Reconstructing discontinuities in multidimensional inverse
scattering problems: smooth errors vs small errors

Gregory Beylkin

Constructing parametrices instead of Green’s functions to solve integral equations produces a new class of
algorithms for nondestructive evaluation. These algorithms allow reconstruction of discontinuities of
parameters of the physical medium in 2- and 3-D problems with variable background and arbitrary source-
receiver geometry. An example of such algorithms is presented.

Many practical problems of nondestructive evalua-
tion can be solved provided we can accurately recon-
struct discontinuities of the parameters of the physical
medijum. Seismic exploration, medical applications,
and crack and void detection are examples. Our con-
cern is a mathematical formulation of the linearized
inverse scattering problem so that we can (1) obtain
explicit algorithms and (2) prove that indeed the dis-
continuities are recovered. The approach we take has
two main features. First, all approximations realizing
physical assumptions about the wave propagation are
made in the direct problem, so that we reduce the
inverse problem to solving a linear integral equation of
the first kind with an oscillatory kernel. Second, to
solve this integral equation we construct a parametrix
solution, since, in general, it is impossible to construct
explicitly the Green’s function of a differential or an
integral equation. The parametrix is a solution which
is defined exactly as the Green’s function except that
an arbitrary smooth function may have been added to
the source term of the equation. Parametrices are
being widely used in the theory of pseudodifferential
operators (see Ref. 1, for example) and represent a
standard approach to gain insight into the properties
of the partial differential equations. In dealing with
the problems of nondestructive evaluation, we make
use of these solutions to obtain algorithms for recon-
structing parameters which describe the medium.2
The error created by these algorithms is smooth (and
slowly varying) rather than small, and, therefore, only
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the discontinuities of parameters are guaranteed to be
recovered. We note, however, that this error also ap-
pears small in many important cases, such as in the
case of a constant background.

To illustrate this approach, we consider a medium
where wave propagation is described by the Helmholtz
equation (a fluid with constant density, for example).
Suppose the index of refraction in some region X is of
the form n?(x) = n¢?(x) + f(x), where ng(x)—the back-
ground index of refraction—is known. Then the prob-
lem is to characterize the function f(x)—object profi-
le—using observations of the (singly) scattered field on
the boundary dX of the region X. Let the region X be
three dimensional. (However, the specific dimension
of X is not essential in our approach and enters only as
a parameter.)

We linearize this inverse problem using the distort-
ed wave Born approximation and the ray approxima-
tion for the Green’s functions. Such a linearization
yields [see Ref. 2, Eq. (2.12)] the integral representa-
tion of the singly scattered field due to a point source

Pk i) = k2 fX A%(x,8) explikd™H(x,)]f(x)

X A™(x,n) explik¢™(x,n)]dx, (1)

as a function of the receiver position £, the source
position 7, and wave number k. ¢in(x,7),$°(x,£) are
phase functions which satisfy the eikonal equations

(V6™ @n)]? = ng(x),
[v,0°(x,)]% = ne2(x).

For fixed x,£,n the phase functions ti* = ¢in(x,y) and
tout = gout(x £) are travel times from the source location
ntothe point x inside the region X and from the point x
to the receiver location £, respectively.

Functions Ai», A°wt jn Eq. (1) are amplitudes and
satisfy the transport equations
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Fig. 1. Adding a smooth function changes neither the location nor
the size of a jump discontinuity.

AP(x,7) v 26" (x,n) + 2V,4(x,n) - V,0™(x,n) =0,
A% (x,£)V 2% (x,8) + 2V, A% (x k) - V,¢7"(x,E) = 0.

These equations describe how the amplitude of a signal
changes along the rays connecting the source location
on the boundary dX with the point x inside the region
X and the point x with the receiver location £ on the
boundary 98X, respectively. Transport equations re-
duce to ordinary differential equations along rays,3
and initial conditions should be added to compute
amplitudes A", A°ut in Eq. (1). If the background
index of refraction ng(x) is discontinuous, the rays
satisfy Snell’s law on surfaces of discontinuities, and
appropriate transmission coefficients have to be used
in computing amplitudes on these surfaces.

