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Abstract. We use generalized Gaussian quadratures for expo-
nentials to develop a new ODE solver. Nodes and weights of these
quadratures are computed for a given bandlimit c and user selected
accuracy ǫ, so that they integrate functions eibx, for all |b| ≤ c, with
accuracy ǫ. Nodes of these quadratures do not concentrate exces-
sively near the end points of an interval as those of the standard,
polynomial-based Gaussian quadratures. Due to this property, the
usual implicit Runge-Kutta (IRK) collocation method may be used
with a large number of nodes, as long as the method chosen for
solving the nonlinear system of equations converges. We show that
the resulting ODE solver is symplectic and demonstrate (numeri-
cally) that it is A-stable. We use this solver, dubbed Band-limited
Collocation (BLC-IRK), for orbit computations in astrodynamics.
Since BLC-IRK minimizes the number of nodes needed to obtain
the solution, in this problem we achieve speed close to that of the
traditional explicit multistep methods.

1. Introduction

Standard methods for solving ODEs, be that multistep or Runge-
Kutta, are based on polynomial approximations of functions. How-
ever, both classical and recent results [35, 22, 34, 36, 2, 3, 4, 27] indi-
cate that in many situations band-limited functions provide a better
tool for numerical integration and interpolation of functions than the
traditional polynomials. We construct a new method for solving the
initial value problem for Ordinary Differential Equations (ODEs) us-
ing band-limited approximations and demonstrate certain advantages
of such approach. As an example, we consider orbit computations in
astrodynamics as a practical application for the new ODE solver as
well as a gauge to ascertain its performance.
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Using approximations of functions via exponentials instead of poly-
nomials have been considered in e.g., [7, 12, 26] and, recently, in e.g.,
[17, 18, 13, 20, 21], where in [13, 20, 21] authors use band-limited expo-
nentials with complex-valued exponents. In these papers the nodes are
chosen to be equally spaced and, thus, such methods may be viewed
as band-limited analogues of multistep schemes. As explained below,
our method, dubbed Band-limited Collocation Implicit Runge-Kutta
(BLC-IRK), uses unequally spaced nodes and is different from the ear-
lier approaches as in e.g., [1, 8].
It is well-known that choosing between equally spaced and unequally

spaced nodes on a specified time interval results in significantly different
properties of ODE solvers. For example, polynomial-based multistep
schemes have {Re(z) ≤ 0, z ∈ C} as the region of absolute stability
(A-stable) only if their order does not exceed 2, the so-called Dahlquist
barrier. In contrast, an A-stable implicit Runge-Kutta (IRK) scheme
may be of arbitrary order. A class of A-stable IRK schemes uses the
Gauss-Legendre quadrature nodes on each time interval and the order
of such methods is 2ν, where ν is the number of nodes (see, e.g., [16]).
A-stability assures that growth and decay of numerical solutions ex-
actly mimics that of the analytic solutions of the test problem which,
in turn, implies that the choice of step size involves only accuracy con-
sideration.
Another property of interest, that of preservation of volume in the

phase space, identifies symplectic integrators. Symplectic integrators
preserve a particular conserved quantity of Hamiltonian systems as well
as an approximate Hamiltonian. In problems of orbit determination,
a symplectic integrator would maintain the correct orbit more or less
indefinitely with the error accumulating only in a position along that
orbit, thus closely reproducing a particular behavior of analytic solu-
tions of nonlinear Hamiltonian systems. The IRK schemes which use
the Gauss-Legendre nodes are symplectic (see, e.g., [16]).
While IRK schemes with the Gauss-Legendre nodes provide an ex-

cellent discretization of a system of ODEs, using many such nodes on
a specified time interval is not practical. The nodes of the Gauss-
Legendre quadratures (as well as any other polynomial based Gaussian
quadratures) accumulate rapidly towards the end points of an interval.
A heuristic reason for such accumulation is that these quadratures have
to account for a possible rapid growth of polynomials near the bound-
ary. If functions being approximated do not exhibit such behavior,
then such concentration of nodes may not be needed. However, using
equally spaced nodes as in the standard multistep methods, leads to
less than ideal properties of the resulting schemes as mentioned above.
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In this paper we demonstrate that, within IRK collocation methods,
quadratures based on polynomials may be replaced by quadratures for
band-limited exponentials. The nodes of these quadratures do not ac-
cumulate significantly toward the end points of an interval (a heuristic
reason for an improved arrangement of nodes is that the exponentials
do not grow anywhere within the interval). Our method addresses
numerical integration of ODEs whose solutions are well approximated
by band-limited exponentials. We note that band-limited exponentials
have been successfully used in problems of wave propagation [3] (see
also [29, 20]), where it is natural to approximate solutions by band-
limited functions.
Unlike the classical Gaussian quadratures for polynomials that in-

tegrate exactly a subspace of polynomials up to a fixed degree, the
Gaussian type quadratures for exponentials use a finite set of nodes
to integrate an infinite set of functions, namely,

