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Abstra
t. We solve vis
ous Burger's equation using a fast and a

urate algorithm�

referred to here as the redu
tion algorithm� for 
omputing near optimal rational

approximations.

Given a proper rational fun
tion with n poles, the redu
tion algorithm 
omputes

(for a desired L
∞
-approximation error) a rational approximation of the same form,

but with a (near) optimally small number m ≪ n of poles. Although it is well-known

that (nonlinear) optimal rational approximations are mu
h more e�
ient than linear

representations of fun
tions via a �xed basis (e.g. wavelets), their use in numeri
al


omputations has been limited by a la
k of e�
ient, robust, and a

urate algorithms.

The redu
tion algorithm presented here 
omputes reliably (near) optimal rational

approximations with high a

ura
y (e.g., ≈ 10−14
) and a 
omplexity that is essentially

linear in the number n of original poles. A key tool is a re
ently developed algorithm

for 
omputing small 
on-eigenvalues of Cau
hy matri
es with high relative a

ura
y,

an impossible task for standard algorithms without extended pre
ision.

Using the redu
tion algorithm, we develop a numeri
al 
al
ulus for rational repre-

sentations of fun
tions. Indeed, while operations su
h as multipli
ation and 
onvolu-

tion in
rease the number of poles in the representation, we use the redu
tion algorithm

to maintain an optimally small number of poles.

To demonstrate the e�
ien
y, robustness, and a

ura
y of our approa
h, we solve

Burgers' equation with small vis
osity ν. It is well known that its solutions exhibit

moving transition regions of width O (ν), so that this equation provides a stringent

test for adaptive PDE solvers. We show that optimal rational approximations 
apture

the solutions with high a

ura
y using a small number of poles. In parti
ular, we solve

the equation with lo
al a

ura
y ǫ = 10−9
for vis
osity as small as ν = 10−5

.

1. Introdu
tion

We solve vis
ous Burgers' equation using a fast and a

urate algorithm for 
on-

stru
ting rational approximations with (near) optimally small L∞
error. When the

vis
osity ν is small, solutions of Burgers' equation develop sharp (moving) transition

regions of width O (ν), whi
h presents a 
hallenge for standard numeri
al methods.

Although solving vis
ous Burgers' equation is primarily of a
ademi
 interest, it allows

us to demonstrate the e�
ien
y, a

ura
y, and robustness of using optimal rational

approximations for numeri
al 
omputations. Our ultimate goal is to develop nonlinear
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approximation methods for solving partial di�erential and integral equations in higher

dimensions, where the ability to 
onstru
t near optimal rational (or exponential) ap-

proximations to fun
tions of one variable is a key 
omponent.

Sin
e the seminal result in [21℄, it has been known that fun
tions with singulari-

ties may be e�
iently approximated in the L∞
norm using proper rational fun
tions.

Indeed, the number of poles required to approximate a fun
tion with singularities is

dire
tly related to the sparsity of the fun
tion's wavelet 
oe�
ients (see [16, Theorem

11.1℄). However, in 
ontrast to more traditional L2
-type methods (using e.g., wavelet

bases as in [2℄), the use of su
h optimal L∞
-type approximations in numeri
al analysis

has been limited due to a la
k of e�
ient and robust algorithms.

Given a proper rational fun
tion f , we present an algorithm�whi
h we refer to as

the redu
tion algorithm�to 
ompute, for a �xed number of poles, a rational approx-

imation g to f with a (near) optimal L∞
error. We use the redu
tion algorithm to

develop a numeri
al 
al
ulus based on rational fun
tions. Although operations su
h as

multipli
ation and 
onvolution in
rease the number of poles in the representation, we

use the redu
tion algorithm afterwards to keep the number of poles optimally small for

a spe
i�ed a

ura
y. A salient feature of this approa
h is that optimal rational approx-

imations e�
iently represent fun
tions with singularities or sharp transitions, and that

positions of the poles are dire
tly asso
iated with the lo
ations of singularities [5℄.

Our redu
tion algorithm relies on theory developed by Adamyan, Arov, and Krein [1℄

(referred below as AAK) for 
onstru
ting optimal approximations in the L∞
-norm using

meromorphi
 fun
tions with a spe
i�ed number of poles in the unit disk. In parti
ular,

let f denote a real valued (periodi
) rational fun
tion with n pairs of 
omplex poles γj,
1/γj (|γj| < 1) and 
oe�
ients αj , αj . Then it turns out (see Appendix Se
tion 4.1)

that a (near) optimal rational approximation g, 
ontaining exa
tly m poles in the

unit disk, may be obtained from the mth 
on-eigenve
tor um of the asso
iated n × n
Cau
hy matrix Cij =

√
αi

√
αj/ (1− γiγj) . Moreover, the approximation error satis�es

‖f − g‖∞ ≈ λm, where λm is the mth 
on-eigenvalue of C, and the m poles of the

approximation are roots of a rational fun
tion determined by the 
omponents of the


on-eigenve
tor um. An analogous formulation also exists for obtaining (near) optimal

approximations via de
aying exponentials [4, 6℄, as well as rational fun
tions de�ned on

the real line. We formulate the 
on-eigenvalue problem in Se
tion 2, and refer to [15,

Se
tion 4.6℄ for its general dis
ussion. See also [22℄ for a 
lear dis
ussion of the AAK

theory.

