g = Y K@—wfon+ Y. K@i—wf, (42)

0<yr < <<l

and compute each term separately. Using (41), we approximate the first term in (42) as

M
> WuGum.  Whereg,,, = Y e f(y)

m=1 0< 1<

and similarly for the second term in the sum.
Following [28], we observe that

ql’l+lm — etm (anrl*xn) Z etm (anyl)f(yl) + Z etm(xn+17y[)f(yl)’

0y <x Xn <YI<Xn41

and, thusg, ,, is computed via the recursion

qn+1’m — etm(xn+l_xn)qn,m + Z etm(xn-%-l_yl)f(yl)'

Xn <YISXn41

As long as Re€,,) < 0, we have a stable recursion which takegV + L) operations to evaluate. Since
we need to compute, ,, for m =1, ..., M for both terms in (42), the resulting computational cost is
O@M - (L + N)).

If the kernel has a singularity at= y, the splitting in (42) should be done as to maintain an appropriate
distance from the singularity. This is, in fact, how the algorithm was originally designed in [28]. In
that paper the approximation for the nonsingular Dirichlet kernel (30) is constructed by approximating
1/sin(rx), an approach that introduces an artificial singularity. Algorithmically such singularity forces
an additional term in (42) for the direct evaluation of the kernel near the singularity; this is avoided if we
use (41) to approximate the Dirichlet kernel.
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6. Reduction of number of terms

The algorithm in Section 4 allow us to find approximations for a large variety of functions but it is
not well suited to deal with the extremely large ranges needed in some applications. Also, we would
like to have a mechanism to approximate functions that can be expressed in terms of other functions for
which we already have exponential sum approximations. Clearly, the nodes and weights for the sum or
product of two known approximations are readily available, but their number is suboptimal. Similarly, an
accurate but suboptimal expansion may be available, for example as the result of using some quadrature
rule or simply applying the discrete Fourier transform of the data to be approximated. We now show
how to take advantage of accurate but suboptimal approximations using a general approach on how to
reduce (optimize) the number of terms of a given exponential sum. It consists of applying the algorithm
of Section 4 to a function which is already a linear combination of exponentials on the irf&ripand
taking advantage of some simplifications which hold for this particular class of functions. We obtain a
fast algorithm for the following problem. Given

Mo
f)=) bue ™, (43)

m=1

ande > 0, let us find a function (of the same form),

M
glx) = Z wye ", (44)
m=1

with M < Mg and such that
|f(x)—g)|<e forxel01]. (45)

Without loss of generality, we assume distimgtand nonzerad,, in (43). Following the algorithm in
Section 4, for some approprial > My, we construct the Hankel matrbt = #,,,,/, n,n’ =0,..., N,
where

Mo
hy, = f<%> - n;bme—é’—’w’". (46)
Denotingr, = e~ 2, m =1, ..., Mo, we have
Mo
hn="Y_burp, (47)
m=1
and, therefore, a factorization of the Hankel matrix
H=VBV!, (48)
whereV is theN + 1 x My Vandermonde matrix
Vi =1% (49)

andB is the diagonal matrix with entrigss, . .., by,). We note that the matrid has a large nullspace of
dimensionN 41— M. In fact, the nullspace consists of vectors with coordinates given by the coefficients
of the polynomialsl_[f:il(z — rm)p(2), wherep(z) is any polynomial of degree at mast— M.
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By excluding the nullspace dfi, which corresponds to zero c-eigenvalues, we now show how to
reduce a c-eigenproblem fbt to a c-eigenproblem for an auxiliary matrix of si& x My. We also
show how to use this approach to effectively compute the nodes and weights in the approximagion of

Considers > 0 andu = (uo, ..., uy) # 0, a solution of the c-eigenproblem df,

N
Zhn+n/u,,/:aﬁn, n=0,...,N. (50)
n'=0
Equation (47) allows us to rewrite (50) as
Mo
D burpPulrn) = oty (51)
m=1

whereP, is the c-eigenpolynomial af. Multiplying (51) byz" and summing over the index we obtain

Mo N+1
mell(ipu(rm) =0 Pqu(2). (52)
m=1 —ImZ
Even though the c-eigenpolynomial has degheeit has a much shorter, rational-like representation
suitable to compute its zeros. This representation depends on its values on the given legatias
now obtain those values as solutions of an auxiliary c-eigenproblem.
Let us write the polar decomposition of the coefficiehis