{

eibx
}

|b|≤c
on the in-

terval |x| ≤ 1. As there is no way to accomplish this exactly, these
quadratures are constructed so that all exponentials with |b| ≤ c are
integrated with accuracy of at least ǫ, where ǫ is arbitrarily small but
finite. Such quadratures were constructed in [2] and, via a different
approach in [36] (see also [28]). As observed in [3], quadrature nodes of
this type do not concentrate excessively toward the end of the interval.
The density of nodes increases toward the end points of the interval
only by a factor that depends on the desired accuracy ǫ but not on the
overall number of nodes.
Using quadratures to integrate band-limited exponentials with ban-

dlimit 2c and accuracy ǫ2, we naturally arrive at a method for inter-
polation of functions with bandlimit c and accuracy ǫ (see [36, 2]).
It turns out that the nodes and weights of quadratures to interpolate
with accuracy ǫ ≈ 10−15 can, in fact, be constructed using only the
standard double precision machine arithmetic. However, generating
the integration matrix for the new double precision BLC-IRK method
requires using quadruple precision in the intermediate calculations. Im-
portantly, once generated, the quadratures and the integration matrix
are applied using only the standard double precision.
While analytically the classical Gauss-Legendre quadratures for poly-

nomials are exact, in practice their accuracy is limited by the machine
precision. By choosing (interpolation) accuracy ǫ ≈ 10−15, our in-
tegrator is effectively “exact” within the double precision of machine
arithmetic. Remarkably, using a particular construction of the integra-
tion matrix, we show that BLC-IRK method is (exactly) symplectic
and, with high accuracy, A-stable. These results were unexpected and
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indicate that properties of approximate quadratures for band-limited
exponentials need to be explored further.
While IRK schemes require solving a system of nonlinear equations

at each time step, it does not automatically imply that such schemes are
always computationally more expensive than explicit schemes. In the
environment where the cost of function evaluation is high, the balance
between the necessary iteration with fewer nodes of an implicit scheme
vs significantly greater number of nodes of an explicit scheme (but
no iteration), may tilt towards an implicit scheme. In problems of
astrodynamics, we use an additional observation that most iterations
can be performed with an inexpensive (low fidelity) gravity model,
making implicit schemes with a large number of nodes per time interval
practical. We select the problem of orbit determination as an example
where our approach is competitive with numerical schemes that are
currently in use (see [5, 6]). We take advantage of the reduced number
of function calls to the full gravity model in a way that appears difficult
to replicate using alternative schemes.
In order to accelerate solving a system of nonlinear equations, we

modify the scheme by explicitly exponentiating the linear part of the
force term. For the problem of orbit computations this modification
accelerates convergence of iterations by (effectively) making use of the
fact that the system is of the second order. So far we did not study
possible acceleration of iterations using spectral deferred correction ap-
proach as in [11, 24, 15, 19].
We start by providing background information on quadratures for

band-limited functions in Section 2. We then describe BLC-IRKmethod
in Section 3 (with some details deferred to Appendix). In Section 4 we
detail our algorithm and provide examples.

2. Preliminaries: quadratures for band-limited functions

2.1. Band-limited functions as a replacement of polynomials.

The quadratures constructed in [36, 2, 28] break with the conventional
approach of using polynomials as the fundamental tool in analysis and
computation. The approach based on polynomial approximations has
a long tradition and leads to such notions as the order of conver-
gence of numerical schemes, polynomial based interpolation, and so
on. Recently, an alternative to polynomial approximations has been
developed; it turns out that constructing quadratures for band-limited
functions, e.g., exponentials eibx, with |b| ≤ c, where c is the bandlimit,
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in many cases leads to significant improvement in performance of al-
gorithms for interpolation, estimation and solving partial differential
equations [3, 29, 20].

2.2. Bases for band-limited functions. It is well-known that a
function whose Fourier Transform has compact support can not have
compact support itself unless it is identically zero. On the other hand,
in physics duration of all signals is finite and their frequency response
for all practical purposes is also band-limited. Thus, it is important to
identify classes of functions which are essentially time and frequency
limited. Towards this end, it is natural to analyze an operator whose
effect on a function is to truncate it both in the original and the Fourier
domains. Indeed, this has been the topic of a series of seminal papers
by Slepian, Landau and Pollak, [35, 22, 23, 31, 32, 33, 34], where they
observed (inter alia) that the eigenfunctions of such operator (see (2.2)
below) are the Prolate Spheroidal Wave Functions (PSWFs) of classical
Mathematical Physics.
While periodic band-limited functions may be expanded into Fourier

series, neither the Fourier series nor the Fourier integral may be used
efficiently for non-periodic functions on intervals. This motivates us
to consider a class of functions (not necessarily periodic) admitting a
representation via exponentials

{

eibx
}

|b|≤c
, x ∈ [−1, 1], with a fixed

parameter c (bandlimit). Following [2], let us consider the linear space
of functions

Ec =

{

u∈L∞([−1, 1]) | u(x) =
∑

k∈Z

ake
icbkx : {ak} k∈Z∈ l

1, bk∈ [−1, 1]

}

.

Given a finite accuracy ǫ, we represent the functions in Ec by a fixed set

of exponentials {eicτkx}
M
k=1, where M is as small as possible. It turns

out that by finding quadrature nodes {τk}
M
k=1 and weights {wk}

M
k=1 for

exponentials with bandlimit 2c and accuracy ǫ2, we in fact obtain (with
accuracy ǫ) a basis for Ec with bandlimit c [2].
The generalized Gaussian quadratures for exponentials are constructed

in [2] (see [36] and [28] for different constructions), which we summarize
as

Lemma 1. For c > 0 and any ǫ > 0, there exist nodes −1 < τ1 <
τ2 < · · · < τM < 1 and corresponding weights wk > 0, such that for
any x ∈ [−1, 1],

(2.1)

∣

∣

∣

∣

∣

∫ 1

−1

eictx dt−
M
∑

k=1

wke
icτkx

∣

∣

∣

∣

∣

< ǫ,
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where the number of nodes, M = c/π + O (log c), is (nearly) optimal.
The nodes and weights maintain the natural symmetry, τk = −τM−k+1

and wk = wM−k+1.

Remark 2. The construction in [2] is more general and yields quadra-
tures for band-limited exponentials integrated with a weight function.
If the weight function is 1 as in Lemma 1, then the approach in [2]
identifies the nodes of the generalized Gaussian quadratures in (2.1) as
zeros of the Discrete Prolate Spheroidal Wave Functions (DPSWFs)
[33], corresponding to small eigenvalues.