Let us observe that in order to employ the redu
tion algorithm, two seemingly ill-

advised numeri
al tasks must be performed � namely, a

urately 
omputing small


on-eigenvalues (and 
on-eigenve
tors) of Cau
hy matri
es, and 
omputing all the roots

in the unit disk of 
ertain rational fun
tions. One of the main points of this paper

is to provide algorithms that solve both problems e�
iently, reliably, and with high

a

ura
y. A key tool in this regard is an algorithm developed in [?℄ to 
ompute even

the tiniest 
on-eigenvalues of positive-de�nite Cau
hy matri
es C with high relative

a

ura
y, whi
h is impossible using standard methods (see [13℄, [12℄, and [11℄ for the

ba
kground on algorithms for a
hieving high relative a

ura
y). Also, of parti
ular

importan
e, is the robustness of the root-�nding method, sin
e it must be employed
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many times. For example, in the 
ontext of solving Burgers' equation with vis
osity

ν = 10−5
and approximation toleran
e ǫ = 10−9

, on the order of a million appli
ations

of the redu
tion algorithm are performed.

For fun
tions with n poles resulting from intermediate 
omputations, the redu
tion

algorithm requires only O (m2n) operations to �nd an optimal approximation with m
poles. In our numeri
al experiments with the redu
tion algorithm, we �nd that an

approximation error of ǫ ≈ 10−14
may be reliably obtained within double pre
ision

arithmeti
, even when the number of poles n is large and their spatial distribution is

highly 
lustered.

There is a signi�
ant literature devoted to appli
ations of the AAK approa
h in


ontrol theory (
f. [23℄), signal pro
essing (
f. [8℄), and numeri
al analysis (
f. [25,

27, 29, 5℄), to mention just a sele
t few. The reformulation of the AAK theory given

here 
ould be related to the approa
hes taken in [28℄, [20℄, and [10℄. However, as far

as we know, all of the AAK-type algorithms dis
ussed in the literature require O (n3)
operations when applied to a rational fun
tion with n poles, and may require extended

pre
ision arithmeti
 if high a

ura
y of the result is desired. In 
ontrast, our redu
tion

algorithm requires only O (m2n) operations to �nd an optimal approximation with m
poles and a
hieves high a

ura
y (ǫ ≈ 10−14

) using only double pre
ision arithmeti
.

We show in this paper that solutions of Burgers' equation with vis
osity ν require

only O (log ν−1) +O (log ǫ−1) poles for its rational approximation with an L∞
error of

size ǫ. Burgers' equation has been traditionally used to test the limits of new numeri
al

methods sin
e the solution develops sharp transition regions that need to be 
aptured

adaptively. Con
eptually, the two 
losest adaptive methods are those in [24℄ and [2℄.

While in [2℄ adaptivity is a
hieved by adding wavelet s
ales when needed, the algorithm

in [24℄ a
hieves spe
tral a

ura
y by adaptively positioning the ne
essary number of

interpolating nodes within the transition region.

We 
ompare the performan
e of our algorithms with that in [24℄, where authors

use sub-optimal rational approximations based on 
onformally mapped Chebyshev grid

points and bary
entri
 interpolation. It appears that (for a 
omparable approximation

error and vis
osity) using optimal rational approximations to represent solutions of

Burgers' equation results in signi�
antly fewer poles. We also note that (as far as

we know) our method su

essfully solves vis
ous Burgers' equation with the smallest

vis
osity reported in the literature, thus demonstrating the e�
ien
y, a

ura
y and

robustness of the redu
tion algorithm. Sin
e standard methods for dis
retizing PDEs

(e.g., 
ollo
ation, proje
tion, et
.) do not readily �t within the framework of our

nonlinear numeri
al 
al
ulus, we also present a dis
retization s
heme that may be of

independent interest.

In Se
tion 2, we des
ribe the redu
tion algorithm and its 
onne
tion to solving a 
on-

eigenvalue problem. In Se
tion 3, we dis
uss the main algorithm for solving Burgers'

equation, and present our numeri
al results.

2. Redu
tion algorithm for rational fun
tions

In this se
tion, we summarize the algorithm for obtaining a (near) optimal approx-

imation of a periodi
 rational fun
tion by another periodi
 rational fun
tion with a
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smaller number of poles. As mentioned earlier, our redu
tion algorithm is based on

a theorem of Adamyan, Arov, and Krein ([1℄), whi
h 
on
erns the approximation of

a periodi
 fun
tion f , essentially bounded on the unit 
ir
le ∂D, by a meromorphi


fun
tion r(z) (z = e2πix) 
ontaining a spe
i�ed number of poles in the unit disk. We

limit our presentation to rational fun
tions f taking real values on ∂D. This 
ase turns
out to be parti
ularly important, as it allows us to develop a pra
ti
al algorithm based

on approximating the Fourier series 
oe�
ients of f with positive index. More general

fun
tions f may be dealt with by using the te
hniques in [5℄. We note that the AAK

theory may also be formulated for fun
tions de�ned on the real line (
f. [22℄).

2.1. Overview of key algorithmi
 steps. Following the same steps as in [4, Se
tion

6℄ (see also Se
tion 4.1), if the original fun
tion is rational, the (in�nite) Hankel system

derived from AAK theory may be redu
ed to a �nite 
on-eigenproblem. Spe
i�
ally,


onsider a rational fun
tion f of the form

(2.1) f(z) =
n∑

i=1

αi

z − γi
+

n∑

i=1

αiz

1− γiz
+ f0,

where f0 is real, the residues αj and poles γj are 
omplex, and 0 < |γj| < 1. Note that

f is real-valued on the unit 
ir
le and that the Fourier series 
oe�
ients f̂k of f(e2πix)
satisfy

f̂k =

n∑

i=1

αiγ
k−1
i , k ≥ 1,

with f̂−k = f̂k and f̂0 = f0. We now des
ribe an algorithm to �nd a rational approx-

imation g(e2πix) to f(e2πix), of the same fun
tional form (2.1), with a spe
i�ed error

in the L∞
-norm and a (near) optimal number of poles. Given a target a

ura
y ǫ, the

steps for 
omputing the rational approximant g are as follows:

Step 1: Compute a 
on-eigenvalue λm ≈ ǫ and 
orresponding 
on-eigenve
tor u
of the positive-de�nite Cau
hy-like matrix C,

(2.2) Cu = λmu, u =




u1
u2
.

