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Abstract

We develop a two-dimensional solver for the acoustic wave equation with spatially varying coefficients. In what is a new
approach, we use a basis of approximate prolate spheroidal wavefunctions and construct derivative operators that incorporate
boundary and interface conditions. Writing the wave equation as a first-order system, we evolve the equation in time using the
matrix exponential. Computation of the matrix exponential requires efficient representation of operators in two dimensions and for
this purpose we use short sums of one-dimensional operators. We also use a partitioned low-rank representation in one dimension
to further speed up the algorithm. We demonstrate that the method significantly reduces numerical dispersion and computational
time when compared with a fourth-order finite difference scheme in space and an explicit fourth-order Runge—Kutta solver in time.
© 2004 Elsevier B.V. All rights reserved.

KeywordsWave propagation; Prolate spheroidal wave functions; Bandlimited functions; Efficient operator representations; Matrix exponential;
Spectral projectors; Acoustic wave equation

1. Introduction

In this paper we demonstrate how to use bases for bandlimited functions in algorithms of wave propagation. Using
bandlimited functions allows us to achieve a low sampling rate while significantly reducing numerical dispersion.
In addition, we show how to compute and use the matrix exponential as a propagator by employing separated and
partitioned low rank representations.

Using bases for bandlimited functions is a significant departure from the usual approach in numerical analysis.
For example, the standard notion of the order of approximation is not appropriate in its usual form since in our
construction the basis itself is generated for a finite but arbitrary accuracy. We note that the methods we describe in
this paper are applicable to many other problems.
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The first step in constructing a numerical scheme is to select a basis for representing solutions and operators
Typically, in spectral and pseudo-spectral methods, the trigonometric func{éﬂiﬁﬁ}l'z‘zo have been used for
periodic, and Legendre and/or Chebyshev polynomials for non-periodic problems. Instead, we consider bandlimited
functions on an interval. A basis for bandlimited functions, the prolate spheroidal wave functions (PSWFs), was
introduced in the 1960s by Slepian et al. in a series of pdfiefd. Recently the generalized Gaussian quadratures
became available if6,7], making it possible to construct efficient numerical algorithms for such functions.

We review the construction of three bases for bandlimited functions. First we consider{8&&&5'_, on
the interval -1, 1], where|6;| < 1 are the nodes of the generalized Gaussian quadrature constructed for a given
precision and bandlimit. We note that these functions are not necessarily periodic. Such bases may not be suitabl
for some numerical computations (heuristically, they correspond to the basis of monomials). For this reason, we
also consider bases of approximate PSWFs and interpolating bases and use them in our computations.

There are at least two deficiencies of orthogonal polynomials in using them for numerical computations. First
is the concentration of Gaussian nodes near the end points of the interval. Second is the sampling rate that neve
approaches, even asymptotically, the rate for periodic functions, namegrsus two points per wavelength, see
e.g.[8]. As it turns out, the nodes of the generalized Gaussian quadratures for exponentials do not concentrate
excessively (the rate reported[®] is in error, seesection 2.2 and the sampling rate asymptotically approaches
the rate for periodic functions.

In recent preprint$9,10] the authors present a study of the PSWFs as a tool for solving PDEs. We note that
our use of the PSWFs differs in several ways that have a significant impact on the performance. We first select the
desired accuracy and then, for a given bandlimit, construct the (nearly) optimal quadratures for these parameters
Alternatively, for a selected accuracy and a given number of nodes, we find the largest possible bandlimit (see
discussion inSection 2.2 We note that if9,10] the number of nodes is selected proportional to the bandlimit,
which is not the optimal choice. We also use a different approach to time evolution described below.

An important observation in using the PSWFs is that the norm of the derivative matrix based on bandlimited
functions is smaller than that based on polynomials. In constructing derivative operators we incorporate boundary
conditions into the derivative matrix. In the case of discontinuous interface conditions, these conditions are also
incorporated into the derivative matrix in a way similaftd]. We also use the spectral projector to remove spurious
large eigenvalues and corresponding eigenspaces from the derivative operators, thus further reducing their norm
For time evolution we use a semigroup approach (that involves computing the matrix exponential) and compare it
with the standard fourth-order Runge—Kutta method. We note that for time evolution one can also use the approach
introduced in[12] or the spectral method if13]. We will discuss approaches that avoid computing the matrix
exponential explicitly elsewhere.

We write the acoustic equation as a first order sydqtefh After discretizing the spatial operator, the equation
takes the form of the system of linear first order ordinary differential equations:

U, = Lu+F(@)
with the initial conditionu(0) = ug. In the case of time independent coefficients, the solution is given by
t
u(r) = e up + / =k F(r) di. @)
0

Using (1) for time evolution requires computing the matrix exponentfdldor a time stepAr. The computation
of e and applying it to a function is costly in dimensions 2 and higher and, therefore, this approach is rarely used
for numerical computations.

We use the separated representation introducgibirto represent the operatbrfor problems in two or higher
dimensions. This representation significantly reduces the cost of computing the matrix exponential and matrix—
vector multiplications. The separated representation of an operator in two or higher dimensions is given by a sum
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of products of operators acting in one dimension. We refer to the number of terms in the separated representation
as the separation rank. The separation rank for the matrix exponettiajws with the size of the time stefr,

and we will see that a time step between one and two temporal periods is appropriate to control both the separation
rank and the number of time steps. We note a typical time step in problems of wave propagation is a fraction of a
temporal period.

We reduce the computational cost further by using the partitioned low-rank (PLR) representation for operators
acting in one dimension. This representation is similar to the partitioned singular value decomposition considered
in [16,17] We note that both the separated and PLR representations are interesting on their own, with applications
in other areas, e.g., computational quantum mechanic${Se&8).

We note that in[19,13] the authors present a spectral method for applying the matrix exponential without
constructing such matrix. Our approach is competitive if the problem has to be solved repeatedly for the same
model with different initial conditions. We will consider a comparison of the methdti9i. 3] with our approach
separately.

We begin with a review of the bandlimited functions3action 2and construct derivative operators incorporating
boundary and interface conditions in the following sectionSattion 4we provide several numerical examples
demonstrating the accuracy of the derivative matrix based on bandlimited functions and also construct integration
operators with respect to bandlimited functions. In the following section we review the separated representation
and the PLR representation, and describe linear algebra algorithms for operators in these representation. We also
introduce the PLR representation and describe linear algebra algorithms for operators in this representation. Finally,
we apply these tools to solve the acoustic equation in two dimensid@eciion 6and give a number of numerical
examples and comparisons.

2. Bandlimited functions and their approximations

In physical phenomena there is always a bound for both the spatial/time extent and the wavenumber/frequency
range. However, a function cannot be compactly supported in both the space and the Fourier domain. In order
to manage this apparent contradiction, it is natural to consider the basis of eigenfunctions of the space and band
limiting operator. This has been the topic of a series of papers by SlepiafktE|.which introduced the prolate
spheroidal wave functions (PSWFs) as an eigensystem bandlimited ji][and maximally concentrated within
the space intervaH1, 1]. .