Next we consider band-limited functions,

Bc = {f ∈ L2(R) | f̂(ω) = 0 for |ω| ≥ c},

and briefly summarize some of the results in [35, 22, 23, 31, 34]. Let
us define the operator Fc : L

2 [−1, 1] → L2 [−1, 1],

(2.2) Fc(ψ)(ω) =

∫ 1

−1

eicxωψ(x)dx,

where c > 0 is the bandlimit. We also consider the operator Qc =
c
2π
F ∗
c Fc,

(2.3) Qc(ψ)(y) =
1

π

∫ 1

−1

sin(c(y − x))

y − x
ψ(x) dx.

The eigenfunctions ψc
0, ψ

c
1, ψ

c
2, · · · of Qc coincide with those of Fc, and

the eigenvalues µj of Qc are related to the eigenvalues λj of Fc as

(2.4) µj =
c

2π
|λj|

2, j = 0, 1, 2, . . . .

While all µj < 1, j = 0, 1, . . . , for large c the first approximately 2c/π
eigenvalues µj are close to 1. They are followed by O(log c) eigenvalues
which decay exponentially fast forming a transition region; the rest of
the eigenvalues µj are very close to zero.
The key result in [35] states that there exists a strictly increasing

sequence of real numbers γ0 < γ1 . . . , such that ψc
j are eigenfunctions

of the differential operator,

(2.5) Lcψ
c
j ≡

(

−(1− x2)
d2

dx2
+ 2x

d

dx
+ c2x2

)

ψc
j(x) = γjψ

c
j(x) .

The eigenfunctions of Lc have been known as the angular Prolate Spher-
oidal Wave Functions (PSWF) before the connection with (2.2) was
discovered in [35] by demonstrating that Lc and Fc commute. We note
that if c → 0, then it follows from (2.5) that, in this limit, ψc

j become
the Legendre polynomials. In many respects, PSWFs are strikingly
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similar to orthogonal polynomials; they are orthonormal, constitute a
Chebychev system, and admit a version of Gaussian quadratures [36].
Since the space Ec is dense in Bc (and vice versa) [2], we note that

the quadratures in [36] may potentially be used for the purposes of this
paper as well (the nodes of the quadratures in [36] and those used in
this paper are close but are not identical). Importantly, given accuracy
ǫ, the functions ψc

0, ψ
c
1, ψ

c
2, · · · , ψ

c
M−1 may be used as a basis for inter-

polation on the interval [−1, 1] with τ1, τ2, · · · , τM as the interpolation
nodes, provided that these are quadrature nodes constructed for the
bandlimit 2c and accuracy ǫ2. Given functions ψc

0, ψ
c
1, ψ

c
2, · · · , ψ

c
M−1,

we can construct an analogue of the Lagrange interpolating polynomi-
als, Rc

k(x) =
∑M−1

j=0 αkjψ
c
j(x), x ∈ [−1, 1], by solving

(2.6) δkl = Rc
k(τl) =

M−1
∑

j=0

αkjψ
c
j(τl)

for the coefficients αkj. The matrix ψc
j(τl) in (2.6) is well conditioned.

A well-known problem associated with the numerical use of orthog-
onal polynomials is concentration of their roots near the ends of the
interval. Let us consider the ratio

(2.7) r(M, ǫ) =
τ2 − τ1

τ⌊M/2⌋ − τ⌊M/2⌋−1
,

where “⌊M/2⌋” denotes the least integer part, and look at it as a func-
tion of M . Observing that the distance between nodes of Gaussian
quadratures for exponentials changes monotonically from the middle
of an interval toward its end points, and that the smallest distance
occurs between the nodes closest to the end point, the ratio (2.7) may
be used as a measure of node accumulation. For example, the dis-
tance between the nodes near the end points of the standard Gaussian
quadratures for polynomials decreases as O(1/M2), so that we have
r(M, ǫ) = O(1/M), where M is the number of nodes. In Figure 2.1 we
illustrate the behavior of r(M, ǫ) for the nodes of quadratures for band-
limited exponentials. This ratio approaches a constant that depends
on the accuracy ǫ but does not depend on the number of nodes.
Another important property of quadratures for exponentials emerges

if we compare the critical sampling rate of a smooth periodic function,
to that of smooth non-periodic function defined on an interval. Con-
sidering bandlimit c as a function of the number of nodes, M , and the
desired accuracy ǫ, we observe that the oversampling factor,

α(M, ǫ) =
πM

c(M, ǫ)
> 1,
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Figure 2.1. The ratio r(M, ǫ) in (2.7) as a function
of the number of nodes M and interpolation accuracy
ǫ ≈ 10−3.5 (top curve, dashed), ǫ ≈ 10−8.5 (middle curve,
dotted) and ǫ ≈ 10−13 (middle curve, solid). The dots on
the solid curve indicate the number of nodes of quadra-
tures used in our numerical experiments. The bottom
curve shows this ratio for the Gauss-Legendre nodes.

approaches 1 for large M. We recall that in the case of the Gaussian
quadratures for polynomials, this oversampling factor approaches π

2
rather than 1 (see e.g. [14]).

2.3. Interpolating bases for band-limited functions. A basis of
interpolating band-limited functions for the bandlimit c and accuracy ǫ
plays the same role in the derivation of a system of nonlinear equations
for solving ODEs as the bases of Lagrange interpolating polynomials
defined on the Gauss-Legendre nodes. While (2.6) relies on available
solutions of the differential equation (2.5), interpolating basis functions
may also be obtained by solving the integral equation (2.2) (see [2, 28]).
We start by first constructing a quadrature for the bandlimit 2c > 0

and accuracy threshold ǫ2 > 0, yielding M nodes {τm}
M
m=1 and weights

{wm}
M
m=1. For the inner product of two functions f, g ∈ Ec, we have

∣

∣

∣

∣

∣

∫ 1

−1

f(t)g(t)dt−
M
∑

m=1

wmf(τm)g(τm)

∣

∣

∣

∣

∣

≤ ǫ2.
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Following [2], we discretize (2.2) using nodes {τm}
M
m=1 and weights

{wm}
M
m=1 and obtain an algebraic eigenvalue problem,

(2.8)
M
∑

l=1

wle
icτmτlΨj(τl) = ηjΨj(τm).