™

by = ppmé' with p,, > 0

and denote their square rootsgs= ./p, e’ /2.
Substitutingz = 7 in (52) and multiplying by, we obtain

Mo — \N+1
1-(r, -
Z Ck (r—rk)_ci P,(rp,) =ociPu(ry). (53)
1—r,rk
m=1
Introducing theMy x My matrix A,
1— m- N+1
Apm = Ck (r—rk)_cm’ (54)
1—r,r

and defining the vectar of coordinates

v = i Pu(re),
we rewrite (53) to obtain

Av=o0V. (55)
Sinceu # 0, (52) guarantees that not &|,(r,,) are zero and thus # 0. We conclude that i{o, u}
is a c-eigenpair oH ando # 0, then{o, v} is a c-eigenpair ofA. In Proposition 8 we show that the
converse result is also true. Thus, instead of solving (50) for a large size matrix, we solve the small
size c-eigenvalue problem (55) for an appropriate o), close to the target accuraeyWe use (52) to
describe the c-eigenpolynomig), of the original matrixH as

Mo

1 1— (rpz)N*t
PU(Z) - ; Z Cn——F———Un- (56)

1-r,z

m=1
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Using (56) we find the\ zeros in the region of intere®®,(y,,) =0, 1< m < M. The final exponents
t,, for the reduced approximation (44) are thgn= —2N logy,,. Finally, we solve forw,,, 1<m < M
using the overdetermined system,

hn= wnyp, n=0,... 2N. (57)
The normal equations of this system are,
2N
. " — (7)™
Vs = Z Wi Z(mer) Z wy ) —— (58)
n=0 mys
Substituting (47) |nto (58) we obtamm, 1 < m < M as the unique solution of
ﬁ 1- )™t Z <rmys>2N+1 L— )™t
m=1 1- Vm J7s i —I'm % "
We note that the auxmarMo X MO matrix A in (55) is positive definite. In fact, (54) is equivalent to
A=S'S forS=VC, (59)

whereC is the diagonal matrix with entrieg1, ..., ca,) andV is the rectangular Vandermonde matrix
in (49). Thus, for any nonzero vectgy the inner productAx, x) = |[VCx||? is always positive because

V has zero nullspace. Therefore, by [17, Theorem 4.6.11, p. 248], there exist a nonsingulatMnatrix
and a diagonal matri® such thath = MDM 1. The c-eigenvalues d are the eigenvalues &A (see
Proposition 1). Note that fofA with complex entries, th@fy c-eigenvalues oA (which are real and
positive) do not need to coincide with their singular values.

Proposition 8. LetH be aN + 1 x N + 1 Hankel matrix defined by the vect@7) and A the My x My
positive definite matrix if54). Consider any c-eigenpair @,

Av=o0V,
and define the vectar of entries

18
= — mUm k’ 60
Uk o Y;—C rm ( )
wherev,, are the entries of the c-eigenvectarThen

(1) The valuer and the vectou are a c-eigenpair oH, Hu = o Q.
(2) The polynomiaPyg, with coefficients that are the entriesipfsatisfies the identit{66).
(3) The c-eigenpolynomid?, at any of the original nodes, has values

Py(ry) =2 for1<m < M.

m

Proof. With Sdefined as in (59), we hat¢ =SS, A = S'S, andug Then,
SS'Sv  SAv

=—=S/=o00.

o o

Hu =
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For the second part we mimic the steps used to obtain (52) and we also use (60). The last part follows
from (56) withz =7y,
(AV) _ b

o 61 El

Pu(ry) =

7. Approximation of power functions and separated representations

Let us discuss how to approximate the power functien$, « > 0, with a linear combination of
Gaussians,

M
— _ 2
_ E w,,e Pmr
m=1

for r € [8, 1]. This approximation provides an example of an analytic construction of a separated rep-
resentation as introduced in [9] and discussed in [10,23]. It also has ubiquitous applications and has
already been used in the construction of a multiresolution separated representation for the Poisson kerne
[8,15,16] and for the projector on the divergence free functions [8]. Settiadl in (61), we obtain the
approximation of the Poisson kernellk¥ as a sum of separable functions,

