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A B S T R A C T

A novel interpolation technique is applied to assessment of the quality of sea surface temperature (SST) ob-
servations and quantitative analysis of the subpixel variability within satellite footprints of different size. Using
retrieved satellite data as input, the new, global, multistage interpolation technique generates a trigonometric
polynomial, providing a representation of the underlying physical SST field in functional form. The resulting
interpolating function can be efficiently and accurately evaluated anywhere within the domain over which it was
derived and its moments calculated to estimate the mean and variance of the field over desired sub-regions.
Application of the technique is demonstrated for SST retrievals from the Moderate Resolution Imaging
Spectroradiometer (MODIS), Spinning Enhanced Visible and Infrared Imager (SEVIRI), and Advanced
Microwave Scanning Radiometer - Earth Observing System (AMSR-E) sensors. Comparison of the functional form
with the data from which it was derived demonstrates how the technique can potentially help to identify small
observational artifacts such as MODIS scan striping and residual cloud contamination. Integrals of the inter-
polating functions over successively larger spatial scales successfully emulate the retrieved SST at the different
effective spatial resolutions and the second moments are consistent with the direct sample variances, and hence
representative of the spatial SST variability of the available finer-resolution observations over the coarser scales.
Using the approach, the variability of 1-km-resolution SST observations on open ocean grids of both 5- and 25-
km resolution is found to be ~0.07 K. In regions of sharper gradients such as associated with strong localized
diurnal warming, the variability within 25-km-resolution grids increases to as much as 0.4 K for sampling at 1-
km resolution. The variability of 1-km observations on a 25-km-resolution grid is about 2.4 times greater than
that on a 5-km-resolution grid. Broader application of the technique globally could help better quantify regional
variations in the spatial variability, which would subsequently improve uncertainty estimates for existing sa-
tellite-based SST products.

1. Introduction

Interpolation methodologies are widely employed in the analysis
and application of sea surface temperature (SST) products and imagery.
The most common usage is to fill gaps in the spatial coverage of the
available products. The capabilities of certain new approaches, how-
ever, enable promising additional unique and valuable applications. In
this paper, we show that a novel High Resolution Multistage Spectral
Interpolation technique (HRMSI) can be applied to assessment of the
quality of the underlying SST observations and analysis of the subpixel

variability within satellite footprints of different size.
Multiple techniques have been developed and utilized to fill gaps in

satellite SST imagery, particularly for providing spatially complete,
daily SST analyses (level 4 products, e.g. Martin et al., 2012). Gaps in
the spatial coverage of the retrieved satellite products result from many
interfering factors such as clouds, precipitation, and aerosols. Atmo-
spheric constituents can confound the radiative signal from the earth's
surface, either degrading the accuracy of the physical retrievals or
obscuring them completely. The source and size of the gaps is specific to
the retrieved variable and the portion of the electromagnetic spectrum
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being utilized. For infrared retrievals of SST, clouds are the primary
challenge, completely attenuating the infrared radiation emitted by the
surface. Within the microwave portion of the spectrum, the radiation
can pass through non-precipitating clouds, but regions of precipitation
still obscure the surface. Gaps also clearly result from limited sensor
swaths, particularly in the equatorial regions for polar-orbiting sa-
tellites.

Interpolation methods utilized in the generation of spatially com-
plete SST products have been based largely on variations of the so-
called optimal interpolation technique (e.g. Reynolds and Smith, 1994;
Reynolds et al., 2007). The review by Martin et al. (2012) provides a
good overview of many current SST analyses and the different ap-
proaches used in their generation. An additional approach for the re-
construction of missing data using empirical orthogonal function (EOF)
decomposition applied to several oceanographic variables was de-
scribed by Alvera-Azcárate et al. (2007) and a more recent technique
for multiscale interpolation involving the use of wavelets has been
applied to SST fields by Chin et al. (2017). While largely consistent and
extensively utilized, the quality of the analyzed products remains
variable, particularly for regions of high spatial variability such as
current systems, temperature fronts, and coastal and polar oceans
(Reynolds and Chelton, 2010; Martin et al., 2012; Dash et al., 2012; and
Castro et al., 2016), and further improvement in the quality of the
products is desirable.

Many other interpolation/regression techniques address practical
problems associated with fitting scattered and noisy data with poten-
tially large gaps. One comparison of several different techniques ap-
plied to the gridding of multiple climate variables was presented by
Hofstra et al. (2008). The techniques differ in complexity and their
utilization of the available frequency content of the data, which, in
turn, is determined by the sampling density.

Of particular interest here is the ability of an interpolation tech-
nique to provide an explicit functional representation of the data as
opposed to discrete interpolated values at selected points of interest.
Such a functional form enables not only the evaluation of the inter-
polant at any arbitrary point within the domain of interest, but also the
computation of a variety of quantities such as derivatives and integrals
in analytic form. While fully applicable to the traditional problem of
gap filling in satellite imagery and construction of level 4 SST products,
the functional form and the above-mentioned properties offer the po-
tential to address other significant problems impacting the assessment
of SST retrieval quality and better quantification of the full uncertainty
budget for the SST products.

One such data quality issue is identification of instrumental or
processing “artifacts” within the retrieved satellite data related to the
way in which the sensors operate or the product is constructed. While
highly useful, satellite products are known to have important issues that
can be extremely difficult to identify. Scan striping is a particularly
important example. Sensors employing arrays of detectors like the
Moderate Resolution Imaging Spectroradiometer (MODIS, Esaias et al.,
1998) and the Visible Infrared Imaging Radiometer Suite (VIIRS,
Murphy et al., 2006) are subject to issues with consistency in the cali-
bration of the individual array detectors that can lead to the appearance
of “stripes” or distortions in the derived products along instrument
scans (Bouali and Ignatov, 2014). Accurate identification and removal
of these artifacts is complicated, and despite significant efforts by the
data providers, current products in use can still exhibit some features of
the artifacts.

Another prominent problem is accurate determination of the spatial
SST variability within the footprints of different resolution products and
its impact on validation and merging of the retrievals. Validation of
satellite SST products relies primarily in situ measurements from
drifting and moored buoys as well as radiometric measurements col-
lected from research vessels and ships-of-opportunity. These in situ
sensors provide “point” measurements, which are then compared with
larger areal averages from the satellite-borne radiometers. This

mismatch in spatial resolution directly affects the perceived accuracy of
the satellite retrievals when validated in this manner. The contribution
of subpixel variability to the overall uncertainty budget of satellite SST
retrievals has long been acknowledged (e.g., Minnett, 1991; Cornillon
et al., 2010; Castro et al., 2017), but has yet to be fully quantified due to
measurement limitations. Accurate estimation of the spatial variability
is dependent on complete, high-resolution sampling of the region of
interest. Satellite data, however, is often incomplete due to the gaps
described above and is limited by the sensor resolution. Techniques
such as variogram analysis (Castro et al., 2010; Kent et al., 1999;
Cressie, 1993) enable estimates of variability on larger scales to be
downscaled but the results are still highly dependent on the quality and
density of the available observations. The availability of an accurate fit
to the data in functional form would provide a new way of estimating
the fundamental SST variability since the function could also be in-
tegrated over arbitrary satellite footprints. Moreover, since the var-
iance, σ2, of the SST distribution within a satellite's footprint is a
measure of the subpixel variability, the second moment of the inter-
polating function could be explicitly evaluated to yield the predicted
value of σ2 at different spatial scales.