The bandlimited periodic functions can be expanded into the Fourier {ﬂ‘éﬁé}ﬂzo or, if we consider zero
boundary conditions, into the bag&nk((x + 1))/2},’(\’:1. However, in order to divide the computational domain
into subdomains, we need to allow arbitrary boundary conditions on the subdomains, and neither the Fourier nor
the sine basis are then acceptable. This motivates the introduction of a basis that can efficiently represent functions
of the typee'®™ for an arbitrary real valub, such thatb| < ¢, wherec s a fixed parameter, the bandlimit.

We note that solutions of equations of mathematical physics behave more like exponentials than polynomials.
This provides a naive but compelling motivation for using bandlimited functions rather than polynomials, as a
tool for approximating solutions. As we demonstrate, for a given accuracy, computing with bandlimited functions
significantly reduces the computational cost.

2.1. The prolate spheroidal wave functions

Let us briefly review the results [d,2,20]relevant to the purposes of this paper. The PSWFs are constructed for
a fixed bandlimit > 0. Consider the operatdt. : L2([—1, 1]) — L?([—1, 1]):

1
Fu()(w) = /_ B %)
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andQ. = (c/2n)F}F.:

b sine(y — x))

0.(W)0) = = f () d.
T y—x

The PSWFs are the eigenfunctions of the operafiprand F.. The eigenvalues of F, andu of Q. are related via
€ .2
= —|1% 3
M an | )

In our notation we may suppress the dependence of the eigenfunctions and eigenvalues on
Let us consider the spaces of bandlimited functions,

B. = {f € L’(R)| f(w) = Ofor || > c}.

The PSWFs form a complete basisliA([—1, 1]) andB, [1]. The eigenfunctiong ;(x) are real and orthogonal on
both [-1, 1] andR:

1
/_ () 8 = 3 @)
and
f_ Vi)W () d = %aﬁ, ®)

whereu; are eigenvalues of the operatQr.

The PSWFs are uniformly bounded on1, 1], ||+ L~(-1,1)) < K., for some constark, forall j =0, 1, ...
The existence oK. can be proven by observing that the PSWFs approach the Legendre polynomigats far
although finding tight bounds remains an open problem.

The eigenvalues of). are real and the spectrum is naturally divided into three parts. For large bandliihiés
first~ 2c/m eigenvalueg; of Q. are close to 1. The nexrt log ¢ eigenvalues make an exponentially fast transition
to zero and the remaining eigenvalues are very close to zero.

We have from(2) the spectral decomposition of the kernel:

&% = " vi(@) V(%) (6)

j=0

forall x, € [—1, 1]. This is the most efficient separated representation¥¥,avhere the series can be truncated
for somej > 2¢/m, due to the exponential decay of the eigenvalues
For the derivatives of PSWFs we establish the following proposition.

Proposition 1. On the interval—1, 1],

C
=clvjllew = —-

L2([-1,1]) LD

The proof follows from Bernstein’s inequalifgee e.g. [21. Ch. 2.58nd ||yl 2y = 1//1%;. Itis interesting to
compare this bound with another version of Bernstein's inequ@ésg, e.g., [21, Ch. 2.4l\vhich states that if(x)
is annth degree polynomial on the intervat], 1] and|p(x)| < 1 then, on this intervalp/(x)| < n2.

Recently, the generalized Gaussian quadratures for bandlimited exponentials were devd®@éd in

av;
dx
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Proposition 2. Forc > 0ande > 0,we constructnodesl < 0; < 62 < --- < 6y < 1and weightsv; > 0,such
that for anyx € [—1, 1]:

1 M .
f . €™ dt — Z wy €9X] < ¢ 7)

k=1

and the number of nodeM, is (nearly) optimal. The nodes and weights maintain the natural symmegry-
—Om—k+1 @ndwg = wy—g41.

Thus, we can integrate all functioe’é* with |b| < ¢ usingProposition 2The nodes and weights Rroposition 2
are computed as a function of the bandlimit 0 and the accuracy > 0 and can be viewed as the generalized
Gaussian quadratures for the bandlimited functions. We note that the algorifffinidentifies the nodes of the
generalized Gaussian quadratures as zeros dfsheeteprolate spheroidal wave functions (DPSWF) corresponding
to small eigenvalues. For a study of DPSWFs we ref¢bto

2.2. On the distribution of nodes for Gaussian quadratures

As it is well known, nodes of Gaussian quadratures (both the usual and generalized) accumulate near the end
points as the number of nodes grows. The rate of such accumulation has a critical influence in a variety of applications
where quadratures are used either for integration or interpolation.

Although we compute the nodes and weights af’]rby selecting first the bandlimit, and then computing
the minimal (or nearly minimal) number of noded, to achieve a given accuraey once such quadratures are
generated we use the number of nodes as the variable &g M, ¢) to study node accumulation.

Let us consider the ratio

6 — 61

r(M, E) = )
O\my2) — O\my2)-1

(8)

where “{ M/2|" denotes least integer part. Observing that the distance between nodes of the Gaussian quadratures
changes monotonically from the middle of the interval toward the end points, and that the smallest distance is
between the two nodes closest to an end point, this ratio can be used as a measure of node accumulation. For
example, the distance between the nodes near the end points of the standard Gaussian quadratures for polynomial
decreases a8(1/M?), whereM is the number of nodes, so that we hay#, ¢) = O(1/M).

Using the method ifi7], we have computed the generalized Gaussian quadratures for different accuracies and
observed the ratg M, €) at which nodes accumulate near the end points. We illustrate our results for two choices
of accuracye ~ 10~ 7 and~ 10~17. The error

. M
sincx ;

M)= max |2 - gComx 9
E( ) xe[-1,1] cx mX::lwm ()

was computed by selecting equally spaced points-th [] (including the end points) with an oversampling factor
of 10. Although we attempted to maintain a fixed accuracy, it is changing slightly earies and it results in a

jittery appearance of graphshigs. 1 and 2
In Fig. 1we show that the oversampling factor:

M
alM,€) = —— >
c(M, €)
approaches 1 for large M. This factor compares the critical rate of sampling of smooth periodic functions, either for
integration or interpolation, to that of smooth (non-periodic) functions on an interval. We recall that in the case of
the Gaussian quadratures for polynomials this limit/& rather than 1 (see e [§]).
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Fig. 1. The ratio"(M, €) in (8) and the oversampling facte(M, ¢) plotted against the number of nodes for quadratures of accaracy0~’
and~ 1017 (see alsdFig. 2).

We note that an erroneous comment was madé]iabout the rate of accumulation of nodes, suggesting that
(in our termsy(M, €) = O(1/~/M). Our results clearly rule out this rate of accumulation, suggesting instead that
the ratio approaches a constatiif, €) = O(— loge), although there might be weaker terms not easily observable
in our experiments. An asymptotic analysis of DPSWFs and PSWFs should lead to an analytic estifddte)of

We also note that there have been attempts to modify the polynomial based quadratures to avoid the problem:
caused by the accumulation of nodes near the end p[Bt24] However such approach resolves the issues
associated with using such quadratures only partially.