Z w,, e PP <
||x||

for0 <6 < ||x|| < 1. It turns out that in some important applications, it is essential to obtain this approx-
imation for smalls. By replacingr by /2 in (61), the approximation becomes that in Section 4,

M
r—oz/2 _ 2 wme—pmr

m=1

<r % (61)

° (62)

Sl

< P2 (63)

for 62 < r < 1. Unfortunately, the algorithm of Section 4 is ill-suited to obtain (63) due to the large
number of samples necessary to cover the range of interest. On the other hand, if we use the reductior
procedure of Section 6, we only need an accurate, initial approximation to then minimize the number
of nodes without experiencing the size constraints. Such initial approximation for (61) has been used in
[8,15,16] and is based upon the discretization of the integral

_ 2 r _ 2v+
o — r-e oS 4
F(@/2) f ds. (64)

In this paper we analytically estimate the number of terms in (61) as a function of the accuracy and the
range.

Since the integrand (64) has either exponential or super-exponential decay at the integration limits, for
a given accuracy and range<0S < r < 1, we select: < 0 andb > 0, the end points of the finite interval
of integration, so that the discarded integrals are small andaatd both the integrand and a sufficient
number of its derivatives are smaller than the desired accuracy. We alsoSelbet number of points
in the quadrature, so that we can accurately discretize (64) by the trapezoidal rule, namely, by setting
pr=e* andwy = =3 se*h, wheres; =a +kh, k=0,..., K andh = ¢
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Fig. 9. Relative error (in logarithmic scale) of approximating the Poisson kernel in the raﬁ&eglﬂ)xn < 1 as a linear
combination of 89 Gaussians.

Such explicit discretization is readily available but it is suboptimal. We then use the reduction pro-
cedure of Section 6 to minimize the number of terms and, if necessary, adjust the type of relative error
in the estimate. As an example, in Fig. 9 we display the error in (62) after optimization. The number of
terms is onlyM = 89 providing an uniform error in the whole range.

In order to estimate the number of terms in the approximation (64)%fve demonstrate

Theorem 9. For anya > 0,0 < § < 1, and0 < & < min{3, g} there exist positive numbegs, and w,,
such that

M

2

r % — Z wpe P <r % forall§ <r <1 (65)
m=1

with
M =loge o+ c1loge ™ + c2logs ], (66)
where ¢, are constants that only depend on For fixed powera and accuracye, we haveM =
O(logs1).
The proof (see Appendix A) is based on the fact that in (64) the integrand function
Zur(s) = 7T (67)
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satisfy

D"gy,(s) = p2(—r2e®)gu, (s),

wherep{ (x) are polynomials of degree

Before ending this section, we would like to remark on another application of the reduction algorithm
to the summation of slowly convergent series. These results will appear separately and here we only note
that our approach yields an excellent rational approximation of functions-tikea > 0, providing a
numerical tool to obtain best order rational approximations as indicated by Newman [24] (see also [18,
p. 169]).

8. Conclusions

We have introduced a new approach, and associated algorithms, for the approximation of functions and
sequences by linear combination of exponentials with complex-valued exponents. Such approximations
obtained for a finite but arbitrary accuracy may be viewed as representations of functions which are more
efficient (significantly fewer terms) than the standard Fourier representations. These representations car
be used for a variety of purposes. For example, if used to represent kernels of operators, these approxima
tions yield fast algorithms for applying these operators to functions. For multi-dimensional operators, we
have shown how the approximation;of*, « > 0 leads to separated representations of Green'’s functions
(e.g., the Poisson kernel).

We note that we just began developing the theory of such approximations and there are still many
guestions to be answered. We have indicated some of these questions but, in this paper, instead of con
centrating on the theoretical aspects we have chosen to emphasize examples and applications of thes
remarkable approximations.
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Appendix A

We show how to choose the parameters involved in the approximatien®op > 0 by linear com-
bination of exponentials as well as estimate the number of terms. Theorem 9 follows by substituting
B %, r—r? 8+ §%and choosingV = O(loge~?) in the next

Theorem A.1. For any 8 > 0,0 <8 < 1, and0 < & < min{3, %}, there exist positive numbeys, and
w,, such that

M
PP =Y wae | <rPe forall s<r <1 (A.1)
m=1
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with
< Cﬁ(z}vaiJrl)[ﬂ‘l log4(Be)~* +log 245~ + log(logq (8e) )], (A.2)
where
cp= { /13 22 gf L (A3)
N is any positive integer chosen to satisfy
2Nt ¢ (A.4)

(2N + 12N = 4
andg =2N — 1+ 8.
For fixed powers and accuracy, we thus havét = O(logs—1).