In this paper, we address these problems through application of a
novel global interpolation/regression methodology employing trigo-
nometric polynomials (i.e. sinusoidal functions, hence the name trigo-
nometric interpolation) that yields an explicit functional representation
of the retrieved satellite data. While the utility of intelligently filling
coverage gaps with a physically realistic and continuous functional
form is clear, this paper does not focus on this aspect or a comparison of
this methodology with other techniques. Rather, the primary emphasis
here is on retrieval quality assessment and spatial variability of satellite
SSTs. Following a brief description of the technique (Section 2) and the
satellite data sets employed (Section 3), the basic capabilities and
limitations of the technique are shown in Section 4. Broader application
of the technique is illustrated in Section 5 along with a demonstration
of how it can help identify problems associated with scan striping, in-
strument artifacts, and residual cloud contamination, and be employed
as a tool for objective quality data assessment and flagging. In Section
6, the moments of the interpolants for the different satellite SST sensors
and grid resolutions are evaluated and employed to explicitly quantify
the spatial variability across broad regions and different spatial scales.

2. New trigonometric interpolation methodology

The new global interpolation methodology applied in this paper
employs trigonometric polynomials obtained using a multistage ap-
proach. It is well understood that global interpolation/regression ap-
proaches are able to capture a significantly greater frequency range
(and thus achieve higher resolution) than local techniques. For a simple
example, assuming periodicity and uniform sampling, trigonometric
polynomial interpolation requires only two points per wavelength,
whereas any standard polynomial-based or local interpolation techni-
ques would require a significant oversampling factor to attain the same
spatial resolution. The problem with attempting a direct global inter-
polation on scattered data, however, is that variations in data density
will force a lower global resolution, losing the advantage over local
interpolation. By introducing a multistage approach, we can accom-
modate regions of very different data density without resorting to the
oversampling factor present in purely local interpolation techniques.
Starting from a coarse scale, we gradually increase the interpolant re-
solution in stages as we partially fill the gaps in the data. The resulting
image has adequate resolution in the gaps and the best possible high
resolution in the regions with sufficient data density. In so doing, high
frequencies present in the input data associated with noise or other
nonphysical effects can also be removed. The method shares many si-
milarities with the approach of Chin et al. (2017) but the main differ-
ence is that our technique is global rather than local in nature. This
section provides a brief mathematical introduction to the technique.
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While its application to SST fields is the subject of this paper, the
technique can be applied to scattered measurements of physical fields
of any type.

A standard trigonometric interpolation assumes a functional form of
the target image in terms of a real-valued trigonometric polynomial
(that is, a finite (truncated) Fourier series),
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for some coefficients ckl, positive integers K and L, and positive (scaling)
constants a and b. Note that we can also write Eq. (1) as

∑= + + +
≤ ≤ ≤ ≤

I x y a πkax πlby b πkax πlby( , ) cos(2 2 ) sin(2 2 ),
k K l L

kl kl
0 ,0

using real-valued coefficients akl and bkl. To simplify the description, we
assume that K= L= Lfinal and say that Lfinal is the degree of the trigo-
nometric polynomial I(x,y). Thus, Lfinal determines the highest resolu-
tion that can be achieved by this trigonometric polynomial re-
presentation. If the input data were available on a (sufficiently dense)
uniform grid, then the coefficients ckl could be easily estimated using
the Fast Fourier Transform (FFT). The satellite retrieved values {tn}n,
however, are available at irregular (scattered) points {(xn,yn)}n corre-
sponding to coordinates of longitude, xn, and latitude, yn. For this
reason, to determine the coefficients ckl, we have to solve a least squares
problem of the form ∑ =

≤
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n n Unfortunately, for a
typical irregular grid, this formulation leads to an ill conditioned pro-
blem. As a result, we would be forced to use a lower order trigonometric
polynomial (i.e., to accept a low degree Lfinal). Our multistage approach
to build the function I avoids this problem as follows.

Our first step is to approximate the data using a low degree L0, i.e.,
we solve the weighted linear squares problem (with weights based on
the local grid density)
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to find coefficients ckl0 for a small L0. With these coefficients, we build
the trigonometric polynomial
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This step, by itself, can also be interpreted as denoising the data
since high frequency noise is suppressed in the representation. Once I0
is estimated, we use it to partially fill existing gaps in the data, which
allows us to generate an augmented data set consisting of the initial set
and the newly filled locations and their corresponding estimated tem-
peratures. At the next stage, we use the newly built, larger input data
set to solve a system of the form given by Eq. (2), but where we can now
increase the value of the degree of the trigonometric polynomial from
L0 to (a larger) L1without causing ill-conditioning. The improved con-
dition number (a factor controlling the sensitivity of the solution to
small variations in the input data) for the larger system is due to the
information added/gained through data augmentation. Solving this
augmented system, we find coefficients ckl1, which we use to build a
new estimate I1. This I1 is used to further reduce the gaps in the data
and build a new system of the form given by Eq. (2), now with L2 > L1.
We continue in this manner until we reach the final degree, Lfinal,
yielding our final interpolant I(x,y). Although this final degree should
never exceed the degree implied by the region of highest density of
measurements, it is also chosen to avoid overfitting by accounting for
the level of measurement noise.

As a step in solving the least squares problem, we evaluate trigo-
nometric sums on unequally spaced grids. For this purpose, we use the
Unequally-Spaced Fast Fourier Transform (USFFT) (Dutt and Rokhlin,
1993; Beylkin, 1995) to assure both speed and accuracy.

In order to efficiently and accurately evaluate the resulting inter-
polating function (the trigonometric polynomial in Eq. (1)), on any

uniform or non-uniform grid, we once again use the USFFT. The USFFT
has the same complexity as the FFT and its actual cost is only a small
factor greater than that of the FFT. Note that for strictly uniform grids,
the FFT may be more efficient, but for cases where the input requires
significant padding, the USFFT is also a better choice. Unlike other
more common interpolation techniques, our method can be understood
as a regression technique since the values of the interpolating function
at the original sample locations may not coincide with the values of the
input data. In other words, evaluation of the interpolant I(x,y) at the
original observation points yields predicted values, not the original
retrievals. In this manner, analysis of the residuals (interpolation error)
can help identify potential measurement errors and processing artifacts
in the satellite retrievals.

Furthermore, the interpolating function can be accurately in-
tegrated over any domain. In particular, it permits the explicit com-
putation of the statistical moments of the SST distribution. Of relevance
for the application considered in this paper is the evaluation of the
second moment (variance) as it yields a measure of the SST variability
at selected points and spatial scales.

If several interpolating functions are available for overlapping re-
gions, it is easy to combine them in a consistent way since they can be
evaluated on a sufficiently dense common grid. In fact, any other
convenient functional representation could be used for the result of
such combination. Thus, global SST maps can be obtained for all ocean
basins and then combined with a minimal additional computational
cost. One of the remaining problems is to estimate the temperature near
continental boundaries. With our technique small islands can be treated
as gaps and, after filling the gaps, the resulting interpolation can be
restricted to open ocean areas. In the case of a large land mass, addi-
tional techniques need to be developed to take into account relevant
coastal features and irregular boundaries.

In summary, the new interpolation methodology does not rely on
standard local interpolation techniques or local statistical analysis, but
rather obtains a global trigonometric interpolant, within a Fourier
Analysis framework, through gradual interpolation of the target region
(a multistage approach), making it more robust to overfitting. The
theoretical basis for this methodology was recently developed by The
Numericus Group, LLC, employing state-of-the-art mathematical algo-
rithms. The use of the code should be coordinated by contacting The
Numericus Group at info@thenumericusgroup.com.

3. Satellite SST data sets

The capabilities of the technique are illustrated through application
to retrievals of SST from several current, commonly employed satellite
sensors that span the range of available spectral type and spatial re-
solution. The products include infrared (IR) retrievals from the polar-
orbiting MODIS from the NASA Aqua satellite and the geosynchronous
Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the
Meteosat Second Generation (MSG-2) satellite, and microwave (MW)
retrievals from the Advanced Microwave Scanning Radiometer - Earth
Observing System (AMSR-E) flown aboard the Aqua satellite. The
testing described in this paper uses data from 8 February 2009 over the
South Atlantic Ocean between 4N–40S and 34W–8E. Scenes from this
day, as shown in Fig. 1, were chosen because of the unusually high
thermal IR coverage (few clouds obscuring MODIS and SEVIRI) and the
presence of interesting large-scale thermal features such as a strong
diurnal warming filament, clearly visible from all three sensors. An
initial demonstration of the capabilities and limitations of the new
technique additionally employs a composite of several days of SEVIRI
data surrounding 8 February.