.

.

un


 , Cij =

α
1/2
i α

1/2
j

1− γiγj
, i, j = 1, . . . , n.

Here the 
on-eigenvalues λ0 ≥ λ1 ≥ . . . λn−1 > 0 are labeled in non-in
reasing

order. In 
ontrast to standard methods, our algorithm exploits the stru
ture of

C to 
ompute its 
on-eigenvalues (and asso
iated 
on-eigenve
tors) with high

relative a

ura
y, and in order O
(
n log (ǫ−1)

2
)
operations (see Se
tion 2.2).

Step 2: Find the m zeros ηj inside the unit disk of the proper rational fun
tion

v(z),

(2.3) v(z) =
1

λm

n∑

i=1

√
αi ui

1− γiz
.
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The fa
t that there are exa
tly m zeros in the unit disk, 
orresponding to the

indexm of the 
on-eigenvalue λm, is a 
onsequen
e of the AAK theory. As shown

in Se
tion 4.1 (see equations (4.8)), the key to the high a

ura
y of evaluating

the fun
tion v(z) is the relationship

(2.4) v (γi) = ui/
√
αi, i = 1, . . . , n,

whi
h, together with the n poles 1/γi, uniquely determines v(z).
Step 3: Find the 
oe�
ients βi of g(z) by solving the m×m linear system,

(2.5)

m∑

i=1

1

1− ηiηj
βi =

n∑

i=1

αi

1− γiηj
, j = 1, . . . , m.

Denoting ‖f − g‖∞ = supx∈[0,1] |f(e−2πix)− g(e−2πix)|, the resulting rational approxi-

mation g(e2πix) satis�es ‖f−g‖∞ ≈ ǫ and, thus, is 
lose to the best L∞
-error a
hievable

by rational fun
tions with no more than m poles in the unit disk (see also [25℄ for a

dis
ussion of optimal rational approximations).

Remark 1. In Step 3, we solve for the 
oe�
ients βi in O (m2) operations by exploiting

the stru
ture of Cau
hy matri
es (see [11, 7℄). We note that su
h a solver may require

quadruple pre
ision if the overall desired approximation error ǫ is smaller than ≈ 10−10
.

However, sin
e m = log (ǫ−1) is small, Step 3 for �nding 
oe�
ients βi does not impa
t

the overall speed of the algorithm even if performed in quadruple pre
ision.

Remark 2. In appli
ations where the fun
tion f (e2πix) has singularities or sharp tran-

sitions, the poles γj in the rational representation of f (e2πix) may be lo
ated very 
lose

to the unit 
ir
le (and/or to ea
h other). In su
h 
ases, it is advantageous to maintain

the poles in the form γj = exp (−τj), sin
e they are well separated on a logarithmi


s
ale. Importantly, the redu
tion algorithm 
omputes the new poles ηj = exp (−ζj)
with nearly full pre
ision in the exponents ζj, i.e., the ratio

∣∣∣ζ̂j − ζj

∣∣∣ / |ζj| is 
lose to

ma
hine pre
ision even when |ζj| ≪ 1 (see [?℄). However, to a
hieve high a

ura
y in

the numeri
al examples of this paper, it was not ne
essary to maintain the poles in

exponential form.

Remark 3. It may be shown (to be published elsewhere) that the 
on-eigenvalues λm
of the positive-de�nite Cau
hy matrix Cij = α

1/2
i α

1/2
j / (1− γiγj) in (2.2) satisfy the

inequality

max {λ2m, λ2m−1} ≤ n2 |αm|
1− |γm|2

Πm−1
k=1 |fγk (γm)|

2 ,

where fγk denote the Moebius transformations

fb (z) =
z − b

1− bz

and the parameters αm and γm are appropriately sorted. Sin
e the transformation

fb maps the unit disk into itself if |b| < 1, the 
on-eigenvalues de
ay as λm ∼ rm
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(r < 1). This estimate shows that, for a

ura
y ǫ, we may reasonably expe
t O (log ǫ−1)
terms in our approximation. In fa
t, we have observed this behavior in our numeri
al

experiments.

Let us now brie�y dis
uss the algorithmi
 aspe
ts behind e�
ien
y and a

ura
y of

solving steps 1-3 above.

2.2. A

urate 
omputation of 
on-eigenvalues/eigenve
tors. For Step 1, we use
a re
ent algorithm developed and analyzed in [?℄ for 
omputing 
on-eigenvalues of

Cau
hy matri
es with high relative a

ura
y, whi
h we brie�y des
ribe in this se
tion.

It is well-known that standard eigenvalue algorithms 
ompute an approximate 
on-

eigenvalue λ̂m with an error no better than

∣∣∣λm − λ̂m

∣∣∣ / |λ1| = O (δ), and an approxi-

mate unit 
on-eigenve
tor ûm with an error no better than

‖um − ûm‖2 = O (δ) /absgapm, absgapm ≡ min
l 6=m

|λm − λl| / |λ1| ,

where δ denotes the ma
hine round o�. This implies that a 
omputed 
on-eigenvalue

smaller than |λ1| δ will generally have few or no 
orre
t digits. Another undesirable fea-

ture of using standard 
on-eigenvalue methods to solve Step 1 is the O (n3) 
omplexity

for �nding the m≪ n poles of g(z), where n is the original number of poles of f(z).
In 
ontrast, the 
on-eigenvalue algorithm introdu
ed in [?℄ 
omputes even the small-

est 
on-eigenvalues (and 
orresponding 
on-eigenve
tors) a

urately, i.e., the 
omputed


on-eigenvalue λ̂m satis�es

∣∣∣λm − λ̂m

∣∣∣ / |λm| = O (δ), and the 
omputed unit 
on-

eigenve
tor ûm satis�es

‖um − ûm‖2 = O (δ) /relgapm relgapm ≡ min
l 6=m

|λm − λl| / (λl + λm) .