The approximation is based on the discretization of the integral representation of the funétion
Re(8) > 0 andr > 0,

LBy = / foa (D, (A5)

where

fﬂ,r (t) — e—rel-HSl‘

The integral in (A.5) follows by substituting = re’ in the standard definition of the Gamma function,
) =/e_xxﬁ_ldx.
0
Note that (64) is obtained substitutisg— % andr > r?in (A.5).

Using the Euler—Maclaurin formula (see [6] or [14, pp. 469-475] for example), we approximate the
integral of a smooth functiof(¢) by the trapezoidal rule,

K-1
,f=h(Zf<a+kh>+—f(“);f(b)>,
k=1

with the error given by

K
/f(t)dt — Tk = h2N+1/ %]\;m)DZNf(a +th) dr
0

N

—Z 2(D*7f (b) — D* 7 f (@), (A.6)

n_l
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whereh = T is the step sizdy¢] is the integer part of the real numheib, are the Bernoulli numbers,
and B, (¢) the Bernoulli polynomials. For ak € [0, 1] andn > 1 we have the inequalities (see, e.g., [14,
p. 474)),

[ B2, (x)| _ |b2,] 2 —2
<ol k=2 < 4(2m) 2,
2n! on! (27r)2” ; (@)

We then estimate the error in (A.6) as

2n
/f(t)dt X <4( ) /]DZNf(t)\dt+4Z( ) (|D*tf )| + | D" 1 f(@)]).
(A.7)
Using (A.7) and (A.5), we obtain
ITB)r 7 —TK| <L+ Ip + 1+ Su + S, (A.8)

where

Ia:/f,g,,(t)dt, Ib:/f,g,,(t)dt,
—00 b

h\2Y <
I :4<Z> /|D2Nf,3,,(t)|dt.

We will derive conditions on the parametersb, K, andN so that the first four terms in the estimate
(A.8) are less tharg and the last term is less thdr(ﬁ)r*ﬁg forall r, § <r < 1. Since forg > 0 and
0<r<1,r I (B) >T'(B) >0.886... > 4/5, we obtain

|TB)r—* ThK|<4 +T(B)r* <F(/3)r e,

a1\ e
S,_422ﬂ D>y,

n=1

and (A.1). To obtain these estlmates, we use some auxiliary results collected in

Lemma A.2. The derivatives of the functiof , are

D" f5,(t) = Ff (=re') f., (1), (A.9)

whereF/ (x) are polynomials of degree, satisfying the recurrence
Fly () =xF ) + BFL (x), (A.10)

with FO (x) = 1. These polynomials can be written as

FP(x) = Z Al (B)xk, (A.11)

k=0
with nonnegative coefficients
n n ) .
ALY =) (J) S{p", (A.12)

j=k
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wheres] are the Stirling numbers of the second kisig,= 8,0 ands] = 0if k > j. These combinatorial
numbers satisfi14, Eq. 6.15 and 7.47]

> (”) s/ =St (A.13)
=% N

> 1 1

D oSt =————— foriz|<:. (A.14)
n=k [T t=D k

Properties of the polynomialsf can be easily derived from the relationships

Fl)=al (-0 =) (j)ﬁ"fd)j (x),

j=0
wherea?’ are the actuarial polynomials [26, pp. 123-125] @ndare the exponential polynomials [26,

pp. 63—-69]. Let us now establish conditions, to bound each of the five terms in (A.8).