The MODIS retrievals (Fig. 1a) are at 1-km resolution as obtained
from the level 2 (original satellite scan line/spot geometry) product
processed by the NASA Ocean Biology Processing Group (OBPG) and
downloaded from the NASA Ocean Biology Distributed Active Archive
Center (OB.DAAC, https://oceancolor.gsfc.nasa.gov/). The study area
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was bisected by two ascending MODIS ground swaths, each composed
of four 5-minute granules, over the period from 13:45 UTC in the
bottom-right corner to 15:40 UTC in the upper-left corner. Initially,
data with quality indices, QI, 0–1, i.e., cloud-free according to the
OBPG quality indexing conventions for their MODIS SST product (0:
Good, 1: Questionable/suspect, 2: potentially cloud/sunglint con-
taminated, and 3: bad/cloud contaminated/failure), were considered as
an effort to minimize the size of the gaps in MODIS coverage and test

the ability of the interpolant to recognize pixels with residual cloud
contamination and potential inconsistencies in the quality indexing of
the retrievals. It is important to emphasize that there is no uniform
approach for satellite-derived SST quality flagging at present. For IR
SST sensors, however, the quality indexing is generally tied to proxi-
mity to cloud.

The 5-km (0.05°) resolution SEVIRI SST product (Fig. 1b) is pro-
duced at the Meteo-France/Centre de Météorologie Spatiale (CMS,

Fig. 1. Illustration of (a–c) the input data to the interpolating function, (d–f) the resulting interpolant evaluated everywhere in the domain, and (g–f) the corre-
sponding misfit for (top) MODIS, (middle) SEVIRI, and (bottom) AMSR-E. The input data shown has outliers already removed as described in Section 5. Panels a–f all
share a common color bar shown at the bottom of the figure. Panels g–i have distinct color bars shown just to their right.
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Lannion, France) within the framework of the European Organisation
for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean
and Sea Ice Satellite Application Facility (OSI-SAF) and was obtained
directly from IFREMER (The French Research Institute for Exploitation
of the Sea). The product is a gridded (level 3 collated), hourly product
obtained by averaging data obtained at full resolution every 15min
(EUMETSAT, 2011). From its geosynchronous orbit centered over 0°
longitude, SEVIRI provides continuous spatial sampling over a grid
from 60S–60N and 60W–60E. The selected image in Fig. 1 corresponds
to 1500 UTC. Data corresponding to quality flags 2–5 were included.
Additional quality indices beyond the “best” pixels (OSI-SAF QI con-
vention: 0: no data, 1: bad, 2: very low quality, 3: low quality, 4: ac-
ceptable, 5: best) were again included to increase coverage and to test
the ability of the interpolating function to evaluate the data quality
assessment performed by the data producer.

The AMSR-E microwave SST data (Fig. 1c) were obtained in level 2
format from Remote Sensing Systems (RSS, http://www.remss.com/,
Wentz and Meissner, 2004). The retrievals have a native resolution of
approximately 38 km, but there is a high degree of oversampling. Initial
analysis of the data considered quality indices 2–4 (RSS QI convention:
1: bad, 2: suspect, 3: should-be-good, 4: good) to evaluate the need for
additional screening as described below. Note that AMSR-E retrievals
are not affected by non-precipitating clouds and, thus, the quality in-
dexing is not based on proximity to cloud, but rather on proximity to
precipitation, ice, or land, and other factors affecting the quality of the
MW retrieval such as sun glint, high winds, and electromagnetic in-
terference. Since the MODIS and AMSR-E sensors fly on the same sa-
tellite, their spatial and temporal coverage is nearly coincident (see
Fig. 1a and c).

4. Demonstration of the interpolation methodology

An initial test demonstrates the new interpolation methodology's
ability to both reproduce existing data and fill in data gaps. For this
experiment, a spatially complete gridded data (no gaps) was required
along with some realistic cloud mask. The basis for the data grid was a
maximum value composite (MVC) generated from all hourly SEVIRI
SST scenes over the study area over four consecutive days starting on 8
February 2009. To fill in a small number (< 5%) of remaining gaps in
the MVC, SEVIRI retrievals from the days prior to the starting day were
inspected for additional observations at the empty grid cells. The first
available observation, going backward in time, was used to fill the re-
spective gap. The resulting SST scene is shown in Fig. 2a.

To test the interpolation methodology, SST values corresponding to
representative gaps due to cloud cover were removed prior to gen-
erating the interpolating functions. The source of this cloud mask was
taken as the screened clouds from the 1500 UTC SEVIRI hourly product
from 8 February 2009 as shown by the gray areas in Fig. 2b. An in-
terpolating function was generated using the remaining observations
(clear pixels in Fig. 2b), and then evaluated at every 0.05° grid point
corresponding to the original, spatially complete, SEVIRI composite (all
obs in Fig. 2a). The resulting image is shown in Fig. 2c. It is important
to emphasize that at the locations where input data were available, the
values shown in 2c are from the interpolating function and not the
original retrievals. Qualitatively, the interpolating function is observed
to do a good job in reproducing the original SST data in all but the
regions with the largest assumed cloud cover.

To quantify the accuracy of the interpolating function, the differ-
ence between the functional value of the interpolant and the original
SEVIRI SST composite was evaluated at each grid point. Termed the
“misfit,” these differences are plotted for the clear observations from
which the function was derived (Fig. 2d) and for all the points including
the assumed cloud gaps in the input data (Fig. 2e). The misfit shows a
speckle-like noise pattern with very small amplitudes (within± 0.2 K)
where the input data were available, demonstrating that the clear ob-
servations are well reproduced by the interpolating function. As

expected, however, the misfit gets larger as the size of the gaps in-
creases and, additionally, the speckle noise adds coherently and self-
organizes in large constructive and destructive patterns (the saturated
red and blue patches in Fig. 2e corresponding to the largest gaps within
the cloud mask). This shows that the ability of the interpolating func-
tion to replicate the data within the gaps is constrained by the size of
the gap.

The misfit values from Fig. 2e were then binned as a function of the
Euclidean distance to the nearest available observation to show how
closely the interpolator replicates input observations and to provide an
indication as to how large of a gap can be effectively filled with this
technique. The results for gaps of increasing size up to 25 pixels
(125 km) are shown as the black trace in Fig. 3. The misfit has a mean
value of 0.10 K for the points at 0-distance (i.e., where observations
were available) and then increases monotonically as the gap size (dis-
tance to nearest observation) increases. If an acceptable accuracy for
the interpolation error were assumed to be 0.2 K, these results de-
monstrate that the technique is able to effectively fill gaps of up to
about 10 pixels (50 km) in size using the information contained in the
available data.

While the focus of this paper is not on the skill of the interpolation at
filling gaps, an additional experiment was performed to demonstrate
how the method could be employed to fill larger coverage gaps as is
done in existing SST analyses. In the regions where clouds were artifi-
cially introduced (Fig. 2b), the original 5-km resolution SEVIRI com-
posite data was replaced with a 25-km average value (i.e., 5× 5-box
averages of neighboring grid cells centered at each cloudy pixel) to
simulate the availability of lower resolution AMSR SST retrievals under
clouds. A new “blended” interpolating function (not shown) was gen-
erated based on this combined data. The method was only allowed to
utilize the additional lower resolution input once the distance from the
original higher resolution observations reached a user-specified dis-
tance of 10 pixels. The misfit resulting from evaluating the blended
interpolator at the initial 5-km SEVIRI composite SSTs is displayed in
Fig. 2f and the corresponding binning as a function of the Euclidean
distance to the nearest available observation is shown as the red trace in
Fig. 3. The binned misfit reaches its maximum value at a distance-from-
observation of about 10 pixels corresponding to the transition to in-
clusion of additional data. Beyond this threshold, the blended inter-
polator can be evaluated to fill larger and larger gaps with remarkable
accuracy and precision, as the misfit plateaus at 0.1 K for larger dis-
tances. For this idealized case, where 25-km resolution data are as-
sumed to always be available to guide the interpolation when there is
no high resolution data at hand and the coarser resolution data rea-
sonably reflects the SST patterns at finer resolution, the simple addition
of the complementary coarser data significantly improves the accuracy
of the interpolator's spatial predictions at the unsampled locations. It is
for this very same reason that existing SST analyses blend data from
multiple satellite sensors.