Thus, the 
omputed 
on-eigenvalues and 
on-eigenve
tors are a

urate if the relative

distan
e between the 
on-eigenvalues is not too small (whi
h is the 
ase for matri
es 
on-

sidered here). Importantly, the mth 
on-eigenvalue (and 
on-eigenve
tor) is 
omputed

in O (m2n) operations. We note that, under mild assumptions, the 
on-eigenvalues

of positive de�nite Cau
hy matri
es de
ay exponentially fast. It then follows that,

for a given desired a

ura
y ǫ, ‖f (e2πix) − g (e2πix) ‖∞ ≈ ǫ, the number of poles m
in the approximant g(z) is O (log ǫ−1). Therefore, the 
omplexity of our algorithm is

O
(
(log ǫ−1)

2
n
)
, i.e., is essentially linear in the number of original poles n and, thus, its

speed is 
ontrolled by the number of poles of the �nal optimal approximation. Moreover,

in 
ontrast to the usual perturbation theory for general matri
es, small perturbations

of the poles γm and residues αm (determining the Cau
hy matrix C = C(α, γ)) lead to


orrespondingly small perturbations in the 
on-eigenvalues and 
on-eigenve
tors [?℄.

2.3. Finding poles for near optimal approximation. There are two numeri
al

di�
ulties asso
iated with the root-�nding algorithm in Step 2 of Se
tion 2.1. First,

the roots of polynomial or rational fun
tions may be notoriously ill-
onditioned with

respe
t to their de�ning parameters. In parti
ular, using the expli
it formula (2.3) to


ompute values of v(z) typi
ally results in a loss of roughly log10 (λ
−1
m ) digits. Indeed,
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using (2.4) to rewrite (2.3) as

n∑

i=1

αi v (γi)

1− γiz
= λmv(z),

we see that the sum must su�er 
an
ellation of about log10 (λ
−1
m ) digits if v (γi) and

v (z) are of 
omparable size (note that λm 
ontrols the approximation error and, thus,

is ne
essarily small).

The se
ond di�
ulty asso
iated with the root-�nding step is that root-�nding meth-

ods based on standard iterative pro
edures su
h as Newton's method are often too

sensitive to the initial guess and, for that reason, may not lo
ate all the roots reliably.

Our PDE solver (see Se
tion 3) requires roughly a million appli
ations of the redu
tion

algorithm and, thus, it is imperative that the root-�nding algorithm is both e�
ient

and reliable in lo
ating allm roots of v (z) (re
all that the index m of the 
on-eigenvalue

λm 
orresponds to the number of roots in the unit disk). Indeed, due to optimality of

the rational approximation, missing even one root leads to an una

eptably large error

in the 
orresponding approximation.

The root-�nding algorithm presented below makes use of two key observations. First,

the values v (γi) = ui/
√
αi of v (z) may be 
omputed in Step 1 with high a

ura
y from

the 
on-eigenvalue 
omponents ui. Noti
ing that the n values v (γi) and poles γi
−1

uniquely determine v (z), we 
ompute v (z) via rational interpolation with the values

v (γi) and poles γi
−1

rather than using formula (2.3). Heuristi
ally, the reason this

approa
h works well is that the roots of v (z) are typi
ally 
lose to the poles γi (sin
e
the roots yield the poles of a near optimal approximation), and it is natural to expe
t

that having many a

urate values v (γi) of v (z) 
lose to the roots allows us to 
ompute

them with high a

ura
y. The se
ond key observation is that the roots of v (z) 
oin
ide
with the eigenvalues of a rank-one-plus-diagonal matrix, and this matrix may be applied

(along with its shifted inverse) in O (n) operations. This yields an e�
ient and robust

way to lo
ate all roots of v (z) within the unit disk.

The basi
 strategy behind the root-�nding algorithm is as follows. First, we use

Newton's method on the rational interpolant 
omputed from the values v (γi) and poles

γi
−1
. Sin
e we have good initial guesses for Newton's method, this pro
edure typi
ally

lo
ates most of the roots of v (z). To 
ompute any roots that Newton's method misses

(re
all that we know from Step 1 the total numberm of roots in the unit disk), we use an

e�
ient version of shifted inverse iteration on the diagonal-plus-rank-one matrix whose

eigenvalues 
oin
ide with the roots of v (z). Be
ause the eigenvalues of this matrix

are often ill-
onditioned, some of these eigenvalues may be only evaluated with a few

a

urate digits. However, using Newton's method on the rational interpolant allows us

to re�ne the missing roots to nearly full pre
ision.

Let us now des
ribe this algorithm in greater detail. As noted above, v(z) is uniquely
determined from its n values v (γi) = ui/

√
αi, a

urately 
omputed from Step 1, and its

n poles 1/γi. This allows us to 
ompute an approximation ṽ(z) to v(z) via 
ontinued

fra
tions,

(2.6) ṽ(z) =
a1

1 + a2 (z − γ1) / (1 + a3 (z − γ2) / (1 + · · · )) ,
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where the 
oe�
ients aj are determined from the interpolation 
onditions ṽ(γi) = v (γi),
and may, in general, be 
omputed in O (n2) operations. Importantly, the poles γi are
often 
lustered �around� the roots of v (z) (this is the 
ase in our PDE appli
ation),

and it is su�
ient to use lo
al rational interpolation within a given 
luster to �nd roots.