The approximate PSWFs on [−1, 1] are then defined consistent with
(2.2) as

(2.9) Ψj(x) =
1

ηj

M
∑

l=1

wle
icxτlΨj(τl),

where ηj are the eigenvalues and Ψj(τl) the eigenvectors in (2.8). Fol-
lowing [2], we then define the interpolating basis for band-limited func-
tions as

(2.10) Rk(x) =
M
∑

l=1

rkle
icτlx, k = 1, . . . ,M,

where

(2.11) rkl =
M
∑

j=1

wkΨj(τk)
1

ηj
Ψj(τl)wl.

It is shown in [2] that the functions Rk(x) are interpolating, Rk(τl) =
δkl.

3. BLC-IRK method

3.1. Discretization of Picard integral equation. We consider the
initial value problem for a system of ODEs,

y′ = f(t,y), y(0) = y0,

or, equivalently,

(3.1) y(t) = y0 +

∫ t

0

f(s,y(s)) ds.

It is sufficient to discretize (3.1) on the interval [0, t] since, by shifting
the time variable, the initial condition may always be set at t = 0. We
require

y′(tτj) = f(tτj ,y(tτj)), j = 1, . . . ,M,
9



where {τj}
M
j=1 are Gaussian nodes for band-limited exponentials on

[0, 1] (constructed for an appropriate bandlimit c and accuracy ǫ). We
approximate

(3.2) ‖f(tτ,y(tτ))−
M
∑

j=1

f(tτj ,y(tτj))Rj(τ)‖ ≤ ǫ, τ ∈ [0, 1]

where Rj(τ) are interpolating basis functions associated with these
quadratures and briefly described in Section 2.3 (see [2, 3] for details).
Using (3.2), we replace f in (3.1) and evaluate y(tτ) at the quadrature
nodes yielding a nonlinear system,

y(tτk) = y0 + t
M
∑

j=1

f(tτj ,y(tτj))

∫ τk

0

Rj(s)ds(3.3)

= y0 + t

M
∑

j=1

Skjf(tτj ,y(tτj)),

where Skj =
∫ τk
0
Rj(s)ds is the integration matrix and k = 1, . . .M .

After solving for {y(tτj)}
M
j=1, we have from (3.1)

(3.4) y(t) = y0 + t

M
∑

j=1

wjf(tτj ,y(tτj)),

where {wj}
M
j=1 are the quadrature weights. The result is an implicit

Runge-Kutta method (IRK) where the usual Gauss-Legendre quadra-
tures are replaced by Gaussian quadratures for band-limited exponen-
tials.
The nodes, weights, and the entries of the integration matrix are

typically organized in the Butcher tableau,

τ S
wt .

Unlike in the standard IRKmethod based on Gauss-Legendre quadra-
tures, we solve (3.3) on a time interval containing a large number of
quadrature nodes, since these nodes do not concentrate excessively near
the end points. This implies that the interval [0, t] may be selected to
be large in comparison with the usual choices in RK methods.

3.2. Exact Linear Part. In many problems (including that of or-
bit computations in astrodynamics), the right hand side of the ODE,
f(t,y), may be split into a linear and nonlinear part,

f(t,y(t)) = Ly(t) + g(t,y(t)),
10



so that the integral equation (3.1) may be written as

(3.5) y(t) = etLy0 +

∫ t

0

e(t−s)Lg(s,y(s)) ds.

If the operator etL can be computed efficiently, this formulation leads
to savings when solving the integral equation iteratively.
We discretize (3.5) by using (3.2) and obtain

y(tτk) = etτkLy0 + t
M
∑

j=1

et(τk−τj)Lg(tτj,y(tτj))

∫ τk

0

Rj(s)ds

= etτkLy0 + t

M
∑

j=1

Skje
t(τk−τj)Lg(tτj,y(tτj))(3.6)

where Skj =
∫ τk
0
Rj(s)ds. We note that (3.3) is a special case of (3.6)

with L = 0 and g = f .

3.3. Symplectic integrators. Following [30], let us introduce matrix
M = {mkj}

M
k,j=1 for an M-stage IRK scheme,

(3.7) mkj = wkSkj + wjSjk − wkwj,

where the weights w = {wk}
M
k=1 and the integration matrix S = {Skj}

M
k,j=1

define the Butcher’s tableau for the method.
It is shown in [30] that

Theorem 3. If matrix M = 0 in (3.7), then an M-stage IRK scheme
is symplectic.

This condition, M = 0, is satisfied for the Gauss-Legendre RK meth-
ods, see e.g. [9, 30]. We enforce this condition for BLC-IRK method
by an O(ǫ2) modification of the weights and of the integration matrix.
For convenience, in what follows, we consider the band-limited expo-
nentials and integration matrix on the interval [−1, 1] rather than on
the interval [0, 1] usually used for ODEs.