Although we do not seek to directly compare the performance of
different interpolation methods, an additional test places these results
in the context of an independent, alternative method. A simple, dis-
tance-weighted, sphere-of-influence based interpolation technique was
also tested based on the available “cloud-free” observations in Fig. 2b.
For each grid point, the technique searched for all available clear ocean
observations within a radius of 100 km and then computed the
weighted average of those data with the weights given by one over the
square of the radius (inverse distance). Observations directly at the grid
point (0 distance) were assigned a weight of one. If there are no ob-
servations within the 100-km radius, the technique fails to produce an
estimate, and thus it cannot be used to produce complete fields. The
misfit between the weighted interpolation estimates and the original
composite SEVIRI values was computed and further binned with dis-
tance from the observations and shown by the green trace in Fig. 3.
Within smaller gaps, our high-resolution multistage interpolation
technique outperforms the distance-weighted interpolation, but as the
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Fig. 2. Initial demonstration of the interpolation technique applied to a SST composite derived from SEVIRI. Panel (a) shows the original composite, (b) shows the
composite with the cloud mask applied, and (c) shows the interpolating function evaluated everywhere on the composite grid. The resulting misfit is shown in panels
d–e for both the clear values and all values respectively. The corresponding “blended” misfit in panel e was derived in an additional experiment where additional
inputs to the interpolation in cloud screened regions were supplied based on simulated lower resolution data. See text for details.
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gap increases beyond about 12 pixels, the localized weighted average
does better than the interpolator derived from the cloud-free observa-
tions. Although counterintuitive at first glance, a global interpolation
method such as ours uses global information content to fill in the small
scale variability that in small gaps is smoothed by the average, whereas
in large gaps, the new method is conservative opting for background
values that are even smoother than a localized average. More detailed
comparisons of different techniques and application to filling gaps in
multi-sensor data are deferred to a separate paper.

5. Application of the Interpolant to scene quality assessment

Beyond the basic illustration of the capabilities of the technique
shown in the previous section, the broader utility of the interpolation
methodology can be demonstrated through application to the in-
dividual sensor SST scenes described in Section 3. One such unique
application is helping to assess the quality of the data used to build the
interpolating function, including the identification of any potential ar-
tifacts in the input data.

Interpolating functions were generated for each of the sensor pro-
ducts in a two-step approach: first using inputs with minimal quality
control and a second step using refined inputs obtained after removing
outliers identified based on the magnitude of the interpolation errors
from the first step. In the preliminary screening, data from all the
quality levels listed in Section 3 were used as inputs. This included data
of more questionable quality that are typically excluded in other ap-
plications, such as the construction of SST analyses (level 4 products).
The reason behind this approach is twofold: 1) to assess the ability of
the interpolating function to help with additional screening of poor
quality data, and, 2) to retain as much data as possible to build an
interpolant able to accurately fill in gaps in coverage. So-called
“questionable” data in IR retrievals can be extremely challenging to
screen using the conventional cloud masking methodologies employed
by most data producers. Traditional satellite cloud screening methods

rely on a series of thresholds to identify large retrieval errors. These
techniques are not perfect, however, as in many cases, such as with low
stratus and polar maritime cloud, the clouds exhibit very little contrast
from the underlying sea surface. Thus, flagged observations often in-
clude a mix of both contaminated and uncontaminated retrievals and
valid data points may be discarded when an entire quality level is ex-
cluded from an analysis.

The preliminary screening was successful in identifying con-
taminated observations within the questionable levels while retaining
other retrievals highly consistent with their surrounding values.
Interpolation errors were computed as the difference between the ac-
tual satellite-retrieved SSTs used to derive the functions and the values
of the interpolating function at the locations (nodes) of the SST input.
Note that unlike exact interpolators, the interpolation error at the nodes
is non-zero with the proposed method, accounting for uncertainty in the
observations. Distributions for the interpolation errors were obtained
from normalized histograms. Differences exceeding a specified
threshold suggested unreasonable satellite retrievals inconsistent with a
smoothly varying SST field. Residual outliers identified in this fashion
were then rejected prior to generating the interpolating function. Sharp
SST frontal features or narrow patches of diurnal warming pose chal-
lenges where valid data could also be rejected and represent a key
tradeoff in selecting the rejection threshold. A high rejection threshold,
nominally based on the 99% quantile of the distribution of the differ-
ences, was utilized in an effort to reject residual cloud contamination
only.

The results reveal how the retrievals rejected in this manner com-
pare to the quality indices assigned by the data producers. The per-
centage of “best” and “suspect” quality observations rejected is shown
in Table 1 for MODIS and AMSR-E. No SEVIRI input observations were
rejected during the screening process. For MODIS, the observations
were screened using the SEVIRI-derived interpolating function rather
than using direct comparison against values of the MODIS interpolating
function, as the SEVIRI interpolator was more effective at identifying
outliers given the higher levels of uncertainty in MODIS. For both
MODIS and AMSR-E, a larger percentage of the observations indexed as
“suspect” by the data producer were rejected, but some “best” quality
observations were also removed.

In the second step, the input data retained after the exclusion of
outliers in the screening step were used to compute the final, refined
interpolating function for each sensor. The quality-controlled SST in-
puts are shown in Fig. 1a–c. The final degree, Lfinal, used for the in-
terpolating trigonometric polynomials was 1024 for MODIS, 512 for
SEVIRI, and 256 for AMSR-E. The degree was algorithmically derived as
part of the multistage approach to build the interpolating function. The
choice of the degree is the result of, at each stage, checking the size of
the intermediate residuals and monitoring the condition number of the
system to solve for the coefficients of the intermediate interpolating
function. The polynomial degree reflects the ability of the interpolating
functions to reproduce the observed variability without fitting residual
noise in the data. The degree also reflects some correlation with the
sensor product resolution. For efficiency in the current technique, de-
grees based on powers of 2 were used, but this will be generalized to
any degree in the future. Because of the large gap between the AMSR-E
swaths, separate interpolating functions were generated independently
for the western and eastern swaths. The manual separation of input
data for the two swaths was performed for AMSR-E only.
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Fig. 3. Mean misfit evaluated as a function of Euclidean distance to the nearest
available observation for the identified interpolation techniques. The black
trace reflects the results obtained from our interpolating function derived from
inputs in clear areas only. The red trace was obtained from an alternative in-
terpolating function obtained with additional simulated lower resolution SST
input in the cloudy regions. The green trace applies to an independent simple
distance-weighted interpolation approach. Solutions for this weighted tech-
nique exist only up to a distance of about 30 pixels. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

Table 1
Percentage of original observations of specified quality index rejected in first
stage screening.

Sensor Best quality Questionable quality

MODIS 0.01% (QI 0) 1.05% (QI 1)
AMSR-E 1.0% (QI 4) 4.5% (QI 2)
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To illustrate the performance of the code, we recorded the execution
time needed to generate the interpolating function with the highest
degree on a workstation with an Intel i7-7700 K CPU operating at
4.2 GHz. The MODIS input (Fig. 1a) contains 5,172,397 pixels and the
interpolant constructed has degree 1024. Interpolant construction re-
quired 957 s (median of 3 timings, excluding I/O), that is, about 16min.
Next, we evaluated the interpolant on the whole domain displayed in
Fig. 1d (42× 44°) which contains 19,350,000 pixels. This evaluation
required 37.4 s (median of 3 timings, excluding I/O). Our current im-
plementation has not been heavily optimized, and we anticipate that
significant acceleration is possible, especially in the construction of the
interpolant. To expand the implementation of the technique to global
applications would require partitioning the ocean basins into similar
sub-domains.