2.3. Bases for bandlimited functions on an interval

Following[7], let us define

&= !u e L¥([—1 1lu(x) = Y ar € : {adez € I b e [-1, 1]} :
keZ

10)

10t
12t

Error (log

14 |
—16 |

_18.W"MW’V‘/‘/"\/\/\/\/\/\/\/\’/\":

50 100 150 200 250
Number of nodes

Fig. 2. The accuracy of the quadratu(@/) in (9) as a function of the number of nodes.
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We haveg,. € C*°([—1, 1]) and prove the following theorem (sé@pendix A
Theorem 3. For everye > 0 andu € B, there exists a functioit € &, such thatjju — 1'2||L2([_1’1]) <e.

Any bandlimited function frong. can be approximated by a linear combination of a finite number of exponentials
in the form &%X where|6;| < 1. The phases, are chosen as nodes of the generalized Gaussian quadratures
([7, Theorem 6.1]see alsg6]). Following[7], we use the quadrature nodes and weights to construct basgs for

Theorem 4. Consideru € &,

u(x) = Zak glokx

keZ

and Iet{@;}lf‘i1 and{wl}l"i1 be quadrature nodes and weights for the bandl@niaind accuracy?. Then there exist
coef‘ficient\d{u,}l"i1 and a constant A such that

<A (Z |ak|) e
L([-1,1) keZ

The set of exponentia[s«sicekx}{:":1 may be viewed as a basis for bandlimited functi§psvith accuracy. The
basis of exponentials has the obvious advantage of being easy to differentiate and integrate but these functions are
far from being orthonormal and one must be careful using them for numerical computations. In this respect they
are analogous to monomials as a basis for polynomials. In order to construct a basis analogous to the orthogonal
polynomials, we turn to the PSWFs.

Instead of using the PSWFs directly, we choose to construct their approximgt]oas it is sufficient for our
purposes. Given the bandlimit> 0 and accuracy threshotd> 0, let us construct quadrature nodes and weights
according torheorem 4We then solve the algebraic eigenvalue problem:

M .
u(x) — Z u; €%

=1

M
Z wy gt i (6) = 1j¥j(Om) (10)
=1

and define the approximate PSWFs el 1] by

M
wi(x) = 1 > w (), (11)
iz

wherey(6;) are the eigenvectors {{10).

The matrix in(10)does not have zero eigenvalues as can be easily checked numerically although we do not have a
proof for this fact. We expect the eigenvalt{e;}y: 1 to approximate the fird#l eigenvalue$ ;} and eigenvectors of
F.. Thisis indeed the case, with the exception of small eigenvalues, where the relative error may be large. Since the
absolute values of the first 2c/7 eigenvalues iii2) are very close, some of them are numerically indistinguishable
(within the machine precision). As a result, we do not construct approximations to the individual PSWEg)via
but, instead, approximate correctly the subspace spanned by these functions.

Let us consider the inner products of functiongid):

1
Sij = [_ . W (x)¥;(x) dx 12)

fori, j=1,..., M. We have the following propositiofsee [7], Proposition 8.1)
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Proposition 5. The functiong?,, and¥, are nearly orthogonal and the elements of S satisfy

e leyzl Wk

if W, and ¥, are both even or both odd

0 otherwise

The matrixSdeviates from the identity matrix only when both andn, are small and close @ We observe that
in our numerical experiments the condition numbegbfas been less than 3.

In many applications, it is convenient to work with function values as well as with expansion coefficients with
respect to a set of basis functions. Followjiig we define the interpolating basis functions for bandlimited functions
as

M
Re(x) =) rig & (13)
=1

fork=1,..., M, where

M
1
ra = Z wk‘pj(@k);‘l’j(el)wl-
=1 /

It is shown in[7] that the function®R;(x) are interpolatingRy(6;) = 8y -

2.4. Examples of approximation by bandlimited functions

The three bases fdi., the exponential basis, the basis of approximate PSWFs, and the interpolating basis span
the same subspace since they are constructed as linear combinations of the eigenvé€b®@rélowever, it is
important to observe that the condition numbers of the transformation matrices for changing bases are drastically
different and determine how these bases are used for numerical computatidaisleriwe display the condition
numbers of transformation matrices for two accuracies. In both cases the condition number for transforming between
approximate PSWFs and the interpolating basis is small, while the other transformation matrices have very large
condition numbers.

This is similar to transformations between bases spanning the subspace of polynomials okd¥geamely,
the monomials, the Legendre polynomials, and the Lagrange interpolating polynomials with the Legendre nodes.
The basis of monomials corresponds to the basis of exponentials, while the basis of approximate PSWFs (which
are nearly orthonormal) is similar to that of the Legendre polynomials.

Let us provide several examples of approximation by the bandlimited functions. In our examples we sample
the function at the quadrature nodes which gives us the coefficients of the interpolating basis. We then find the

Table 1

Condition number for transformation matricesz 8.57

Transformation matrix e=10" e=10"1
Prolate— interpolating 27 35
Exponential— prolate 11 x 10° 2.5 x 101
Exponential— interpolating 12 x 108 3.1x 10"

The accuracy = 10~ requires 32 nodes and the accuraey 10-14 requires 41 nodes.
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Fig. 3. Absolute error (log) for approximating the functios’® in the interval [-1, 1] with || < 167. We use quadratures with 32 nodes and

different accuracies.

expansion coefficientg; with respect to the basis of the approximate PSWFs:

N
OEDI:-TAG) (14)
k=1
Expanding each PSWF via exponentials, we obtain the coefficigraad
N .
£ = ap €%, (15)
k=1

In Fig. 3we illustrate the error of approximating the functigf® in the interval [-1, 1]. In Fig. 4we display the
error of approximating the Chebyshev polynomials and an “almost” bandlimited Gay&siaa e */2% on the
interval [-1, 1] with variances? € [0.00005 5].

27 : 0
A : —— PSWFs, ¢ = 261
o - - PSWFs, ¢ =23
-2t "“ PSWFs, ¢ = 20.51
3 --= PSWFs, ¢ = 18.51
41
o o
=3 % 6t
) °
o o -8
o <
TP w10}
101 N — PSWFs, ¢ = 26x
SERNN -~ PSWFs,c=23x _12
12 ~ PSWFs, ¢ = 20,51 r
N -- PSWFs, ¢ = 18.51
—14 b -14}
-16 . . . . . . -16 . . . . . . . . . .
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Degree Variance, Iog10

Fig. 4. Absolute error (log) of approximating the Chebyshev polynomidigx), k =0, ..., 63, on [-1, 1] (left) and the Gaussians using
approximate PSWFs. We use quadratures with 64 nodes and different accuracies.
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3. Derivative matrices with boundary and interface conditions

In this section we illustrate how to incorporate the boundary and interface conditions into the derivative operator.
We follow the method irf11] (essentially the tau method, see §2h,26]) and extend the technique to a non-
orthogonal basis since the approximate PSWSX)}iAil are not orthonormal.