This redu
es the 
omplexity to essentially O (m) operations, where m is the number of

roots in the unit disk. On
e the 
oe�
ients aj are determined, the values of ṽ(z) and
ṽ′(z) may be 
omputed in O (n) operations using re
ursion formulas [9℄ (the 
omplexity

redu
es to O(m) if it is done lo
ally as des
ribed above). As indi
ated previously, this

method yields very a

urate results when the poles γi are highly 
lustered (whi
h is

the 
ase in our PDE appli
ation). Indeed, the roots of v (z) 
oin
ide with the poles

of a (near) optimal rational approximation, so that a given root is often lo
ated 
lose

to some parti
ular 
luster γi1 , γi2, . . . , γik of original poles. Sin
e Step 1 
omputes the

values v (γik) of v (z) with high a

ura
y, su
h pole 
lustering a
tually 
ontributes to a

high degree of numeri
al stability. As a te
hni
al point, 
omputing the 
oe�
ients aj
in 2.6 requires arranging the nodes γ1, . . . , γn in in
reasing order of magnitude in order

to a
hieve high a

ura
y.

We also note that, as an alternative to using 
ontinued fra
tions, the roots of v(z)
may also be a

urately 
omputed using Lagrange interpolation (and the known poles

γi
−1

of v(z)),

(2.7) v(z) =
Πn

i=1 (z − γi)

Πn
i=1 (1− zγi)

n∑

j=1

sj
(z − γj)

, sj =
Πi (1− γjγi)

Πi 6=j (γj − γi)
v (γj) .

Computing the bary
entri
 weights sj, in general, requires O (n2) operations, and eval-

uation of v(z) and v′(z) (on
e the weights sj are 
omputed) requires O (n) operations.
Constru
ting rational interpolants from appropriately grouped pole 
lusters γi again
allows us to redu
e the 
omplexity to O(m) operations. We note that 
omputing the


oe�
ients sj requires in this 
ase arranging the nodes γ1, . . . , γn in de
reasing order of

magnitude in order to a
hieve high a

ura
y.

As mentioned previously, we 
ompute roots that the above pro
edure misses by using

the fa
t that the roots of (2.3) 
oin
ide with the eigenvalues of the diagonal-plus-rank-

one matrix (
f. [26℄ and [19℄),

(2.8) A = D + abT,

where the diagonal matrix D and the ve
tors a and b satisfy

Dii = γi
−1, ai =

γi
−1√αiui∑n

j=1 γj
−1√αjuj

, bi = γi
−1, i = 1, . . . , n.

Using the Sherman-Morrison formula, the matrix (A− λI)−1
may be e�
iently applied

in O (n) operations and, therefore, simultaneous inverse iteration may be used to 
om-

pute allm eigenvalues of A inside the unit disk (and, hen
e, allm roots of v(z) in the unit
disk). To illustrate this pro
edure, assume thatm−1 roots β1, . . . , βm−1 have been found

using the version of Newton's method des
ribed above, and we would like to 
ompute the

missing root βm. To do so, we �rst use the Sherman-Morrison formula, 
ombined with

one step of inverse iteration, to 
ompute eigenve
tors q1, . . . , qm−1 of A 
orresponding
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to the known eigenvalues β1, . . . , βm−1, one by one. We then orthogonalize these m− 1
ve
tors using the stabilized Gram-S
hmidt pro
edure, thus yielding a basis q̂1, . . . , q̂m−1

for the invariant subspa
e span {q1, . . . , qm−1} = span {q̂1, . . . , q̂m−1}. Finally, we use

simultaneous inverse iteration applied to q̂1, . . . , q̂m−1, q, where q is 
hosen randomly.

Noti
e that ea
h step of this pro
ess requires orthogonalizing q(k+1) =
(
A− λ(k)I

)−1
q(k)

against q̂1, . . . , q̂m−1, where λ
(k)

is the guess for βm after k steps. The matrix-ve
tor

produ
t

(
A− λ(k)I

)−1
q(k) may be 
omputed in O (n) operations from the Sherman-

Morrison formula. Therefore, ea
h step of this iterative pro
ess requires O (mn) oper-
ations, and an initial O (m2n) operations to orthogonalize q1, . . . , qm−1.

Remark 4. In appli
ations where the poles γi are not 
lustered, we have observed that

the roots of v (z) are 
omputed with nearly full pre
ision using Lagrange interpolation

(2.7). In 
ontrast, using 
ontinued fra
tions as in (2.6) may not always yield a

urate

roots if the poles are not 
lustered.

Remark 5. In both Newton's method and the inverse iteration method, we used the

original poles, γi, as starting guesses. However, the starting guess does not play a

signi�
ant role in inverse iteration sin
e it is globally 
onvergent.

3. Solving (1+1) dimensional nonlinear partial differential equations

using optimal rational approximations

We now des
ribe a method for solving Burgers' equation,

(3.1) ut − uux = νuxx, u(x, 0) = u0(x), u(0, t) = u(1, t),

using the redu
tion algorithm of Se
tion 2. We demonstrate that using optimal rational

approximations allows us to 
ompute solutions that are a

urate over a very large range

in Fourier spa
e and, thus, resolves the spatial singularities with high a

ura
y.

The main idea of our time-stepping s
heme is to represent the solution in spa
e as a

proper rational fun
tion. The dis
retization of (3.1) requires only a few basi
 operations

on su
h rational fun
tions, and preserves their rational form. These operations naturally

in
rease the number of poles in the representation and, thus, we employ the redu
tion

algorithm at ea
h stage of the pro
ess to keep the number of poles as small as possible.