The resulting values of the interpolating functions evaluated on full
grids, corresponding to the resolution of the input data from each
sensor, are shown in Fig. 1d–f. For AMSR-E, due to the high degree of
oversampling, a regular 0.25° resolution grid was used, consistent with
the corresponding level 3 products provided by Remote Sensing Sys-
tems. As before, at the nodes where original data were available, the
values shown are from the interpolating function and not the original
retrievals. Qualitatively, at the large image scale, the interpolating
function for each sensor captures the spatial SST variability extremely
well, further illustrating the strong potential of the technique. At nodes
where input data were available, the interpolating function accurately
reproduces all major features, including the region of diurnal warming.
Within the original sampling gaps, the interpolated functional values
generally appear physically realistic, while providing a continuous SST
field. Not surprisingly, as emphasized in the initial demonstration in
Section 4, the ability of the interpolating functions, derived based on
single sensor data as done in this demonstration, is more limited in
regions of extensive data gaps such as between satellite swaths. In these
regions (e.g., Fig. 1d), the functional values are notably smoother, as
the methodology takes a conservative approach in poorly sampled re-
gions so as not to introduce spurious fine resolution features. At the
edge of the image domains where there is no input data to bound the
function, some larger errors can be observed, as the function is not
designed to extrapolate outside the spatial domain for which it was
built.

The general skill of the interpolating functions in reproducing the
underlying SST structure and variability for the MODIS and SEVIRI
satellite products can also be assessed through comparisons with in-
dependent drifting buoy observations. Buoys have long been a standard
against which satellite SST retrievals have been validated. For this
evaluation, quality controlled drifting buoy data obtained through the
NOAA iQUAM in-situ SST monitoring system (https://www.star.nesdis.
noaa.gov/sod/sst/iquam/; Xu and Ignatov, 2014) were compared se-
parately against the direct satellite retrievals and against values of the
interpolating functions for the scenes considered above both in regions
where retrievals were available and in the gaps where no training data
were available. For the direct satellite retrievals, buoy observations
were matched with satellite retrievals within 1 h in time and either the
closest grid cell (SEVIRI) or the nearest retrieval (MODIS) within a
20 km radius. With the interpolating function, the satellite SST is
matched with the buoy by directly evaluating the function at the exact
node corresponding to the buoy location. Since the MODIS image uses

granules from 13:40 to 15:45 UTC, buoys present in the domain from
1300 to 1600 UTC were extracted for the MODIS matchups. In the case
of the 1500 UTC SEVIRI, buoys within 1400 and 1600 UTC were con-
sidered.

Statistics for the buoy comparisons are summarized in Table 2 and
further support the skill of the derived interpolating functions. One
notable result is that the rms difference with respect to the buoys within
clear ocean pixels is smaller when using the interpolating function es-
timate than for the retrievals themselves, for both MODIS and SEVIRI.
The biases are also generally similar. These findings reflect positively
on both the overall accuracy of the interpolating function and its ability
to be evaluated at precise point locations. While the agreement between
the buoy measurements and estimates derived from the interpolating
function is somewhat degraded in cloudy regions for SEVIRI, the values
are quite similar between the clear and cloudy regions for MODIS
suggesting some value of the interpolated MODIS results within the
cloud-covered gaps.

A more quantitative pointwise evaluation of the resulting inter-
polation error at nodes where the input data were available better il-
lustrates the ability of the methodology to further assess the quality of
the underlying data. Residual differences (again termed the misfit) were
computed between the functional value of the interpolant at the loca-
tion of the available satellite SST retrievals and the actual retrieved SST
values as in Section 4. Corresponding misfits for MODIS, SEVIRI and
AMSR-E are plotted in Fig. 1g–i, respectively. The typically small values
of the misfit again demonstrate how the function is able to accurately
capture the observed SST variability throughout the scene. Only for
MODIS are residual differences comparable to, or larger than, the ex-
pected satellite retrieval accuracies (about 0.5 K). Moreover, closer
examination of patterns in the misfit reveals how powerful the tech-
nique can be in identifying potential remaining artifacts related to
cloud contamination, instrumental effects, and sampling errors.

Locations of the largest values of the misfit (i.e., the top 1 or 5%) are
further highlighted in Fig. 4 as the points plotted in black. It is notable
that the patterns suggested by the largest misfit values are quite dif-
ferent for the different sensor types. This suggests that the differences
cannot be simply ascribed to properties of the functional fit, but rather
may be associated with the underlying data. Given that the exact cause
of the misfit is not always known with certainty, the differences,
however, must be carefully examined before concluding that they are
indeed data artifacts. Statistics comparing these largest misfit values
with all other points are shown in Table 3. The increase in the mean
misfit for the largest differences is clear, particularly for MODIS.

The MODIS misfit maps (Figs. 4a and 1g) show stripes consistent
with individual scan lines from the sensor, particularly in the western
swath. Scan striping has long been a problem for MODIS SST retrievals
resulting from the use of an array of independent detectors with im-
perfect relative calibrations and a multi-sided (cross-track) scan mirror
(Gumley, 2002). Substantial effort has gone into reducing the impact of
scan striping, and the results have improved to the point where striping
cannot be visually detected in the input MODIS scene in Fig. 1a.
Comparison of the smooth functional form and the retrieved data,
however, suggests that striping is still present in the retrievals. Identi-
fication of striping at this low magnitude is challenging, and few other
existing techniques have exhibited the ability to show the striping as
clearly as the interpolating function does here.

Table 2
Statistics comparing the SST values retrieved directly or obtained from the interpolating function against collocated buoy SST measurements. The bias is computed as
retrieved value minus the buoy measurement.

Sensor Satellite retrievals Interpolator at input Interpolator in gap

Counts Bias (K) STD (K) Points Bias (K) STD (K) Counts Bias (K) STD (K)

MODIS 64 −0.16 0.60 64 −0.11 0.53 40 −0.14 0.60
SEVIRI 26 0.06 0.28 26 0.01 0.21 50 −0.07 0.66
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The other most coherent regions of misfit for MODIS (Fig. 4a) are
found in regions just left of the scan center in the northern portion of
the scene. The cause for this misfit pattern is not fully understood, but
the region in the eastern swath does show correlation with a discrete
portion of the scan geometry suggesting that the effect could again be
instrumental in nature. Other isolated larger differences could have
contributions both from sampling effects and limitations in the func-
tional fit. Instrumentally, the differences could indicate random noise
or potential problems with residual cloud contamination or subpixel
cloudiness in the corresponding SST retrievals. With respect to the
functional fit, very fine scale variability at the MODIS resolution might
not be fully resolved given the tradeoff between distinguishing natural
high frequencies from noise.

The magnitude of the misfit can again be compared to the original
quality flags assigned by the data producer. Using MODIS as an ex-
ample, the mean misfit expressed as a function of the quality index is
presented in Table 4. Results are shown both for the absolute value of
the misfit and for the true mean where positive and negative values can
partially cancel out. As noted before, the mean misfit is very small in
magnitude, reflecting the overall goodness of the functional fit. A slight
increase in magnitude of the misfit is observed for the “questionable”
data quality that was retained following the initial quality control
where only the largest outliers were removed, but the fact that the
change is so small further justifies the inclusion of the additional data in
the analysis.