Let S be theM-by-M matrix (12). We consider the derivative operator on an interval subdivided into subin-
tervals and use’2 subintervals noting that other subdivisions are also possible. We; set-1 + 21N/ for
1=0,1,...,2", and defingp(x) by

Bul) = { V(2N (o = x1) = 1), x € [x, X4al, (16)

0, x & [xz, x144]
fori=0,...,2¥ —landk=1,..., M.
Consider functiong(x) of the form

2N_1 M

f@) =" sagulx). (17)

=0 i=1
Let us represent the derivatiy®(x) as

2N_1 M

(;—f: = > Sugu(). (18)

=0 i=1
where the transition matrix between the coefficieptands;; has the block tridiagonal structure
! !

ro r—1 Vl
rp ro r—1
rpr ro r-1
D= , (19)
riy ro r—1

rp ro r-1

I r

7‘71 ri VO

where each block is al x M matrix.

For each interval let us defise= [sy, s2, . .., sp] " and§ = [51, 52, ..., 5] fori =0, ..., 27 — 1, where
the coefficients;; ands;; are the expansion coefficients(iti7) and(18). Following the derivation ifil1], we obtain
S§ =-bG*'§_ 1+ (1 —a)F —(L—b)E — K)§ +aGS1 (20)

forl =0,...,2Y — 1, whereE, F andG are rank one matrices defined by

Ey = Y (=¥ (-1), Fu=%@0)¥(1) and Gy = ¢¥ (L)W (-1),

and 0< a, b < 1 are coupling parameters for the subintervals. For the first subinterval we have

S% = (1 — a)F — E — K) S0 + aGs, (21)



G. Beylkin, K. Sandberg / Wave Motion 41 (2005) 263-291 273

Table 2
The expressions for the blocks (h9)

Stencil type Expression

Periodic rn=r= 7%(371G*)
roi=rly =356
ro=rp=ro=3(SMK* ~ K))

fED =0 1= 3(5716)
r=-3(57G")

~
Il

rh=8"Y3F - K)
ro=3(S7MK* — K))
rh=S"Y-3E-K)
f(=£1) arbitrary ro1=3(571G)
ri=—3(571G*)
rh=8Y3F - E-K)
ro = 3(S7Y(K* - K))
ro=S8"YF—-1E-K)

Only non-zero blocks shown.

and if f(—1) = 0, then

S%=((1-a)F — K)o+ aGs1. (22)
For the last subinterval we have

SSn_1 = —bG*sn_r+ (F+ (b — 1)E — K)spv_q (23)
and if f(xov_1) = 0, then we obtain

SSn_1=—=bG*s;n_5+ (b — 1)E — K)Spv_1, (24)

whereG* denotes the complex transpose.

In order to construct derivative matrices for periodic boundary conditions, wW@Qxer the interior subintervals.
For the first and the last subintervals we (8@) by identifyings_1 = S,v_1 ands,y = S. Using(20)—(24)with
a = b =1/2, we obtain expressions for the blockg1®) as shown infable 2 where we use&® = F — E — K*.

If we have only one interval, then the derivative matrix for arbitrary boundary valugsiss—1 K *, the derivative
matrix for zero boundary condition8y = —S~1K, and that for periodic boundary conditions is given by

Dper == %(S_l(G - Gﬂ< - K + K*))

4. Differentiation and integration of bandlimited functions

Let us compare numerical differentiation and integration of bandlimited functions with finite differences and
pseudo-spectral methods. We use the derivative operators constructed in the previous section and demonstrate the
using spectral projectors to remove spurious eigenvalues of derivative matrices with boundary conditions improves
the accuracy.

For the first test let us fix the number of nodes and change the accyrémys obtaining different bandlimits
c. Using 32 nodes on the intervat|L, 1], we note that corresponding bandlimit for periodic functions (sampled at
the Nyquist frequency) is 16 We construct 4 derivative matrices using 32 nodes and accukaetpsal to 1613,
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Fig. 5. Absolute (left) and relative (right) errors for the first derivative of the funatibhin the interval [-1, 1] with |5| < 167 using a basis
of 32 approximate PSWFs.

10710, 1077, and 104, with the corresponding bandlimitsset to 557, 7, 857, and 1057, respectively. We
differentiate the functiory(x) = ¢** (not necessarily periodic in{1, 1]) for 200 values ob, —16x < b < 167.

For eachb we differentiate using 3% 32 derivative operator and then interpolate the result to 32 equally spaced
points (including the end points) in the interval1, 1] and compare it with the exact answer. The result is shown
in Fig. 5.

We note fronFig. Sthat the error is almost uniform f¢| < c. Itis also clear that a derivative matrix constructed
for a lower accuracy gives a good approximation within a larger bandwidth than a derivative matrix constructed for
a higher accuracy.

Compared tdFig. 3 we note that we lose 2-3 digits in differentiation. This is expected since according to
Proposition 1the ratio|| Dul|2/||u||2 is approximately bounded liyand, thus, the absolute error may be amplified
by a factorac. Since the maximum absolute norm afdi /dx equalsb, dividing the absolute error by gives us
the relative error which is smaller than the absolute error for all but the lowest frequenci&sysge

4.1. Comparison with pseudo-spectral methods and finite differences

Let us now compare the accuracy of differentiation using approximate PSWFs to a second order finite-difference
and spectral differentiation. For spectral differentiation we use the Chebyshev polynomials. We construct two
derivative matrices using approximate PSWFs for the accuraeyl0~’ and bandlimitc = 8.5z, ande = 10~13
and bandlimitc = 5.5z. For comparison, we construct a second-order central finite-difference derivative matrix,
using a second order boundary stencil for the first and the last row of the matrix. For the spectral differentiation, we
construct a block diagonal derivative matrix where each diagonal block is a derivative matrix with respect to the first
eight Chebyshev polynomials constructed using the algorithf2 Appendix C]. Each block is applied to one of
the four subintervals{1, —1/2],[-1/2, 0], [0, 1/2], and [1/2, 1]. We use subdivision since the derivative matrices
based on Chebyshev polynomials tend to have large norm for high degree polyn@rijaldle differentiate the
function f(x) = sin(bx) for 200 values ob, —16r < b < 16m. The result is shown ifig. 6.

We next consider an experiment using 64 nodes. We construct two derivative matrices using PSWFs with the
accuracye = 10~/ and bandlimitc = 237, and withe = 1013 and bandlimitc = 18.57. For comparison, we
construct a second-order central finite-difference derivative matrix and, for spectral differentiation, a block diagonal
spectral derivative matrix where each diagonal block is a derivative matrix with respect to the first 16 Chebyshev
polynomials. We differentiate the functiofix) = sin(bx) for 200 values ob, —32r < b < 327. The result is
shown inFig. 6.
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Fig. 6. Comparison of absolute errors for the first derivative of the functioh.gitg the interval -1, 1] with |b| < 167 and|b| < 327. The
derivative matrices in the basis of approximate PSWFs are constructed using 32 and 64 nodes.