Our results show that the solution of (3.1) may be obtained using rational fun
tions

with a small number of poles and with a uniform error, even within the rapid transition

region developed in the pro
ess of evolution.

We �rst des
ribe how, starting from u(x, 0) = u0 (x), we 
ompute u(x, t) for a given

timestep t. By re
asting (3.1) in semigroup form (see Se
tion 4.2), an appropriate

temporal and spatial dis
retization of (3.1) leads to the nonlinear system of equations,

ul(x) =

Mx∑

p=1

λlpu0
(
x− φl

p

)
+

Mt∑

j=1

Mx∑

p=1

λlp,ju
2
j

(
x− ψl

p

)
,(3.2)

where ul (x) ≈ u (x, τl), 1 ≤ l ≤ Mt, and {τl} are the Mt Gauss-Legendre quadrature

nodes on the time interval (0, t). The real-valued quantities φl
p, ψ

l
p, λ

l
p, λ

l
p,j in (3.2)
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depend on the timestep t, the number Mt of quadrature nodes in time, and the number

of quadrature nodes Mx used in spa
e to dis
retize the 
onvolution kernels. From the

rapid de
ay of the periodi
 heat kernel,

Kν(x, t) =
1√
4πνt

∑

k∈Z

e−(x+k)2/(4νt),

where ν is the vis
osity parameter in (3.1), it follows that φl
p and ψ

l
p are lo
alized to a

O
(√

νt
)
neighborhood of x = 0 (see Se
tion 4.2 for details).

We assume that the initial fun
tion u(x, 0) = u0 (x) is given as a periodi
 rational

fun
tion of the form

u0(x) =

M0∑

j=1

αj

e−2πix − γj
+

M0∑

i=1

αj

e2πix − γj
+ α0,

and that this representation is nearly optimal. We then solve the system of equations

(3.2) by approximating ea
h fun
tion ul using the redu
tion algorithm. We obtain, via

�xed point iteration applied to (3.2) and the redu
tion algorithm, rational fun
tions

ul(x) of the form,

(3.3) ul(x) =

Ml∑

j=1

αj,l

e−2πix − γj,l
+

Ml∑

j=1

αj,l

e2πix − γj,l
+ α0,

whi
h solve (3.2) to a spe
i�ed level of pre
ision, and have a (near) optimal number of

poles.

More spe
i�
ally, given u
(m)
j ≈ uj(x), 1 ≤ j ≤ Mt, at iteration m, we use (3.2) to

de�ne the next iterates u
(m+1)
l (x) for l = 1, . . . ,Mt,

u
(m+1)
l (x) =

Mx∑

p=1

λlpu0
(
x− φl

p

)

(3.4)

+
Mx∑

p=1

λlp,j

l−l∑

j=1

{(
u
(m+1)
j

(
x− ψl

p

))2
+

Mt∑

j=l+1

λlp,j

(
u
(m)
j

(
x− ψl

p

))2
}
.

Note that, in 
omputing u
(m+1)
l (x) for l > 1, we use the fun
tions u

(m+1)
j (x), 1 ≤ j < l

already available to us. We take u
(1)
j (x) = u0 (x), 1 ≤ j ≤ Mt , as an initial guess for

uj (x).

Although this initial form for u
(m+1)
l (x) is also rational, it is not of the form (3.3),

sin
e it 
ontains poles of multipli
ity two. However, it follows from equation (3.4) and

the distribution of the parameters φl
p and ψ

l
p in (4.12), that the poles of u

(m+1)
l (x) are

tightly 
lustered in O
(√

νt
)
neighborhoods about the poles γm of the initial fun
tion

u0(x). We may therefore obtain a very a

urate sub-optimal representation of u
(m+1)
l (x)

of the required form (3.3) by 
omputing (q, q + 1) Pade approximants of the rational

fun
tions in (3.4) asso
iated with ea
h 
luster of poles, where the Pade expansions are
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entered about 1/γm. In our numeri
al experiments, (q, q + 1) Pade approximations of

order 1 ≤ q ≤ 4 typi
ally yield an L∞
error smaller than 10−14

. Note that obtaining

a proper rational approximation of u
(m+1)
l (x) in this manner requires solving M0 small

(e.g., 3 × 3) linear systems, and yields a sub-optimal approximation with about three

times the optimal number of poles. We then use the redu
tion algorithm, outlined in

Se
tion 2, to obtain an optimal rational representation of u
(m+1)
l (x). This pro
ess is

repeated until the desired level of pre
ision is obtained.

3.1. Examples. As a �rst example, we solve equation (3.1) with vis
osity ν = 10−3
,

and with initial 
ondition u0(x) = sin(2πx). For the time dis
retization, we use a

timestep equal to 10−3
and Mt = 3 quadrature nodes τl in (0, t) (see equation (3.2)).

This yields a lo
al error of less than 10−11
. For the spatial part, we apply the redu
tion

algorithm by sele
ting the smallest 
on-eigenvalue value greater than ǫ = 10−12
, whi
h

ensures a uniform L∞
-error of about 10−12

. In our appli
ation of Pade approximation,

we obtain a spatial error in the L∞
-norm no larger than 10−11

.

We take 400 timesteps, whi
h ensures that we evolve (3.1) past the point at whi
h the

solution begins to de
rease. To assess the error, we independently obtain the solution

to (3.1) by using the Hopf-Cole transformation to redu
e Burger's equation to the heat

equation. We then solve the heat equation in extended pre
ision arithmeti
 (the Hopf-

Cole transformation is highly ill-
onditioned) to obtain a solution that we use as a gauge

for assessing a

ura
y. We verify that the L∞
-norm of the di�eren
e between the two

solutions remains less than 1.6× 10−9
.