The SEVIRI misfit (Figs. 4b and 1h) exhibits a largely random pat-
tern with the exception of a concentration of larger misfit values along
the axes where diurnal warming is observed to be greatest. For these
areas near strong diurnal warming, the source of the difference is likely
algorithmic rather than physical as the interpolating function may be
overly smoothing across the sharp SST gradients. The diurnal warming
introduces stronger gradients than elsewhere within the scene and
forcing the interpolating function to resolve these gradients would have
resulted in the introduction of high-frequency noise. This is another
clear instance of the balance between resolving high-resolution features
(i.e., preserving the interpolator from over-smoothing) while keeping
high-frequency noise to a minimum. Elsewhere, the large differences do
not appear to suggest any correlation with potential residual cloud
contamination in the retrievals with more suspect quality levels, sug-
gesting that the majority of the cloud contaminated data have indeed
been excluded by the data producer. This again suggests that use of
lower level quality data does not necessarily have a negative impact; in
fact for this application, the inclusion of additional data might have
been highly beneficial since other results (Castro et al., 2014) have
suggested that extreme diurnal warming events tend to be flagged as
poor quality data by the automated quality control processes im-
plemented with operational data.

The AMSR-E misfit values (Fig. 1i) are very small overall (about
0.1 K), but do show some tendency for larger values (Fig. 4c) to con-
centrate along the edges of screened precipitation regions (the main
source of the gaps inside the swaths of the AMSR-E input), swath edges,
and near the swath center. The concentration of elevated misfit values
forming “halos” around the pre-screened features suggest that addi-
tional unflagged retrievals in the vicinity of the features might still be
modestly impacted by the contamination source. While the functional
fit could also potentially over-smooth across edges in data coverage, the
fact that such similar halos are not observed for the other sensors lends
support for unflagged rainfall contaminated pixels. The interpolating
function is also able to highlight known anomalies in the retrieved
values at the outermost spots on the right side of the scan. The in-
creased misfit corresponds to known contamination caused by parts of
the Aqua spacecraft entering the field of view of the first (right-most)
pixels of each scan. These pixels are excluded in creation of the Remote
Sensing Systems level 3 products but are included with the level 2 data
(Wentz and Meissner, 2004). The misfit values just to the right of the
scan center could possibly suggest very small calibration differences

Fig. 4. Locations of the largest misfit values for (a) MODIS, (b) SEVIRI, and (c)
AMSR-E. The locations exceeding the percentile indicated in the title of each
panel are plotted in black while all other observation locations are plotted in
gray.
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with scan spot, but these are much smaller than the expected retrieval
accuracy. Interestingly, while there is some correlation between the
larger errors and scan spot, there is no suggestion of correlation with
scan line. The larger pixels at the left edge of the scan are due to nu-
merical issues with the interpolator at the boundaries of the inter-
polated swath areas, as it is not equipped to extrapolate outside areas
for which it was built. Recall that in the AMSR-E case, two separate
interpolants were constructed due to the wide gap between swaths.
Careful examination of the AMSR-E image in Fig. 1c reveals the pre-
sence of periodic conical scan patterns in the SSTs along the satellite
tracks, especially on the left swath, which is mimicked in the inter-
polated data (see Fig. 1f). Trigonometric polynomial interpolants are
particularly well suited for fitting periodic, smooth features. The fact
that these patterns have smooth curvature with an apparent periodicity
spanning over long distances along the satellite ground track means
that it can probably be characterized by a sinusoid function, which
explains the failure of the trigonometric interpolator to identify it as an
artifact in the AMSR-E data unlike with the linear striping in MODIS.

6. Application to sub-pixel SST variability

Another novel application of the interpolating function is to explore
subpixel variability within satellite products of differing spatial re-
solution. In geophysical phenomena, the measurement of a physical
variable associated with a point, x, in a two-dimensional space re-
presents an average value over some continuum area. From a practical
standpoint, however, we tend to associate a measurement with its point
value, Z= z(x). For instance, it is common to implicitly treat the sa-
tellite-retrieved SST for a pixel as a point value, particularly when va-
lidating it against in situ point observations, even though the satellite
measurement integrates the radiation coming from the entire area
within the satellite's footprint. There is an estimation error stemming
from this representation because there always is spatial variability in
nature. This is what in satellite remote sensing has been broadly termed
the point-to-pixel discrepancy. The unresolved spatial variability has an
effect on the perceived uncertainty of satellite-derived products when
the satellite retrieval is validated using observations with significantly
finer resolution than the satellite. Vinogradova and Ponte (2013) pre-
sented a good recent discussion of this impact on sea surface salinity
observations from the Aquarius satellite.

Accurately quantifying the true variability is very challenging in
practice and the results are inevitably tied to the size of the region/
footprint and the resolution and density of the available observations.
The concept behind an observationally-based estimation of spatial
variability is to densely sample regions the size of the satellite's foot-
print using instrumentation of sufficiently high spatial resolution to
capture all the scales of variability within the footprint. The variance of
the high-resolution observations then provides a measure of the spatial
variability within the coarser pixel. This challenge is currently met
through advances in technology with small, high resolution instruments
mounted on fast moving platforms, with the capacity to obtain mea-
surements that fully resolve the finer scales of variability. While viable,
these field campaigns are expensive and cannot be conducted globally.
Another option, employed by Vinogradova and Ponte (2013) in the
study of salinity, is to utilize high-resolution model output fields in the
place of direct observations to represent the variability within a given
footprint.

To estimate the subpixel variability within coarser resolution pro-
ducts, it is also possible to use measurements from higher resolution
satellite observations. The limiting factors of this approach are the
spatial resolution of the available satellite sensors, and obtaining sam-
pling with adequate density to accurately estimate the true variability
of the field. While the first problem is constrained by the available data,
use of the interpolating function can potentially help with the latter.
Estimates of variability obtained exclusively from satellite retrievals are
limited by gaps and the underlying noise of the data. Collocation and
direct aggregation of all observations within successively larger foot-
prints is also computationally expensive. In contrast, interpolating
functions derived from the high-resolution observations are continuous
(gap free) and can be up-scaled or integrated easily over larger areas
corresponding to the coarser resolution products. Thus, interpolating
functions have the advantages of providing physically consistent values
everywhere within the desired coarser footprints (aside from the largest
gaps), ease of analysis, and smoothing out other sensor-specific noise
that could affect direct averages and variability estimates.

Since the interpolant I(x,y) described in Eq. (1) is an explicit tri-
gonometric polynomial of two real variables, we can efficiently com-
pute its moments over any desired region by reducing the problem to an
application of the FFT or the USFFT. We are particularly interested in
the second central moment of the function to estimate the variance of
the field. The aim is to compare this estimated variance with the direct
sample variance of the high-resolution pixels as they are aggregated
over successively coarser resolution grids. This estimated variance can,
in turn, inform estimation of the subpixel variability and its contribu-
tion to an uncertainty budget of satellite SST retrievals.

The differing resolutions of MODIS (1 km), SEVIRI (5 km), and
AMSR-E (25 km for the level 3 grid) provide a means to investigate the
subpixel SST variability on retrievals of scales from approximately
5–25 km. The MODIS interpolating function can be used to estimate

Table 3
Statistics characterizing the difference in misfit for those points above and below the percentiles selected for the greatest differences between the observed and
estimated SSTs.

Sensor Counts Mean (K) STD (K) Counts Mean (K) STD (K)

<99% >99%

MODIS 5,120,673 0.12 0.01 51,724 0.58 0.11
SEVIRI 282,333 0.06 0.05 2852 0.28 0.04

Sensor Counts Mean (K) STD (K) Counts Mean (K) STD (K)

<95% >95%

AMSR-E & L Swath 85,790 0.02 0.02 4515 0.19 0.13
AMSR-E & R Swath 95,639 0.02 0.01 5034 0.13 0.10

Table 4
Mean magnitude of the misfit in the MODIS interpolating function expressed as
a function of quality index.

Best quality Questionable quality

Mean misfit (K) 0.00 −0.01
Mean absolute misfit (K) 0.12 0.16
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variability within the SEVIRI and AMSR pixels and the SEVIRI inter-
polating function can be used as an independent estimate of variability
within the AMSR-E footprint.