4.2. Using spectral projectors to improve accuracy

The accuracy of the derivative matrix can be increased by projecting out a subspace corresponding to “spurious”
eigenvectors. Our approach is similar to filtering of eigenvalues of derivative matrices obtained with polynomial
quadratures (see e[@8]). We describe such projection for the first derivative operator with the periodic boundary
conditions and later use it for the second derivative operator with zero boundary conditions.

Consider the eigenvalue problem

Du=u =iu, u(-1)=u(l). (25)
It is easily seen that

Mk(x) _ eIkJTX

fork =0,1,..., are eigenfunctions of (25) with the corresponding eigenvalyes ikrz. Let us consider a dis-
cretization oD obtained by using the approximate PSWFs with the bandtirfithe eigenfunctions of the discretized
problem mimic the eigenfunctions(x) and we obtain a good approximationif(x) for all k =0, 1, ... such
thatkr < c. Forc/m < k < N, the eigenvectors “attempt” to describe the corresponding eigenfunatj@rjs but

the accuracy of the approximation rapidly decrease with incre&sig note that the eigenvectors corresponding
to eigenfunctions (x) for k > ¢/m are not useful to us, since we seek an approximation of bandlimited functions
within the bandlimitc. Hence, the eigenvectors corresponding to frequericies/n can be discarded. More for-
mally, letP denote the projector onto the space spanned by all eigenfuneti¢ryssuch thak < ¢/x. Our goal is

then to find a derivative matrix that approximates the operREP.

To project the derivative matrik, we diagonalizeD and set the unwanted eigenvalues to zero. Formally, let
us denote by, andfy the left and the right eigenvectors Bf with the eigenvalue.;,. We scaleek (or f) so that
fTek = 1 and defineP, = eka SinceD is anN-by-N diagonalizable matrix, we have = Zk 1 Ak Pr. Then the
prOjected matrixD is given byD Zl,\qu A Py. Alternatively, we can use the sign iteration method described in
[17].

The same procedure applies to the second derivative operator with zero boundary conditions. The second deriva-
tive is constructed abg = D Do, whereD is the first derivative operator without boundary conditions Bgds the
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Fig. 7. Comparison of the error for spectrally projected second derivative with zero boundary conditions (left) and the error for different
accuracies (right) for the function sbpx, whereby, = kr/2,k=1,..., 64.

first derivative operator with zero boundary conditions. We then apply the spectral projector and arrive at

Lproj = Z )\kekf/;ry

[Agl<c?

whereeg, andf; are the left and the right eigenvector o, respectively, scaled such tﬁé'ek = 1.
Let us demonstrate the impact of using the spectral projector. We construct two second derivative matrices

with zero boundary conditions with and without the spectral projector, for the bandlimi20.57 and accuracy
e = 10710 using 64 nodes. In all experiments we differentiate the funciir) = sinbix, whereb; = kn/2,
k=1,...,64.If we use the projected derivative matrix, then the error is smaller within the bandliasitshown
in Fig. 7. We attribute reduced error to a smaller norm of the projected derivative matrix (by afds@pand zero
eigenvalues for highly oscillatory, spurious eigenfunctions. We further illustrafggin7 the performance of the
projected derivative matrix for different accuracy thresholds and resulting different bandwidths.

4.3. The integration operator

In solving integral equations it is often useful to map a sequence of function \.{eyf(ﬁ}g},’("zl to the sequence
of integrals{ffkl f(x) dx},’(\’zl. Let us construct an integration matrix for bandlimited functions on an interval,

Ok
T = / Ri(x) dx.
-1

where R;(x) is a function of the interpolating basis for bandlimited functions. We use the definitiah tf
obtain

Ok 1 N gCombk _ g—ichm
/ Y(x)dx = — E Wy ¥V (0) ——————,
1 m = 1cOm

and proceed by using the definition Bf(x) in terms of the approximate PSWFs to obt@in
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Fig. 8. Absolute error for integraﬁe"1 eP* dx with |b| < 327, where{@k}gil are the quadrature nodes.

Let us illustrate the accuracy of integration using the bandlimited functions. We use 64 nodes and construct 4
derivative matrices using the same setting for the bandlimits and the accuracies as befm@gi_gbe a set of

the generalized Gaussian quadrature nodes for bandlimited functions. We compute the iﬁf@gfla‘lsix for 200
values of—327 < b < 32r. The results are shown Fig. 8.

5. Separated and partitioned low rank representations of operators

Using the matrix exponential to solve the wave equation allows us to take large time steps while controlling
the accuracy. However, computing the matrix exponential directly in two and higher dimensions becomes pro-
hibitively expensive even for moderate matrix sizes since the computational cost of the matrix-matrix multiplication
is O(NV3?) in d-dimensions. In order to overcome the prohibitive cost of computing and using the matrix exponential,
we need an efficient operator representation. We use separated representations that have been intfp8juced in
In this paper we consider only the two-dimensional case, and note that our approach generalizes to higher dimen-
sions using the algorithms {i15]. For operators in each separated direction we also use the so-called partitioned
low rank (PLR) representation, a simplification of the partitioned singular value decomposition (PSVD) used in
[16,29,30,17]

5.1. The separated representation

Letus consider alinear operatoacting on functions of two variables. We repredeby a matrixL(j1, jj. j2, js).
where the indicesj, j,) denote the input andj{, j2) the output variables. For simplicity we assume the same
range for all indicesj1, j;, j2, jo,=1,..., N.

Definition 6. For a givere, we represent the matrik(j1, j3. j2. j5), L - SN (CNZ, as
r

> sicAc(jn. 1) ® Biljz. j3).
k=1
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where ® denotes the Kronecker produdt(j1, jj)Y,—; and {Bk(j2. j5)};_, are N x N matrices,||Ax| = 1,
| Bkll = 1,5, > 0, and

r

L(j1. i 2. J5) = D scAw(jv. j1) ® Bi(ja. jb)
k=1

< e

The number of terms in the representatigns the separation rank &ffor accuracy.

We note that the separation rank differs from the operator rank, a similar representation that splits the input and
output variables. We note that (only in two dimensions) the separated representation can be computed using the
singular value decomposition (SVD). However, even in that case we use a simpler algorithm described below. In
higher dimension algorithms for computing separated representations can be f¢LBid in

If u € CV? is a vector in two dimensions, stored as a two-dimensional array, then the matrix—vector product can
be computed by

.
Z skAkuB;(r, (26)
k=1

where the matrixA; acts upon the columns of and B, acts upon the rows af. The computational cost for a
matrix—vector multiplication is then given by O(2°) provided that no additional representations are employed.
Linear algebra operations in separated representations are easily accomplished but the separation rank of the rest
will grow. For example, the matrix product of the two separated representdtioasd L, is computed as

ry r2
LiLy =Y > sPsPaPaP?) o (B BP), @7
k=11=1

yielding the separation ranlr,. To reduce the separation rank(®i7) while maintaining accuracy, we use the
algorithm described i®ection 5.3In most cases, the resulting rankssignificantly less thamrs.
As an example of a separated representation, consider an operator with variable coefficients,

1 0 0 1 0 0
r.y) o (“(x’ 2 a_) T by (”(x’ y)a_y>

in the acoustic equation, = Lu. We construct

o(x,3) = 3 57 1(E(0)

=1

567 567

Sy =7~ 7~
iy ()i (y)

) =

and obtain an approximation tq

iy kr(y) — kp(x) kp(y) dy

which we may reduce further. This computation is performed using a discrete representation of all coefficients and
operators and typically results in a very low separation rank.
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Fig. 9. Matrix subdivision for the 3-level PLR representation. The diagonal blocks are stored as full matrices and whereas the off-diagonal
blocks are of low rank and are represented accordingly.