Proposition 4. Let {τj}
M
j=1 and {wj}

M
j=1 be quadrature nodes and

weights for the bandlimit 2c and accuracy ǫ2. Consider interpolat-
ing basis functions on these quadrature nodes, Rk(τ), Rk(τj) = δkj,
k, j = 1, . . . ,M , and define Fk(τ) =

∫ τ

−1
Rk(s) ds. Then we have

(3.8)

∣

∣

∣

∣

∣

∫ 1

−1

Fj(τ)F
′
k(τ) dτ −

M
∑

l=1

wlFj(τl)F
′
k(τl)

∣

∣

∣

∣

∣

< ǫ2
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or
∣

∣

∣

∣

∫ 1

−1

(
∫ τ

−1

Rj(s) ds

)

Rk(τ) dτ − wk

∫ τk

−1

Rj(s) ds

∣

∣

∣

∣

< ǫ2,

and

(3.9)

∣

∣

∣

∣

∣

∫ 1

−1

Rk(τ) dτ −

M
∑

l=1

wlRk(τl)

∣

∣

∣

∣

∣

< ǫ2,

or
∣

∣

∣

∣

∫ 1

−1

Rk(s) ds− wk

∣

∣

∣

∣

< ǫ2.

Proof. The relations in (3.8) and (3.9) is the property of the quadrature,
since the bandlimit of the product Fj(τ)F

′
k(τ) is less or equal to 2c and

that of Rk(τ) is less or equal to c. Due to the interpolating property
of Rk(τ), we have
(3.10)
M
∑

l=1

wlFj(τl)F
′
k(τl) =

M
∑

l=1

(
∫ τl

−1

Rj(s) ds

)

wlRk(τl) = wk

∫ τk

−1

Rj(s) ds

and
M
∑

l=1

wlRk(τl) = wk

Also, by definition,
∫ 1

−1

Fj(τ)F
′
k(τ) dτ =

∫ 1

−1

(∫ τ

0

Rj(s) ds

)

Rk(τ) dτ,

and the result follows. �

Theorem 5. Let {τj}
M
j=1 be quadrature nodes of the quadrature for the

bandlimit 2c and accuracy ǫ2 and Rk(τ), Rk(τj) = δkj, k, j = 1, . . . ,M ,
the corresponding interpolating basis. Let us define weights for the
quadrature as

(3.11) wk =

∫ 1

−1

Rk(τ)dτ

and the integration matrix as

(3.12) Skj =

∫ 1

−1

(

∫ τ

−1
Rj(s) ds

)

Rk(τ) dτ

wk

, k, j = 1, . . . ,M.

Then

(3.13) wkSkj + wjSjk − wkwj = 0,

and the implicit scheme using these nodes and weights is symplectic.
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Proof. Using Proposition 4, we observe that the weights defined in
(3.11) are the same (up to accuracy ǫ2) as those of the quadrature.
The result follows by setting Fk(τ) =

∫ τ

−1
Rk(τ) dτ , F

′
k(τ) = Rk(τ) and

integrating by parts to obtain

wkSkj + wjSjk − wkwj =

∫ 1

−1

Fj(τ)F
′
k(τ) dτ +

∫ 1

−1

Fk(τ)F
′
j(τ) dτ − wkwj

= Fj(1)Fk(1)− wkwj.

By the definition of the weights, we have Fk(1) = wk and, hence,
Fj(1)Fk(1)− wkwj = 0. �

3.4. Construction of the integration matrix. There are at least
three approaches to compute the integration matrix. Two of them,
presented in the Appendix, rely on Theorem 5 and differ in the con-
struction of interpolating basis functions. In what appears to be a
simpler approach, the integration matrix may also be obtained with-
out computing interpolating basis functions explicitly and, instead, us-
ing a collocation condition derived below together with the symplectic
condition (3.13).
We require that our method accurately solves the test problems

y′ = icτmy, y(−1) = e−icτm , m = 1, . . . ,M,

on the interval [−1, 1], where τm are the nodes of the quadrature.
Specifically, given solutions of these test problems, ym(t) = eicτmt, we
require that (3.3) holds at the nodes t = τk with accuracy ǫ,

(3.14)

∣

∣

∣

∣

∣

eicτmτk − e−icτm

icτm
−

M
∑

j=1

Skje
icτmτj

∣

∣

∣

∣

∣

≤ ǫ, m, k = 1, . . . ,M.

We then obtain the integration matrix as the solution of (3.13) satis-
fying an approximate collocation condition (3.14).
We proceed by observing that (3.13) suggests that the integration

matrix can be split into symmetric and antisymmetric part. Defining
the symmetric part of the integration matrix as

(3.15) Tkj =
wkwj

wk + wj
,

we set

(3.16) Skj = Tkj + Akjwj,

and observe that it follows from (3.13) that Akj is antisymmetric,

Akj + Ajk = 0.
13



Using (3.16) and casting (3.14) as an equality, we obtain equations for
the matrix entries Akj,
(3.17)
M
∑

j=1

Akjwje
icτmτj =

eicτmτk − e−icτm

icτm
−

M
∑

j=1

Tkje
icτmτj , m, k = 1, . . . ,M.

Splitting the real and imaginary parts of the right hand side,

eicτmτk − e−icτm

icτm
−

M
∑

j=1

Tkje
icτmτj = ukm + ivkm,

we obtain

ukm = (τk + 1) sinc (cτm(τk + 1)/2) cos (cτm(τk − 1)/2)−
M
∑

j=1

Tkj cos (cτmτj)

and, since Tkj = Tk(M−j+1)due to the symmetry of the weights, we
arrive at

vkm = (τk + 1) sinc (cτm(τk + 1)/2) sin (cτm(τk − 1)/2) .

We also have

ukm =

M
∑

j=1

Akjwj cos (cτmτj) , vkm =

M
∑

j=1

Akjwj sin (cτmτj) .

Since matrices cos (cτmτj) and sin (cτmτj) are rank deficient, we choose
to combine these equations

(3.18) ukm + vkm =
M
∑

j=1

Akjwj (cos (cτmτj) + sin (cτmτj)) .