Prior to using the interpolating functions to infer the spatial

variability, it is useful to further verify their ability to accurately esti-
mate the mean SST field over the selected coarser resolution footprints
(e.g., the ability of the MODIS interpolating function to estimate an
observation over the coarser AMSR-E footprint). If the interpolating

Fig. 5. Evaluation of whether the integral of the interpolating functions is a direct analog to the average of the underlying observations on the selected grids of
differing resolution. The top panels correspond to the evaluation of MODIS resolution sampling on the SEVIRI grid, the middle panels to MODIS resolution sampling
on the AMSR-E grid, and the bottom panels to SEVIRI resolution sampling on the AMSR-E grid. Panels a–c show the integrals of the interpolating functions over the
grid cell, panels d–f show the average of the available observations within the grid cell, and panels g–i show the corresponding differences between the integrals and
averages. Common color bars are shown at the bottom of each column.
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function accurately represents the underlying physical field, the in-
tegral of the interpolant over the footprint should approximate the sa-
tellite-retrieved value for that footprint. To test the functional ap-
proach, the integral of the interpolants over coarser resolution
footprints was compared against direct arithmetic averages of all the
available higher resolution observations within the same domain. There
is a caveat, however, in that the comparison involves the mean of a
continuous function over the integration domain and the average of a
discrete sample with gaps in coverage. Missing observations within the
gaps are expected to contribute to differences with the interpolant in-
tegral, but the comparisons can also provide insight into how con-
sistently the gaps are filled in by the interpolant. Note that the integral
could also be compared with the original coarser resolution observation
on that footprint (say a 5-km integral of the MODIS interpolant with the
corresponding native 5-km SEVIRI retrieval), but that would introduce
an intercomparison between sensors with different characteristics that
we want to avoid. Here, we wish to evaluate the ability of the inter-
polants to supplant the direct, higher resolution observations from
which they were derived.

Results are shown in Fig. 5 for comparison of the MODIS integrated
interpolating function and corresponding averaged MODIS observations
on the SEVIRI and AMSR-E grids, and the SEVIRI function and ob-
servations on the AMSR-E grid. The differences do not, in any way,
reflect measurement errors between different sensor types. To first
order, the functional integrals agree very well with the averages of the
data from which they were derived. Mean differences are near zero
(< 0.04 K) and coherent differences are relatively small in magnitude.
Overall, the largest differences, not surprisingly, occur on the edge of
large data gaps. Increased differences do also occur in stronger gradient
regions and near the diurnal warming feature (25S, 25W) where SST
variability is greatest and accurate averages are dependent on all pos-
sible measurements (which may not be available). Those differences,
however, are still generally within expected retrieval accuracy.

Distributions of the difference values are also shown in Fig. 6. While
the mean difference between the interpolant integral and the direct
MODIS average on the AMSR-E grid is very small (−0.04 K), there is a
skewness of the difference distribution to negative values indicating
that the value of the integral is typically smaller than the average. This
could potentially result from the presence of cloud “halos” or slight
residual cloud contamination on the edge of screened regions causing
the interpolating function to project slightly cooler SST values into the
enclosed regions with missing observations.

To better appreciate the fine scale differences, the corresponding
results for a smaller region, centered on the large diurnal warming
event, are shown in Fig. 7. Visually, the integrals of the interpolating
functions, again, appear very similar to the direct averages of the
measurements and the magnitude of the differences are reasonably
small (mean differences all again< 0.04 K). For the MODIS difference
on the SEVIRI grid (Fig. 7g), the effect of scan striping is again visible
but no other coherent patterns emerge. For MODIS on the AMSR grid
(Fig. 7h) the differences are elevated near the large gradients associated
with the region of diurnal warming and also near the edges of coverage
gaps. The differences in the SEVIRI results evaluated on the AMSR grid
(Fig. 7i) are quite random except for some enhancement on the edge of
data gaps. The mean difference between the integral and the sample
average is< 0.01 K. Overall, the results suggest that the interpolating
functions can accurately capture the variability within the coarser
sensor footprints and support further use of the functions to quantify
this subpixel variability.

Based on this success, the ability of the second moment of the in-
terpolating function to characterize the variability within the coarser
resolution pixels was explored next. The second moment of the inter-
polating functions (or variance functions) was computed and integrated
over regions corresponding to the SEVIRI and AMSR-E footprints as for
the first moment (the mean of the function) above. These explicit var-
iances were then compared with direct computations of the sample
variance for the corresponding higher resolution MODIS and SEVIRI
measurements within the same domains. Graphical results are shown in
Fig. 8 for the MODIS retrievals and interpolating function evaluated on
both the SEVIRI and AMSR-E grids, and corresponding SEVIRI products
on the AMSR-E grid. Distributions of the variance for the entire domain,
computed in both ways, are further plotted in Fig. 9. A more detailed
spatial comparison for the zoomed-in region with enhanced diurnal
warming is also shown in Fig. 10.

The dominant feature of the functional and observational variance
differences is their difference in magnitude. The variances derived from
the interpolating functions are smaller in magnitude than the sample
variances of the observations over the same domains, but they reflect
similar regional patterns. No strong coherent spatial patterns are ex-
hibited in the difference images in either Fig. 8g–i or Fig. 10g–i.

Given the differences in magnitude between the variance estimates,
it is important to consider how representative the values are of the
actual physical variability we wish to quantify. An observational mea-
sure of spatial variability is dependent on the density of the underlying
sampling. Gaps in the observations can miss sources of variability.
When observations are more abundant, it is possible to get an in-
creasingly better representation of the variability. Use of the inter-
polating function allows estimation in the limit of complete sampling at
the given resolution, since they are continuous everywhere in the
spatial domain for which they apply. This assumes, of course, that the
density of observations was at least sufficient to derive an accurate
interpolating function. Observational variability estimates are also cri-
tically dependent on the noise level of the measurements. The presence
of artifacts in the satellite retrievals noted in Section 5 implies that the
data might not be completely reliable for direct estimation of the spatial
variability. The interpolating function, in contrast, can largely mitigate
the impact of sensor noise and other artifacts. Because of the filtering of
noise and some inherent smoothing of the observations in the fitting
process, the variability derived from the interpolating function is ex-
pected to be lower in magnitude. Under conditions where the density of
observations is reduced (but not too low) and/or where the observa-
tions have elevated noise, the interpolating function could provide an
improved estimate of the true subpixel variability. At minimum, the
interpolating function should provide a lower physical bound on the
spatial variability at the scale of the underlying observations.

Based on this reasoning and the similar patterns in the derived
variability, the variance derived from integration of the second moment
of the interpolating functions appears to provide a powerful mechanism
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Fig. 6. Distribution of the differences between the integrals of the interpolating
functions and averages of available observations for the results shown in Fig. 5
g–i. Results for the different sensor and grid combinations are plotted by color
as shown in the legend.
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to help estimate the magnitude of, and regional differences in, the
variability within the selected satellite footprints. Comparison of the
quantitative variance estimates with grid resolution first provides in-
sight into how the magnitude of the underlying physical variability
changes with spatial scale. Comparing variance estimates from the
MODIS interpolating function on the AMSR and SEVIRI grids shows
increased variance over the larger 25-km AMSR cells (mean of 0.03 K2

vs 0.005 K2 for the full region). This is to be expected as larger regions
generally encompass increased spatial variability. The variance com-
puted from the SEVIRI interpolating function on the same AMSR grid

(mean of 0.01 K2) is less than that from the MODIS interpolating
function. This again makes sense as the higher resolution MODIS ob-
servations resolve more small-scale variability than does SEVIRI,
though perhaps with increased noise. Lower limits on the derived
variance, however, approach similar values in open ocean regions. The
mode of the variance of the MODIS interpolating function evaluated on
25-km regions is 0.005 K2 (Fig. 9) in agreement with the mean variance
value evaluated over 5-km regions. This value corresponds to a stan-
dard deviation of 0.07 K, which is in excellent agreement with the
spatial variability contribution to satellite SST retrieval accuracy found

Fig. 7. As in Fig. 5, but for a localized region including the peak diurnal warming.
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by Castro et al. (2010). The smallest variance estimates from the direct
retrievals also approach similar limits but show more variability across
the satellite scans.