A.1. Condition forl, < ¢

We have[’ e efdr < [¢ ePdt = % < ¢, if the left end of the interval of integration satisfies

g < NEB. (A.15)

B

A.2. Condition forl, < ¢

If we denoteL = [B], thenl, = [~ e el dr < [,° e eL+D1 dr = 6711 [ e~*s* ds. Integrating
by partsL times, we have

o0
skt / estds=8""171E, ((Seb)e_‘seb,
8eb

whereE; (x) = Zszo )l‘—,[ Note thatE; (x) < ex’ for x > 1. Assuming

se? > e, (A.16)
we obtain/, < ¢ provided the right end of the interval of integration satisfies
pBIHDb =" _ o (A.17)

A.3. Estimates fof; < ¢,fort=a andr =5

Using (A.9) and (A.11), for < 1, we have

N h 2n2n—1 N h 2n 2n—1
S <Afp.(t) Z(Z) D ATTByrket < defire Z(Z> YoATTNBEt. (A18)
n=1 k=0 n=1 k=0
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Denoting

N 2n 2n—1

dh=;< ) ZAZ" (B),

let us show thatl, < 1/cp if
]’lCﬁ 1

A.19
27 2N +1 ( )
Using (A.12) and (A.13), we obtain
N 2n—1 2n—1 ) 1 N 2n
0wy (3) @ L X (7 -t ey
n=1 k=0 j=k Bu=1 k=1
2N N 1 2N oo
PP ICEEES BICL
R — R —
Since we have assumed (A.19), with (A.14) for alkk < 2N, we estimate
2N oo 2N 1 2N 1
S}’l n __ - < < 1’
; 2; k; MMy =D ; [M_a@N +1-1)
where the last inequality follows by induction on
Under the condition (A.19), we consider two cases in (A.18) #fa < 0,
4
Sa < 4eﬁadh < _eﬂa
Cp
and to obtairnS, < ¢, we need
a< 1 In £ .
B 4
Sincep < c¢g, we obtain both the last inequality and (A.15) by requiring
a<= |n(8ﬂ>, (A.20)
B 4

which, due to the assumptions enensures that the left end of the interval of integration is negative.
If + > 0and denoting =2N — 1+ 8 > [B] + 1, we have

S, < 4eﬁt—re’ d, < ieﬂte—Se’e(ZN—l)t — ieqte—ée’ < 4eqte—ée’,
Cp Cp

and thus we obtain both, inequality (A.17) a$id< ¢ provided that

(e () )
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a condition that follows from Lemma A.3 below. Sins& , assumption (A.4) implies tha&¥ > 2 and,

_1
therefore,(%) ¢ < e*. Therefore, we set the following condition for the right end of the interval of
integration,

In(2g67*In(g(8e) ")) <, (A.21)
which also implies (A.16).

Lemma A.3. Let p, §, and ¢ be positive numbers such thpﬁ‘le‘% > e? and definerg = In2ps—1 x
1
In(ps~1e 7). Then the inequality

ePle™ < (A.22)

holds for allz > 1.

Taklng the logarithm in both sides of (A.22) we get ‘” < '”5 , and introducing the new variable
X = p > 1, we obtain
In (p(S x) —x< In_s (A.23)
or g
c=In p5_18_%’ <x—Inx.
Since 1- x < —Inx for positivex, we have
c<2c—IN2+ (A —¢) <2 —1In(20),

and, thus, (A.23) holds for > 2¢ sincex — Inx is increasing for > 1.
A.4. Condition forl and selection of the step siize

Let us show by induction on > 0, that for allg > 0
/ |D" f5..(t)| dt < / |FP(—re")| fp, () dt <T(B+n)r P2 (A.24)

The case: = 0 follows from (A.5) and, using the recurrence (A.10) and the induction assumption, we
have

/| Poa(=re |fﬂ,(z)dt<r/|Fﬁ+1 re)|f,g+1r(r)dt+ﬁ/|Fﬁ —re')| fs,. (1) dt
<rT(B+1+n)r 712"+ Br (B +n)r 72"
KTB+n+Dr P2+ (B+n)T(B+n)r P2
Observing that
LB +n) <nll'(B)cp, (A.25)
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wherecg is defined in (A.3) and denotiny = 2N, we estimatd as

h\" —BoL heg ‘ - -
1<4(5> LB+ Lyr P2 <4<7) LT (B < eT By,

provided

hCﬂ 1 & %
" g | — .
2r "2\ L4

Using (A.4), we satisfy both the last inequality and (A.19) if the step size satisfies
1 =

h ——. A.26
Cﬂ 2N+1 ( )

Finally, the sampling rat& = ”h;“ and, therefore, the number of terms in (A.1) can be chosen as to verify
(A.2) if we collect the estimates (A.20), (A.21), and (A.26).
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