Figure 3.1 shows the 
omputed solutions u(x, t), whi
h have 5, 9, 14, and 13 
omplex-


onjugate pairs of poles at times t = 0.02, t = 0.11, t = 0.21, and t = 0.41. We also

show the error of the 
omputed solution at times t = 0.11, t = 0.21, and t = 0.41.
As a se
ond example, we solve Burgers' equation (3.1) with vis
osity ν = 10−5

and

the initial 
ondition u0(x) = sin(2πx)+1/2 sin(4πx). In our temporal dis
retization, we

used a timestep equal to 10−5
and Mt = 3 quadrature nodes. For the spatial part, we

apply the redu
tion algorithm with an approximation error of ǫ = 10−9
, whi
h ensures

a uniform L∞
-error of ≈ 10−9

. In our appli
ation of Pade approximation, we obtain

a spatial error in the L∞
-norm no larger than 10−11

. Although we were unable to

independently verify the a

ura
y of the 
omputed solutions for su
h a small vis
osity

ν (for the la
k of alternative methods of reasonable 
omplexity), we note that the

iteration s
heme in (3.4) 
onverged (in the L∞
-norm) to within an error no larger than

7.5× 10−9
at every timestep.

Figure 3.2 shows the 
omputed solutions u(x, t0j), with t0 = 10−5
and time steps tj,

j = 102, 104, 2 × 104, 3 × 104, 5 × 104. We see that the solution u(x, t) develops two
moving sharp transition regions, whi
h approa
h ea
h other and eventually merge into

a single one about x ≈ 1/2. The rational representations of u(x, tj) have 4, 11, 33, 29,
and 19 
omplex-
onjugate pairs of poles, respe
tively. Figure 3.3 demonstrates that the

transition region of u(x, t) o

ur within intervals of width ≈ 10−5
. Finally, Figure 3.4

illustrates the poles γi (t) in the representation,

u (x, t) =

M0∑

j=1

αj (t)

e−2πix − γj (t)
+

M0∑

i=1

αj (t)

e2πix − γj (t)
+ α0,
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Figure 3.1. (a) Computed solution u(x, t) at t = 0.02, t = 0.11, t =
0.21, t = 0.41 and its absolute error (on a logarithmi
 s
ale) for (b)

t = 0.11, (
) t = 0.21, and (d) t = 0.41.

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Figure 3.2. Plots of u(x, t), for tj = 10−3
, .1, .2, .3, and .5.

for t = .2, .274, .3, .4. As expe
ted, the poles 
luster about transition regions, and

move (adaptively) as the two wavefronts approa
h ea
h other.

4. Appendix

4.1. Review of AAK theory. In order to formulate the basi
 AAK theorem on the

unit disk, let us denote by H∞
the Hardy spa
e of bounded analyti
 fun
tions and by

H∞
N the set of fun
tions

H∞
N =

{
g(z)

(z − η1) · · · (z − ηk)
, |ηj | < 1, k ≤ N, and g ∈ H∞

}
.



SOLVING BURGERS' EQUATION USING RATIONAL APPROXIMATIONS 13

0.49996 0.49998 0.50000 0.50002 0.50004

-0.5

0.5

Figure 3.3. Solution u(x, t) at time t = .4, lo
alized about the transition
region (1/2− 10−5, 1/2 + 10−5). Note the absen
e of any Gibbs-type phe-
nomena.

Figure 3.4. Lo
ation of poles (within the unit disk) in the representa-

tion of u(x, t), for t = .2, .275, .3, and .4.
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Suppose f ∈ L∞
has the Fourier series

f(z) =

∞∑

n=−∞

fnz
−n,

and 
onsider the asso
iated in�nite Hankel matrix Hf

Hf =




f1 f2 f3 . . .
f2 f3 f4 . . .
f3 f4 f5 . . .
.

.

.

.

.

.

.

.

.

.

.

.


 ,

with singular values σn 
onsidered in de
reasing order. From the singular value problem

for the N th

singular value

Hfv = σNw,(4.1)

H∗
fw = σNv,

where v = (vj)j≥1 and w = (wj)j≥1, we de�ne the fun
tions

v(z) =

∞∑

j=1

vjz
j−1, w(z) =

∞∑

j=1

wjz
−j ,

and

(4.2) r(z) = f(z)− σN
w (z)

v(z)
.

For this parti
ular 
ase, the AAK theorem asserts that r ∈ H∞
N and

‖f − r‖∞ = inf
g∈H∞

N

‖f − g‖∞ = σN .

An important spe
ial 
ase is when f(z) has the form (2.1), that is,

(4.3) f(z) =

M∑

m=1

αmz
−1

1− γmz−1
+

M∑

m=1

αmz

1− γmz
+ f0,

where αm and γm are 
omplex and 0 < |γm| < 1. We now show that the in�nite singular

value problem (4.1) may be redu
ed to the �nite 
on-eigenvalue problem (2.2).

First, note that equation (4.1) may be written as

∞∑

j=1

fi+j−1vj = σwi, i = 1, 2, . . .(4.4)

∞∑

j=1

fi+j−1wj = σvi, i = 1, 2, . . .(4.5)

Using that the Fourier 
oe�
ients of (4.3) are of the form

fn =

M∑

m=1

αmγ
n−1
m , n ≥ 1,
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we 
al
ulate from (4.4)

∞∑

j=1

(
M∑

m=1

αmγ
i+j−2
m

)
vj =

M∑

m=1

αmγ
i−1
m

∞∑

j=1

γj−1
m vj

=

M∑

m=1

αmγ
i−1
m v (γm) = σwi.