The variance estimates further permit closer examination of

regional variations in the spatial variability. For MODIS-scale 1-km
observations aggregated on a 5-km resolution grid, the explicit variance
is very homogenous over the entire domain, with a barely noticeable
increase in the immediate vicinity of the peak diurnal warming

Fig. 8. Evaluation of the ability of the second moments of the interpolating functions to replicate the variance of the underlying observations on the selected grids of
differing resolution. The top panels correspond to the MODIS resolution sampling on the SEVIRI grid, the middle panels to MODIS resolution sampling on the AMSR-E
grid, and the bottom panels to SEVIRI resolution sampling on the AMSR-E grid. Panels a–c show the variance computed from the second moment of the interpolating
functions over the grid cell, panels d–f show the variance of the available observations within the grid cell, and panels g–i show the corresponding differences
between the functional and direct data approaches. Common color bars are shown at the bottom of each column.
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(Fig. 10a). The spatial variability throughout is well captured by the
mean variance value of 0.005 K2. On scales of 25 km, however, loca-
lized areas with increased variance up to 0.2 K2 are visible, particularly
near the diurnal warming. The peak values directly near the diurnal
warming maximum obtained from the direct retrievals are quite similar
to those from the interpolating function, further supporting this upper
value. These results suggest that spatial representativeness errors on
scales of 5 km can be reasonably assumed to be around 0.07 K over
large expanses of the ocean, but that on scales of 25 km, localized
variations should be considered and the errors can increase to near
0.4 K in regions with enhanced spatial variability. Overall, these results
obtained using the new interpolating functions are broadly consistent
with other localized estimates of spatial variability, but further enable a
practical way to help quantify spatial variability and representativeness
errors over much larger regions and at different scales.

7. Conclusions and future directions

A new powerful global interpolation technique yielding an inter-
polant in functional form has been developed with multiple potential
applications to the generation and analysis of satellite-derived SST
products. While directly relevant to the traditional application of gap
filling for construction of blended gap-filled analyses, the technique has
additional novel applications to the quality assessment of satellite SST
retrievals and quantitative estimation of spatial variability on different
scales. Use in addressing these problems could provide important gui-
dance not readily available through other currently available methods.

The technique is based on the construction of a trigonometric in-
terpolating function that fits the input satellite retrievals within a
limited spatial wavenumber domain, providing adequate resolution in
regions of larger data gaps and the highest possible resolution in regions
with sufficient data density. This resulting interpolant provides a
functional representation of the underlying physical SST field that can
be evaluated anywhere within the domain over which it was derived.
Importantly, moments of the interpolating function can be calculated
accurately and efficiently, enabling estimation of the mean and var-
iance of the field over desired sub-regions. In this application, our
choice of functional form was trigonometric polynomials to assure
speed of computation by using the FFT or the USFFT. Use of the tech-
nique was demonstrated by application to level 2 satellite SST retrievals
from the MODIS and AMSR-E sensors and a level 3 gridded SEVIRI

product as well as a spatially complete composite SST product sampled
with a realistic cloud mask.

The results illustrated how comparison of the functional form of the
interpolant with the original retrievals upon which it was based could
be employed as part of an operational processing scheme to help flag
suspect retrievals for additional quality assessment. Large values of
misfit highlight specific retrievals potentially inconsistent with smooth
variations of the surrounding values. The technique was able to illus-
trate very small anomalies/artifacts such as MODIS sensor striping
largely undetectable with other approaches.

The choice of the functional form strongly affects what patterns can
be identified. The trigonometric polynomials employed in this appli-
cation identified potential artifacts associated with linear scan striping
but fit and reproduced small conical stripes associated with the scan-
ning of AMSR-E. Alternate functional forms could be used to target
other specific anomalies like conical striping. In general, there are many
known ways in which additional constraints can be imposed to help
filter out artifacts with specific characteristics and we plan to develop
appropriate interpolants for such purpose. The overall framework is
extremely versatile and powerful.

Direct comparisons between moments of the generated inter-
polating functions and the observations used in their derivation showed
that the technique can be used to accurately represent spatial averages
and quantify spatial variability in the underlying physical SST field.
Integrals of the interpolating functions for MODIS, SEVIRI, and AMSR-E
agreed closely with direct averages of the available retrievals over the
same domains. This illustrates how the interpolating functions can be
used to emulate retrieval of the SST field at different effective spatial
resolutions. Moreover, the second moment of the interpolating func-
tions was consistent with the variability of the available observations
within grids of coarser resolution demonstrating that the functions can
help provide quantitative estimates of, or bounds on, the spatial
variability on different desired spatial scales. The spatial variance es-
timated from the interpolating functions was generally smaller than
that of the direct observations due to observational noise and the
smoothing nature of the functions, but the values represent a lower
bound on the physical variability and could, in at least some cases, be
more consistent with the actual variability on the scale of the sampling
given the observational limitations. Comparison of the interpolated
results with independent buoy SST measurements from the day assessed
further supported the ability of the technique to accurately reproduce
the underlying SST field. Broader tests over larger regions and addi-
tional days are, of course, desirable.

Quantitative estimation of the spatial variability of the SST on dif-
ferent scales and the associated representation error of point and finer
scale measurements is particularly challenging with other traditional
methods and much remains unknown about appropriate physical va-
lues. Application of the technique provided new insight into the spatial
SST variability, at least within the limited region of this initial test.
Within open ocean regions away from any frontal features, variability
of 1-km-resolution observations on grids of both 5- and 25-km resolu-
tion was found to be ~0.07 K (as expressed by a standard deviation). In
regions of sharper gradients such as associated with strong localized
diurnal warming, the variability within 25-km-resolution grids in-
creased to as much as 0.4 K for sampling at 1-km resolution. The
variability of 1-km observations on a 25-km-resolution grid was about
2.4 times greater than that on a 5-km-resolution grid. Broader appli-
cation of the technique globally could help better quantify true regional
variations in the spatial variability, which would subsequently improve
uncertainty estimates for existing satellite-based SST products.

The relative performance of the interpolation technique in the gap-
filling problem as compared with other traditional methodologies was
not explicitly examined in this paper. Detailed comparisons are re-
quired to accomplish this in a meaningful way. Additional activities
related to this topic are planned and the utility of the technique for gap-
filling in construction of level 4 SST analyses will be explored.
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Fig. 9. Distribution of the variance estimates computed from the (solid lines)
second moments of the interpolating functions and the (dotted lines) sample
variance of the available observations for the results plotted in Figs. 8a–c and
8d–f, respectively. Results for the different sensor and grid combinations are
plotted by color as shown in the legend.
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While applied here primarily to single-sensor data, the technique
can also be applied with inputs from multiple sensors and observations
collected across different measurement times to handle larger data gaps
as previewed in Section 4. Successful application of the interpolation
methodology is clearly dependent upon having sufficient observational
data density and quality to accurately derive and constrain the inter-
polating functions. As expected, the quality of the interpolating func-
tions is only as good as the data from which they are derived. The
positive outcome of this investigation was, in part, enabled by the low
amount of cloud cover in the scenes analyzed. Application of the

technique, based solely on single-sensor data, will be challenging in
regions of extensive and persistent cloudiness where the infrared cov-
erage can be limited. Additionally, the finest effective spatial resolution
of the interpolating functions is naturally limited by the resolution of
the data used in their derivation. Preliminary tests indicate that the
technique can be easily expanded to blend multi-sensor data to help
ameliorate any limitations associated with data density, which will
further enhance the powerful new capability.

Fig. 10. As in Fig. 8, but for the localized region including the peak diurnal warming.
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