5.2. The partitioned low rank (PLR) representation

The partitioned low rank (PLR) representation is a simplification of the partitioned singular value decomposition
(PSVD) introduced i1i16,29,30] and used for spectral projectorgiv]. The PSVD is simplified by dropping the
requirement of orthogonality between vectors as implied by the SVD and using a much simpler algorithm for rank
reduction. The PSVD and PLR are more flexible than wavelet decompositions and are applicable to a wider class
of matrices. In particular, the exponential of a matrix with pure imaginary spectrum and the bandlimited derivative
matrix constructed isection 4are of high rank, dense, non-Toeplitz, with entries oscillatory as functions of indices.
Unlike operators with real, negative spectrum, exponentials of such operators are not necessarily compressible via
the wavelet transform while the PLR representation is efficient even when wavelet or multiwavelet transforms
are dense. Ifsection 6we apply PLR representation to exponentials of operators with pure imaginary spectrum
(propagators) and its representation remains efficient for propagation over 1-2 periods (wavelengths).

The PLR representation is defined recursively by splitting a matrix into four blocks. The two diagonal blocks
are split further, whereas the two off-diagonal blocks are maintained using a low rank representation of the form
> ioiei f*. The 3-level PLR representation is illustratedFiy. 9, where we useD;, Ul", and Lf‘ to denote the
diagonal, upper and lower blocks of the partitioned matrix at different levels. This notation is convenient when
describing linear algebra operations in the PLR representation.

In all our computations for a given accuraey- 0, we seek an approximatiof of an operatoi such that
A — Al < e, where] - | is an operator norm. For many operators in the PLR representation, the coefficients of
the low rank representation of the off-diagonal blocks decay rapidly and we truncate the sum. Let us estimate the
threshold value at each level in the PLR representation of an opéatach thatj A — All2 < €, whereA is the
truncated operator.

Proposition 7. Consider a matrix A given by the m-level PLR regresentationZ\IMnote an approximation of, A
where each off-diagonal block B is approximatediyso that| B — B < €/(28m) for level k wherek = 1, ... m.
Then we havéiA — A| < e.

Proof. We have

2k m 2k=1
1Allz < Y IDfllz+ Y > (IUfll2 + ILF112). (28)
=1 k=1 1=1

Using the bound for the off-diagonal blocks, we arrive at the estimate.
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Let a matrixA be in anm-level PLR representation. In order to compute the matrix—vector protiudt is clear
from Fig. 9that there are two types of matrix—vector multiplications we need to evaluate. We need to compute the
dense matrix—vector products for the diagonal blocks and the matrix—vector prdhﬁﬁetstlkﬁ, wherei™ e CM,

Ny = N/2K. If Lf‘ = Y i_1sie [, then the matrix—vector product is computed as
r
qu = Zs,-(u, fivei. (29)
i=1

The cost of such matrix—vector multiplication is/@f). Assuming that the rank of all off-diagonal blocks is the
same, the total cost of computint is then estimated a2 + "} ; 2rNy. If the total size ofAis N = 2,
then we have the estimate of the total cost of matrix—vector multiplication in the PLR representatiof &s®(
log N).

We next describe an algorithm for computing the product of two matrices given in the PLR representation.
Consider the matrix produ& B, whereA andB are matrices in thetlevel PLR representation. We consideand
B as the block matrices,

|:A11 A12:| {Bn Blz}

A= and B= ,

A21 A22 B21 B2

where off-diagonal blocks are of the forn;_; o;e; f* and the diagonal blocks are in tie — 1-level PLR
representation. The product &f and B involves three types of block multiplications. The first is the prod-

uct between two low rank representations, and such multiplication preserves the low rank form. The second
is the product between the — 1-level PLR and a low rank representation which amounts to matrix—vector
multiplications described above. The resulting low rank representation has to be added at the appropriate lev-
els of the PLR representation and the rank of the result reduced via an algorithm described below. The third

type of block multiplication is the product between the twmo— 1-level PLR representations which we treat
recursively.

5.3. Rank reduction

In order to reduce the rank of a separated representation of thedrmo;e; f;*, where|le;|| = | fill = 1, we
need to orthogonalize either the vect¢eg’_, or { f;}/_, to reveal the actual rank of the representation. We call
such procedure an orthogonalization sweep and use the size of the dynamically agljasteidots in choosing the
order in which orthogonalization is performed. As we orthogonalize the vegigfs,, we simultaneously modify
the vectorq f;}/_, as to maintain the representation.

Once the vector’gei}f?:1 have been orthogonalized, we project the vecta$_, . , onto the orthogonal comple-
ment ofe;, normalize, and modifyf; to maintain the representation. The vect{mris;f.‘:ll are now an orthonormal
set and we continue the procedure recursively. We also use the dynamically comptotedncate this process as
o; become smaller than the threshold of accuracy.

After one orthogonalization sweep, only one set of vectors remains orthogonal and we may choose to repeat the
procedure for the other set. Such iterations eventually converge to the SVD. Since we do not require orthogonality
in separated representations, we typically perform only two orthogonalization sweeps. This algorithm is briefly
described if15], where a significantly more complicated algorithm for reducing the separation rank is presented
for higher dimensions.
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6. Solution of the acoustic equation in two dimensions
Let us consider the acoustic equation

Uy = %[(cmx),C + (ouy)y] + F (30)

with the initial conditionsu(x, y, f);=0 = f(x, y), u:(x, y, );;=0 = g(x, y) and the boundary condition;p = £,
where &, y) € D andr € [0, 0o). Here the functiom = «(x, y) is the compressibility, and the functien= o (x, y)
is the specific volume (the inverse of density) of the medium.

We consider the domaiP to be a rectangle which is subdivided, if necessary, into rectangular subdomains. We
are using bandlimited functions on intervals and, thus, can subdivide without inflicting an unreasonable increase in
the number of terms in the representation of functions on subdomains. In the future extensions of our approach for
more general domair®, we plan to subdivide them into subdomains and map such subdomains into rectangles so
that we can use the tools developed in this paper.

Let us first rewrite the acoustic equati(80) as a first order system in time. Since the coefficianésdo are
time independent, the propagator for the homogeneous protiHem () is given by the exponential of a matrix.