Now multiplying both sides of the last equation by zi−1
and summing, we obtain

(4.6)

M∑

m=1

αm

1− γmz
v (γm) = σz−1w(z−1).

Similarly, from (4.5), we have

∞∑

j=1

(
M∑

m=1

αmγm
i+j−2

)
wj =

M∑

m=1

αmγm
i−1

∞∑

j=1

γm
j−1wj

=
M∑

m=1

αmγm
i−1
(
γm

−1w
(
γm

−1
))

= σvi.

Finally, multiplying by zi−1
and summing, we arrive at

(4.7)

M∑

m=1

αm

1− γmz
γm

−1w
(
γm

−1
)
= σv(z).

Hen
e, for a fun
tion f of the form (4.3), the fun
tions v and w in (4.2) turn out to

be rational and fully determined by their values at the poles of f . Taking z = γn and

z = γn in equations (4.6) and (4.7), respe
tively, we obtain

M∑

m=1

αm

1− γmγn
v (γm) = σγm

−1w
(
γm

−1
)
,

M∑

m=1

αm

1− γmγn
γm

−1w
(
γm

−1
)

= σv (γn) .(4.8)

We symmetrize the above equations by multiplying the �rst equation by αn
1/2

and the

se
ond equation by α
1/2
n to get

M∑

m=1

α
1

2

mαn
1

2

1− γmγn
α

1

2

mv (γm) = σαn
1/2γm

−1w
(
γm

−1
)
,

M∑

m=1

αm
1

2α
1

2

n

1− γmγn
αm

1/2γm
−1w

(
γm

−1
)

= σα
1

2

mv (γm) .
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Let us de�ne the ve
tors p and q with entries pm = α
1

2

mv (γm) , qm = αn
1/2γm

−1w (γm
−1),

and the positive de�nite matrix C with entries

Cmn =
α

1

2

mαn
1

2

1− γmγn
.

Then the above equations are equivalent to

C p = σq,

C q = σp,

whi
h may be redu
ed to a 
on-eigenvalue problem for σ > 0, see [15, Se
tion 4.6℄. One

simple way to see this and obtain an equation of the form (2.2) is by de�ning x = p+ q.
If x = 0, then iq = ip and hen
e

C(ip) = σip.

If x 6= 0, we have

Cx = σx

and, in both 
ases, we obtain a 
on-eigenvalue problem for the matrix C.

4.2. Dis
retization of Burgers' equation. We rewrite the equation (3.1) in semi-

group form (see, e.g., [14, 17, 18, 3℄)

(4.9) u(t) = eνtLu(0) +

ˆ t

0

eν(t−τ)LN(u(τ))dτ,

where u(t) denotes the fun
tion u(·, t). The operator L, Lu(x) = uxx, represents the
linear part of (3.1) while the operator N , N(u) = 1/2 (u2)x, represents the nonlinear

part. The a
tion of the operator eνtL on a fun
tion f is given by

(
eνtLf

)
(x) =

ˆ
1

2

− 1

2

Kν(y, t)f(x− y)dy, with Kν(y, t) =
1√
4πνt

∑

k∈Z

e−(y+k)2/(4νt).

To dis
retize equation (4.9) in time, we use the approximation

N (u(τ)) ≈
Mt∑

j=1

Rj(τ)N (u (τj)) , τ ∈ [0, t]

where {τj}Mt

j=1 denote the Gauss-Legendre nodes on the interval (0, t), and Rj(τ) denote
the Legendre interpolating polynomials for these nodes, i.e.,

Rj(τm) = δjm, for j,m = 1, . . . ,Mt.

Taking t = τl in (4.9), we obtain the semi-dis
rete system of equations

(4.10) ul = eντlLu0 +
Mt∑

j=1

(
ˆ τl

0

eν(τl−τ)LRj(τ)dτ

)
N (uj) , 1 ≤ l ≤Mt,

where ul = ul(x) denote the 
omputed values of u at time t = τl and u0 = u(x, 0).
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For the spatial dis
retization, using N(u) = 1/2 (u2)x and integrating by parts, equa-

tion (4.10) may be written as

(4.11) ul(x) =

ˆ 1

2

− 1

2

Kν(y, τl)u0(x− y)dy +
Mt∑

j=1

ˆ 1

2

− 1

2

Lν,j(y, τl)u
2
j(x− y)dy,

where the kernel Lν,j(y, t) is given by

Lν,j(y, t) = −1

2

ˆ t

0

(∂yKν) (y, t− s)Rj(s)ds.

For small ν, Kν(y, τl) and Lν,j(y, τl) de
ay rapidly away from zero. Therefore, we may

trun
ate the integrals in (4.11) to the intervals (−δl(ν), δl(ν)) and (−ηl(ν), ηl(ν)), and
then dis
retize using appropriately 
hosen quadrature nodes φl

p and ψ
l
p and weights µl

p

and γlp,

ul(x) =

ˆ −δl

−δl

Kν(y, τl)u0(x− y)dy +
Mt∑

j=1

ˆ ηl

−ηl

Lν,j(y, τl)u
2
j(x− y)dy

≈
Mx∑

p=1

λlpu0
(
x− φl

p

)
+

Mt∑

j=1

Mx∑

p=1

λlp,j
(
uj
(
x− ψl

p

))2
.(4.12)

In the last equation,

λlp =µ
l
pKν(φ

l
p, τl), λlp,j = γlpLν,j(ψ

l
p, τl),

whi
h are 
omputed beforehand given the quadrature nodes.

Remark 6. If the vis
osity ν is not small, then the kernels Kν (y, t) and Lν,j (y, t) are not
sharply peaked in spa
e, using the trapezoidal rule is su�
ient to obtain a sub-optimal

rational representation for ul (x).
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