The number of unknowns in (3.18) is M(M − 1)/2 since the matrix
A is antisymmetric. Instead of imposing additional conditions due
to antisymmetry of A, we proceed by solving (3.18) using quadruple
precision (since this system is ill-conditioned). We find matrix Ã and

discover that, while Skj = Tkj + Ãkjwj makes (3.14) into an equality,

the matrix Ã is not antisymmetric. We then enforce anti-symmetry by

setting Akj = −Ajk =
(

Ãkj − Ãjk

)

/2 and Skj = Tkj+Akjwj. We then

verify that the matrix S satisfies the inequality (3.14).

Remark 6. The fact that integration matrix satisfies (3.13) and the
inequality (3.14) indicates that, perhaps by a slight modification of
nodes and weights of the quadrature, it might be possible to satisfy
(3.13) and (3.14) with ǫ = 0.

14



3.5. A-stability of the BLC-IRK method. As shown in e.g. [16,
Section 4.3], in order to ascertain stability of an IRK method, it is
sufficient to consider the rational function

(3.19) r(z) = 1 + zwt(I − zS)−11,

where S is the integration matrix, w is a vector of weights and 1 is a
vector with all entries set to 1, and verify that |r(z)| ≤ 1 in the left half
of the complex plane, Re (z) ≤ 0. This function is an approximation
of the solution ezt at t = 1 of the test problem

y′ = zy, y(0) = 1

computed via (3.3) and (3.4) on the interval [0, 1]. If all poles of r(z)
have a positive real part, then it is sufficient to verify this inequality
only on the imaginary axis, z = iy, y ∈ R. In fact, it may be possible to
show that r(z) is unimodular on imaginary axis, |r(iy)| = 1, for y ∈ R.
Implicit Runge-Kutta methods based on Gauss-Legendre nodes are A-
stable (see e.g [16]) and, indeed, for these methods r(z) is unimodular
on imaginary axis.
Given anM×M matrix S withM1 complex eigenvalues andM2 real

eigenvalues implies that the function r(z) in (3.19) has 2M1+M2 =M
poles. If this function is unimodular on the imaginary axis then it is
easy to show that it has a particular form,

(3.20) r(z) =

M1
∏

k=1

z + λ
−1

k

z − λ−1
k

z + λ−1
k

z − λ
−1

k

M2
∏

k′=1

z + λ−1
k′

z − λ−1
k′
.

Currently, we do not have an analytic proof of A-stability of BLC-IRK
method; instead we verify (3.20) numerically. We compute eigenvalues
of the integration matrix to obtain the poles of r(z) and check that
all eigenvalues have a positive real part separated from zero. For ex-
ample, the integration matrix for the BLC-IRK method with 64 nodes
(bandlimit c = 17π) has all eigenvalues with real part larger than
0.7 · 10−3(see Figure 3.1). One way to check that r(z) has the form

(3.20) is to compute r(−λ
−1

k ) for complex valued and r(−λ−1
k ) for real

valued eigenvalues in order to observe if these are its zeros. In fact, it
is the case with high (quadruple) precision.
One can argue heuristically that since a rational function with M

poles has at most 2M real parameters (since matrix S is real its eigen-
values appear in complex conjugate pairs) and since, by construction,
r(iy) for |y| ≤ c is an accurate approximation to eiy (which is obvi-
ously unimodular), r(z) is then unimodular. It remains to show it
rigorously; a possible proof may depend on demonstrating a conjecture
in Remark 6.
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Figure 3.1. Eigenvalues (computed using quadruple
precision) of the integration matrix for BLC-IRK scheme
with 64 nodes corresponding to the bandlimit 17π and,
for comparison, eigenvalues of the integration matrix of
the standard IRK scheme 64 Gauss-Legendre nodes.

4. Applications

4.1. Algorithm. We use a (modified) fixed point iteration to solve
(3.6). These equations are formulated on a large time interval in com-
parison with the polynomial-based IRK schemes since we do not have
to deal with the excessive concentration of nodes near the end points.

16



Thus, the only constraint on the size of the interval is the requirement
that the (standard) fixed point iteration for (3.6) converges .
Let Nit denote the number of iterations, which can either be set to a

fixed number or be determined adaptively. Labeling the intermediate
solutions in the iteration scheme as y(n), n = 1, . . . , Nit, we have

(1) Initialize y(1)(tτm) = y0, m = 1, . . . ,M .
(2) For n = 1, . . . , Nit

For k = 1, . . . ,M

(a) Update the solution at the node k:

y(n)(tτk) = etτkLy0 + t
∑M

j=1 Skj e
t(τk−τj)Lg(tτj,y

(n)(tτj))

(b) Update the right hand side at the node k: g(tτk, y
(n)(tτk))

We note that the updated value of y(n)(tτk) is used in the computation
at the next node τk+1 within the same iteration n. This modification of
the standard fixed point iteration is essential for a faster convergence.

Remark 7. Although we currently apply the integration matrix directly,
using a large time interval and, consequently, a large number of nodes
per interval, opens a possibility of developing fast algorithms for this
purpose. Such algorithms may be faster than the direct application
of the matrix only for a sufficiently large matrix size and are typi-
cally less efficient than the direct method if the size is relatively small.
Since we may choose many nodes, it makes sense to ask if the inte-
gration matrix of an BLC-IRK type method may be applied in O (M)
or O (M logM) operations rather than O (M2). We mention an ex-
ample of an algorithm for this purpose using the partitioned low rank
(PLR) representation (as it was described in e.g., [3]) but leave open a
possibility of more efficient approaches.