We represent the spatial operator by the separated representation descBketidn 5.1which decomposes the
operator into a short sum of matrices acting in one dimension. We then compress these matrices using the PLR
representation isection 5.2

Following the derivation by Bazer and Burridffet], we introduce the functionsandw, and write the acoustic

equation(30) as

_ 4
O 0 O'a—
w 8); w 0
v | = 0O O oy v | + 0 , (31)
y
u |, 13 13 u féF(x,y,t)dt
-——-— 0
|« 0x K Dy A

where each block is given in its separated representation. #¢de and 3” /9y denote differentiation operators
with boundary conditions imposed in tRendy direction. We rewrite equatiof81) as

u, = Lu+F, with u(0) = up, (32)

whereu = [w v u]" andL is the linear operator incorporating the block matrix on the right-hand siggpfUsing
bases for bandlimited functions (or finite differences in comparison codes), we dis¢82jae space resulting in
a finite-dimensional system of ODEs lfis time independent, thar(r) = ' ug.

Eq. (32)is then solved by

t
u) = PO+ () [ P () dr
0
where the propagatd?(¢) is an operator solving the integral equation:
t
P(t) = I+/ L(7)P(r)dr.
0

We construct. using derivative operators for bandlimited functions with boundary and interface conditions incor-
porated according t8ection 3and propagate the solution by applying the matrix exponeritiaLet us describe
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a numerical scheme for solving the homogeneous acousti¢3Byin two dimensions with time independent
coefficients and boundary conditions. We proceed via the following steps:

(1) Construct the derivative matrices representifitx, 3°/dx, 9/dy anda? /dy using the results iSection 3

(2) Construct separated representations of the multiplication operatdps 1) ando(x, y)

(3) Constructblocks ofthe 8 3 spatial operatori(31)and use the algorithm Bection 5.30 reduce the separation
rank of each block.

(4) Select the time stepr (see below) and compute the matrix exponentfdt eising the scaling and squaring
algorithm (see e.q.31]). The linear combinations and products of the matrix blocks given in the separated
representation are computed using the methods descrit@stiion 5

(5) Compute the solution(r;) = e u(tx_1), starting fromu(ro) = u(0), fork = 1, ..., Niime.

We refer to this algorithm as the method of bandlimited bases (MBB) with the exponential propagator (EP). We
note that for time dependent boundary conditions the problem can be reduced to that with zero boundary conditions
and a forcing term.

Ifthe factorsin the separated representation (which are ordinary matrices) are large, we use the PLR representatio
described irSection 5.20 speed up the computations in Steps 4 and 5 above. As discusSedtion 4 the norm
of the derivative projectors can be greatly reduced by using spectral projectors. For example, to construct projectec
versions ofd/dx andd”/ax (derivative operators in the-direction), we form the block matrix,

0D
L= o,

whereD and Dg are constructed as fBection 3 The boundary conditions are enforced only for the functiom
(31) which results in the structure of the mattixabove. We then construct the projected operator,

Lproj = Z )»kekf;-,

[Agl=c

whereg, andf; are the left and the right eigenvectorlgfscaled so tha‘t,;re% = 1. The projected version @f ox
is now given by the lower left block of proj, and the projected version 6% /ax for zero boundary conditions is
given by the upper right block dfproj. Using these blocks, we assemble the 3 block-matrix representation of
the operator ir{31).

In most numerical methods for wave propagation, the time step is restricted by the Courant—Friedrich—Lewy
(CFL) condition (see e.d32]). According to the CFL condition, the spatial step is controlled by the speed of
the propagating waves to ensure stability. When using the matrix exponential, the tinter stap be chosen as
large as desired without causing instabilities as long as the opér&i@s no eigenvalues with positive real part.

In our approach a very large time step will increase the separation rank and the ranks in the partitioned low rank
representation. We have found that choosing the time step between 0.5 and 2 periods gives a good compromis
between an efficient representation of the matrix exponential and the number of time steps.

In solving the equation, we maintain solutions at the quadrature nodes of the bandlimited representation. For
illustrations, we interpolate the result to an equally spaced gridgsegon 14.

6.1. Comparison of the results

We compare the MBB with the exponential propagator (MBB with EP) to two other methods. In the first
comparison we use the MBB but replace Steps 4 and 5 with the explicit RK4 solver in time (MBB with RK4). In
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the second comparison we write the acoustic equation (30) as a first order system:

][l s CRN ] &

and discretize it in space using the fourth-order finite difference stencil on an equally spaced grid including the
endpoints (sef25]) and use the explicit RK4 solver in time (FD with RK4).

To compare methods for solving the acoustic equation, we introduce the characteristic time and length scales.
Let us consider orH1, 1] the wave equation,; = u,, with the zero boundary conditions. This equation describes
a medium with the unit compressibility and specific volume and, thus, the unit velocity. For the initial conditions
u(x, 0) = sin((kwr/2)(x + 1)) andu,(x, 0) = 0, and each integds; we have the solution

u(x, 1) = sin (km)(x + 1)) cos (kr)r).

Since the velocity is equal to 1, we define the characteristic perieds/b, and the characteristic length scale,
A = m/b, whereb = krr/2 is the bandlimit. For periodic solutions in dimensida= 1, the Nyquist sampling rate
(in time) requires two samples per characteristic petioffe note that in dimensia# = 2, for sampling purposes
the corresponding time period has an extra fagt@rsince the solutions of; = u., + uyy in[=1, 1] x [-1,1],
with the zero boundary condition and the initial conditias, y, 0) = sin(kr/2)(x + 1)) sin(¢=/2)(y + 1)) and
u:(x, y, 0) = 0, contain the factor cos(2nt/7).

6.1.1. Comparison of accuracy and speed for constant coefficients
For our first set of experiments, we solve

Uy = Uxx + Uyy, (x,y) € (=1,1) x (-1,1),
u(x, y, 0) = sinG(z(x + 1)) sinG (z(y + 1))) + sinG(x + 1)) sinp(y + 1)),
u(£1, y) = u(x, £1) = u,(x, y, 0) = 0, (34)

whereb = krr/2 for some integet > 1, and the solution is given by

u(x, y,t) = sin <@> sin (#) cos(%t) + sin((x + 1)) sin@(y + 1)) cos/2br).

We note that this solution contains both low frequency (the first term) and high frequency (the second term) modes.
For the experiments in this section, we measure the error of the vectofw v «]T using the relative norm,
namely, if(i approximates the exact solutionthen

U —TGlloo

error=
lulloo

In the first experiment, we solv@4) usingb = 22.57. We propagate the solution and evaluate the error over a
range of approximately 1-f#@haracteristic periods, and also record the CPU time it took to produce the solution.