The integral representation (1) is an integral equa-
tion for the unknown function f. The scattered field
v¢(k,£,n) in Eq. (1) is a function of the wave number k&
and hence is related to the scattered field in the time
domain via the Fourier transform. We assume that in
experiments the scattered field is measured in the time
domain, so that the function

4o
(2, Em) = — J ve(k,tm) exp(—ikt)dk
27 |
is given.

Our goal now is to find an approximation to the
object profile f given the background index of refrac-
tion ng(x) and the singly scattered field usc(¢,£,7) in the
time domain so that the error of the approximation is
smooth. Let fmig be a function which is constructed by
some (as yet unspecified) method and suppose that

fmig = F+ Tf (2

for some smoothing operator 7. The mathematical
definition of classes of smoothing operators can be
found in Refs. 1, 2, 4, and 5. Here we say that the
operator T is a smoothing operator if the function Tf
has at least one more continuous derivative than does
the function f. Thereby fmi; contains all the informa-
tion about the discontinuities of the function f, since
fmig — f = Tf is smoother than f. This is illustrated in
Fig. 1 for the 1-D case.

Let us describe the actual approximate solution to
Eq. (1) for the case when the source position 7 is fixed.
As shown in Ref. 2, a specific function f,,;; can be
explicitly constructed using the generalized backpro-
jection (the dual of the generalized Radon trans-
form#?%) of the singly scattered field

1
i) = = o5 [ BEGE, 2 i DE O

For a given point of reconstruction x and fixed source
position 5, we integrate the scattered field along the
time—distance surface (curve in the 2-D case)
t = ¢in(x,n) + ¢°ut(x,£), which is dictated by the back-
ground index of refraction no(x). It is clear that if
there were a reflector at the point x, along this curve
the scattered field is most affected. The weight func-
tion b(x,£) in Eq. (3) is chosen so that we recover the
jump of the function f at the point x as a result of such
integration. The weight function b(x,£) depends on
x—the point of reconstruction—and is given by

h(x,
b8 = A°“t(x,£)ji)“(xm) ’
with
h(x,£)dt = n(1 + cosy)dow, 4)
where

V6" @) - 7P w)

no2(x)

cosy(x,£,n) =

Here ¥/(x,£,n) is the angle between the two rays traced
from the source and from the receiver to the point x,
and dw is the standard measure on the unit sphere.
Equation (4) describes the rate of change at the point x
of the direction of the ray connecting point x with the
receiver with respect to the receiver position on the
boundary 4X. Evaluation of Eq. (3) for a general
background index of refraction ny(x) can be achieved
by ray tracing. In the case of a constant background
the ray paths are straight lines, and, therefore, phase
functions and amplitudes can be determined analyti-
cally (see Ref. 2 for a few examples).

It was proved in Ref. 2 that Eq. (3) is a parametrix of
the integral equation (1), and the function fr;, satisfies
Eq. (2), where T is a smoothing operator. Hence Eq.
(3) can be used to reconstruct the discontinuities of the
function f.

Algorithms analogous to Eq. (3) are derived when
receiver positions are dependent on source positions.?
The most simple case is the one where receivers and
sources are coincident. Figures 2 and 3 adopted from
Ref. 6 describe the results of computer simulations in
this case. Figure 2 shows the 2-D configuration of an
experiment and the generated singly scattered field.
Coincident source-receiver positions are located along
lines A, B, and C, which together form the boundary
8X. The background index of refraction is a constant
for simplicity of computations. The object consists of
18-point scatterers of equal reflectivity separated by
approximately one wavelength (at the central frequen-
cy of the source) and distributed to form the letter S.
The result of the reconstruction is shown in Fig. 3. In
this synthetic example locations of the point scatterers
and the jump of the index of refraction at these points
are fully recovered.

In conclusion, we note that algorithms obtained by
solving the linearized inverse problem in this manner
are related to some of the migration schemes used in
seismic exploration,® and the use of parametrix solu-
tions allows extension of previous methods of recover-
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Fig. 2. Coincident source-receiver configuration and computer-simulated wave field generated by 18-point scatterers of equal reflectivity
placed in the medium with constant index of refraction. (The scatterers form the shape of the letter S.)
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Fig. 3. Result of the reconstruction using the source-receiver con-
figuration and the data shown in Fig. 2.

ing discontinuities such as migrations to the case of
variable background and arbitrary configurations of
sources and receivers.
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