4.2. Problem of Orbit Determination. Let us consider the spher-
ical harmonic model of a gravitational potential of degree N ,

(4.1) V (N)(r, θ, λ) =
µ

r

(

1 +

N
∑

n=2

(

R

r

)−n

Yn(θ, λ)

)

,

with

(4.2) Yn(θ, λ) =
n
∑

m=0

P̄m
n (sin θ)(C̄nm cos(mλ) + S̄nm sin(mλ)),

where P̄m
n are normalized associated Legendre functions and C̄nm and

S̄nm are normalized gravitational coefficients. In case of the Earth’s
17



gravitational model, µ is the Earth’s gravitational constant and R is
chosen to be the Earth’s equatorial radius. Choosing the Cartesian
coordinates, we write V (N) (r), r = (x, y, z), assuming that the values
V (N) (r) are evaluated via (4.1) by changing from the Cartesian to

the spherical coordinates, r =
√

x2 + y2 + z2, θ = arcsin(z/r) and
λ = arctan (y/x).
We formulate the system of ODEs in the Cartesian coordinates and

denote the solution as r(t) = (x(t), y(t), z(t)). Setting G(N) (r) =
∇V (N) (r), we consider the initial value problem
(4.3)

d2

dt2
r(t) = −G(N) (r(t)) , r(0) = r0 =





x0
y0
z0



 , r′(0) = v0 =





x′0
y′0
z′0



 .

We observe that the first few terms of the Earth’s gravitational mod-
els are large in comparison with the rest of the model terms. For ex-
ample, in EGM96 [25], the only non-zero coefficients for Y2(θ, λ) are
C̄20, C̄22 and S̄22, where C̄20 ≈ −0.48 · 10−3, C̄22 ≈ 0.24 · 10−5, and
S̄22 ≈ −0.14 · 10−5, whereas the coefficients of the terms Yn(θ, λ) with
n ≥ 3 are less than 0.14 · 10−5. For this reason it makes sense to split
the force as

G(N) (r) = G(2) (r) +
(

G(N) (r)−G(2) (r)
)

and use only G(2) (r) in most of the iterations (since using the full
model, G(N) (r), may be expensive).
We first use the gravity model of degree N = 2 on a large portion

of an orbit (e.g., 1/2 of a period) to solve the system of nonlinear
equations via fixed point iteration. Once the approximate solution r̃(t)
to

d2

dt2
r̃(t) = −G(2) (r̃(t)) , r̃(0) = r0 =





x0
y0
z0



 , r̃′(0) = v0 =





x′0
y′0
z′0



 ,

is obtained, we then access the full gravity model G(N) (r̃(tτj)) to eval-
uate the forces at the nodes τj which, by now, are located close to
their correct positions. We continue iteration (without accessing the
full gravity model again) to adjust the orbit. This results in an es-
sentially correct trajectory. At this point we may (and currently do)
access the full gravity model G(N) one more time to evaluate the grav-
itational force and perform another iteration. Thus, we access the full
gravity model at most twice per node while the number of nodes is
substantially lower than in traditional methods.
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Next, let us write the orbit determination problem in a form that
conforms with the algorithm in Section 4.1. Effectively, we make use
of the fact that system (4.3) is of the second order. We define the six
component vector

u(t) =

[

r(t)
r′(t)

]

=

[

r(t)
v(t)

]

,

where r′(t) = v(t) is the velocity, and the matrix

L =

(

0 I

0 0

)

,

where I is 3× 3 identity matrix. We have

(4.4)
d

dt

[

r(t)
v(t)

]

= L

[

r(t)
v(t)

]

+

[

0

−G(N) (r(t))

]

,

and the orbit determination problem is now given by (3.5) with appro-
priate forces as follow from (4.4). Using (3.5) accelerates convergence
of the fixed point iteration in our scheme.

4.3. Example. We present an example of using our method. An ex-
tensive study of the method for applications in astrodynamics may be
found in [6] (see also [5]) and here we simply demonstrate that our
scheme allows computations on large time intervals and requires rela-
tively few evaluations of the full gravity model. Since the cost of eval-
uating the full (high-degree) gravity model is substantial, this results
in significant computational savings.
As an example, we simulate an orbit with initial condition

r|t=0 =





x0
y0
z0



 =





2284.060
6275.400

4.431



 (km)

and

dr

dt |t=0
= v0 =





−5.947
2.164

0



 (km/s),

and propagate it for 86,000 seconds (approximately 1 day). We use
22 time intervals and, on each interval, quadratures with 74 nodes.
Hence, on average, this corresponds to time distance between nodes of
approximately 53 seconds. For the full gravitational model we use a 70
degree spherical harmonics model WGS84 [10].
Using the 8th-order Gauss-Jackson integration scheme with very fine

sampling (one second time step), we generate the reference solution.
We selected the Gauss-Jackson method since it is often used for orbit
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computations in astrodynamics; we refer to [6, 5] for a more detailed
discussion on the issue of generating reference solutions.
We then compute the orbit trajectory using the algorithm from Sec-

tion 4.1 adopted to the problem of orbit propagation as described in
Section 4.2 and compare the result with the reference solution. Achiev-
ing an error of less than 5 cm at the final time, we need 6512 evaluations
of the reduced (3-term) gravitational model, and 3256 evaluations of
the full gravitational model.

5. Conclusions

We have constructed an implicit, symplectic integrator that has
speed comparable to explicit multistep integrators currently used for or-
bit computation. The key difference with the traditional IRK method is
that our scheme uses quadratures for band-limited exponentials rather
than the traditional Gaussian quadratures constructed for the orthog-
onal Legendre polynomials. The nodes of quadratures for band-limited
exponentials do not concentrate excessively towards the end points of
an interval thus removing a practical limit on the number of nodes used
within each time interval.

6. Appendix

In both approaches described below we use nodes of generalized
Gaussian quadratures for exponentials {τl}

M
l=1 constructed in [2] (see

Lemma 1). Some of the steps may require extended precision to yield
accurate results.