For the MBB with EP, we construct 64 quadrature nodes and weights for the banrdin®8r, which for periodic
functions corresponds to an oversampling factor of approximately 1.4. We set the accuracy in the construction
to € = 107 resulting in 64 nodes, and select the time step= +/2/23 corresponding to approximately 1.4
characteristic periods. We represent the operator using the separated and PLR representations. This results ir
the separation rank = 5 for the blocks in the exponential operator. For comparison, we use the same spatial
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Fig. 10. Relative error in the max-norm for approximating the solutio{349 (top) and the computational time (bottom).

discretization as for the MBB with EP, but use the RK4 solver in time with the timestgp28. The results are
shown inFig. 10

In order for the finite difference fourth order scheme to reach similar accuracy, we need more than 1024 samples
in space corresponding to an oversampling factor of approximately 22 (for periodic functions) and a timestep
t = At/128. With this sampling rate, the computational time per characteristic period is almost 3 min, or more
than 5000 times slower than using the MBB with EP. However, such oversampling factor is significantly larger
than is typically used. For this reason, in the next experiment we solve the same equation, but use 400 sample:
in space for the fourth order scheme, corresponding to an oversampling factor of approximately 8.7 (compared
for the Nyquist frequency for periodic functions), and a timestei32. The results are shown kig. 11 In this
experiment, the computational times for the two methods are comparable, but the MBB with EP is significantly more
accurate.

In the next experiment, we demonstrate that the cost of improving accuracy is small for the MBB with EP. Let us
fix b = 19.5, and solve the model problef®4) using the MBB with EP for the bandlimit= 20r with 52, 56, 60,
64, and 68 nodes. For all solutions, we use the time Ateg +/2/20 (approximately 1.4 characteristic periods).
The result is shown ifrig. 12

We observe that using 60 nodes takes approximately two times longer than using 52 nodes but gives approximately
4 more digits of accuracy. We also note that the error increases linearly over time.

6.1.2. Numerical dispersion
Due to inaccuracies of differentiation, the different Fourier modes of a pulse propagate with different speeds.

After some time the shape of the pulse deteriorates.
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To examine this phenomenon, let us consider the wave equation in one dimensiory, = 0, the solutions
of which correspond to right-traveling waves. Solutions of this equation take the form:

u(x’ t) — eiw(X—Ct)’

which we refer to as a Fourier mode of frequercyraveling to the right with velocitg. Exact differentiation of
this solution yields

iu = i do—CY,

X

If the error in the representation of the differentiation operator is of the form

i f(w) 20—,
ox

then the Fourier mode propagates with the velocftfw)/w. Unless f(w) = w, which corresponds to the exact
differentiation, the Fourier modes of different frequencies travel with different velocities. For example, in the case
of the second order centered finite difference approximation of the deriv{se = sin(w).

Fig. 13. Solution 0f35) using the MBB with EP. The shape of the pulse is maintained throughout the propagation.
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In this section we compare numerical dispersion using the MBB with EP and the FD with RK4 described in
Section 6.1Let us solve

Uy =gy + 1y,  (6,) €(=2,2)x(=2,2),  u(x,y,0) = sinc(27mx)sin(27ry),
u(£2, y) = u(x, £2) = u,(x, y,0) = 0. (35)

The solution is a sharp pulse originating at the center of the domain, and expanding outward. In the absence of
numerical dispersion, the shape of the pulse should be maintained.

For the MBB with EP, we construct 128 quadrature nodes and weights for the bandin®tr. We set the
accuracy in the construction éo= 10~’. We divide the domain into four subdomains and approximate the solution
on each subdomain using 128-by-128 nodes. We use the timé\stef2r/c corresponding to propagating two
characteristic wavelengths, and represent the operator using the separated and PLR representations. This result
in separation rank either=5 or 6 for the blocks of the exponential operator. For the fourth order scheme, we
use 432 samples in space and the timegatep- 77/10c corresponding to propagating a tenth of the characteristic
wavelength. This sampling rate yields approximately the same computational time for the two schemes. The results
are shown as sequences of imageBigs. 13 and 14

We note that in the MBB with EP the shape of the pulse is maintained. For the FD with RK4, the pulse begins to
noticeably deteriorate, as the error accumulates due to the numerical dispersion. The numerical dispersion affects
our method as well but at a much slower rate.

Fig. 14. Solution 0f35) using the FD with RK4. Note the ripples near the wave front which are caused by numerical dispersion.
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6.1.3. Numerical results for variable coefficients

Let us consider the acoustic equation with variable coefficients. Since we do not have an analytical solution, we
simply display a sequence of images and study the shape of the pulse as it propagates throughout the domain. Le
us solve

1

= oSl up), (00) € CLDX (LD (e y, 0) = e O,
Ky
u(:tl, }’) = u(x, :tl) = ut(x’ Vs 0) =0, (36)
where
1
«(y) =

1—sin((y + 1))/2°

The solution is a sharp pulse originating at the origin of the domain, and expanding outwards in the medium with
varying velocity. For the MBB with EP, we construct 128 quadrature nodes and weights for the banetirbur.

We set the accuracy in the constructiorte 107, We use the time stefir = 27/c corresponding to propagating

over two characteristic wavelengths. This choice of parameters yields the separation rank-=either 8 for the

blocks of the exponential operator. Using the PLR representation for compéting is in this case approximately

25% faster than using the dense representation of matrices in one dimension. The gain due to PLR increases fc
larger problems. For the FD with RK4, we use 216 samples in space and the timestep/10c, corresponding

Fig. 15. Solution of35) using the MBB with EP.
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Fig. 16. Solution of35) using the FD with RK4. Note the ripples which are caused by numerical dispersion.

to propagating over one-tenth of the characteristic wavelength. This sampling rate gives the two schemes
approximately the same computational time. The results are shown as sequences of irraged fhand 16

Both solutions behave qualitatively in the same way by propagating faster in the upper part of the domain where
the wave velocity is higher. We note that for the MBB with EP, the shape of the pulse is maintained. For the FD
with RK4, the pulse begins to noticeably deteriorate, as the error accumulates due to the numerical dispersion.

Appendix A. Proof of Theorem 3

First, let us consider a functiane B, N L1(R). Using the Fourier transform, we write it (almost everywhere) as

I(x) = / ‘ o(w) € do,

—C

whereo is continuous and bounded sinces L1(R). Let us defingyy = —c + (2k¢/N) fork =1,..., N. Then
|br| < ¢ and we can approximatewith the Riemann sum,

N

509 = 203" o(h) €% + En(),
k=1
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where limy_. En(x) = 0 for allx € [-1, 1]. We chooseN sufficiently large, such thatE y || zo[-1,1] < e/Zﬁ
and define fowx € [—1, 1]

N
i(x) = Z ay PR
k=1

wherea; = 2co(b;)/N. Thenii'is bounded on|1, 1] and|v(x) — ii(x)| < €/2+/2 almost everywhere.
Nextwe consider afunctiane B.. Then, sincés. N L1(R)is dense irB,, there exists a functione B, N L1(R)
such that

lu —vll 2117 < 5 (A1)
As we showed above, there exists €. such thatv(x) — ii(x)| < €/2+/2 almost everywhere or{l, 1] and, hence,

€2

1
lv—@l3o_q 4= /_1 v(x) — () dx < —,
which combined with{A.1) gives us

lu — il p2p_q1) < llu — vllp2p_q )+ llv — il 21 9] <€
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