6.1. Computing integration matrix using exact PSWFs. In this
approach we assume that the solutions ψc

j(x) and the eigenvalues λj
satisfying

(6.1)
(

Fcψ
c
j

)

(x) =

∫ 1

−1

eicxyψc
j(y)dy = λjψ

c
j(x),

where Fc is defined in (2.2), are available. We use (2.6) and the matrix
of values of PSWFs at the nodes, ψc

j(τl), to compute coefficients αkj,
so that we have

Rc
k(τ) =

M−1
∑

j=0

αkjψ
c
j(τ), k = 1, . . .M.
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We then compute weights using (3.11),

wk =

∫ 1

−1

Rc
k(x)dx =

M−1
∑

j=0

αkj

∫ 1

−1

ψc
j(x)dx =

M−1
∑

j=0

αkjλjψ
c
j(0).

Next we define

Kc
l (x) =

∫ x

−1

Rc
l (s)ds =

M−1
∑

j=0

αlj

∫ x

−1

ψc
j(s)ds =

M−1
∑

j=0

αljΦ
c
j(x),

where

(6.2) Φc
j(x) =

∫ x

−1

ψc
j(s)ds.

In order to compute the integration matrix (3.12), we need to evaluate

wkSkl =

∫ 1

−1

Kc
l (x)R

c
k(x)dx =

M−1
∑

j,j′=0

αljαkj′

∫ 1

−1

Φc
j(x)ψ

c
j′(x)dx =

M−1
∑

j,j′=0

αljαkj′Ijj′,

where

(6.3) Ijj′ =

∫ 1

−1

Φc
j(x)ψ

c
j′(x)dx =

∫ 1

−1

Φc
j(x)

d

dx
Φc

j′(x)dx.

We have

Proposition 8. If j and j′ are both even, then

(6.4) Ijj′ = Ij′j =
1

2
λjλj′ψ

c
j(0)ψ

c
j′(0).

If j and j′ are both odd, then

(6.5) Ijj′ = 0.

If j is even and j′ is odd, then

(6.6) Ijj′ = −Ij′j,

(6.7) Ijj′ =
λj′

icλj

∫ 1

−1

ψc
j(y)

ψc
j′(y)

y
dy

and
(6.8)

Ij′j =
λj
icλj′

(
∫ 1

−1

ψc
j(y)

ψc
j′(y)

y
dy − 2ψc

j(0)

∫ 1

0

ψc
j′(y)

y
dy + icψc

j(0)λj′

∫ 1

0

ψc
j′(y)dy

)

.

We use (6.7) if |λj′| < |λj |, (6.8) otherwise.
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Proof. Integrating (6.3) by parts, we obtain

(6.9) Ijj′ + Ij′j = Φc
j(1)Φ

c
j′(1)− Φc

j(−1)Φc
j′(−1) = λjλj′ψ

c
j(0)ψ

c
j′(0)

and, since ψj(0) = 0 if j is odd (due to parity of PSWFs), we arrive at
(6.5) and (6.6).
Using (6.2) and (6.1), we have

Φc
j(x) =

1

λj

∫ 1

−1

(∫ x

−1

eicysds

)

ψc
j(y)dy =

1

λj

∫ 1

−1

eicyx − e−icy

icy
ψc
j(y)dy,

and, thus,

Ijj′ =
1

λj

∫ 1

−1

[
∫ 1

−1

eicyx − e−icy

icy
ψc
j(y)dy

]

ψc
j′(x)dx

=
λj′

icλj

(
∫ 1

−1

ψc
j(y)

ψc
j′(y)

y
dy − ψc

j′(0)

∫ 1

−1

ψc
j(y)

y
e−icydy

)

.(6.10)

It follows from (6.10) that if j is even and j′ is odd (so that ψc
j′(0) = 0),

we obtain (6.7) and

Ij′j =
λj
icλj′

(
∫ 1

−1

ψc
j(y)

ψc
j′(y)

y
dy − ψc

j(0)

∫ 1

−1

ψc
j′(y)

y
e−icydy

)

.

Introducing

u(x) =

∫ 1

−1

ψc
j′(y)

y
e−icyxdy,

we have

u′(x) = −ic

∫ 1

−1

ψc
j′(y) e

−icyxdy = −icλj′ψ
c
j′(x)

so that

u(x) = u(a)− icλj′

∫ x

a

ψc
j′(s)ds.

Setting x = 1 and a = 0, we obtain
∫ 1

−1

ψc
j′(y)

y
e−icydy =

∫ 1

−1

ψc
j′(y)

y
dy − icλj′

∫ 1

0

ψc
j′(y)dy

= 2

∫ 1

0

ψc
j′(y)

y
dy − icλj′

∫ 1

0

ψc
j′(y)dy

and arrive at (6.8). �
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6.2. Computing integration matrix using approximate PSWFs.

If the interpolating basis for band-limited functions is defined via (2.10),
then the coefficients rkl are obtained using

(6.11) δkm = Rk(τm) =

M
∑

l=1

rkle
icτlτm

by inverting the matrix E = {eicτlτm}l,m=1,...M . We have

Kk(x) =

∫ x

−1

Rk(s)ds =

M
∑

l=1

rkl
eicτlx − e−icτl

icτl

and compute

wkSkl =

∫ 1

−1

Kl(x)Rk(x)dx

=
∑

j,j′=1,...M

rkjrlj′

∫ 1

−1

eicτjx
eicτj′x − e−icτj′

icτj′
dx

=
∑

j,j′=1,...M

rkjrlj′Gjj′,

where

Gjj′ = 2
sinc (c (τj + τj′))− e−icτj′ sinc (cτj)

icτj′
.

Thus, we have

wkSkl =
(

E−1GE−1
)

kl
.
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