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Abstra
t. The need to 
ompute small 
on-eigenvalues and the asso
iated 
on-eigenve
tors of

positive-de�nite Cau
hy matri
es naturally arises when 
onstru
ting rational approximations with

a (near) optimally small L∞
error. Spe
i�
ally, given a rational fun
tion with n poles in the unit

disk, a rational approximation with m ≪ n poles in the unit disk may be obtained from the mth


on-eigenve
tor of an n × n Cau
hy matrix, where the asso
iated 
on-eigenvalue λm > 0 gives

the approximation error in the L∞
norm. Unfortunately, standard algorithms do not a

urately


ompute small 
on-eigenvalues (and the asso
iated 
on-eigenve
tors) and, in parti
ular, yield few

or no 
orre
t digits for 
on-eigenvalues smaller than the ma
hine roundo�. We develop a fast

and a

urate algorithm for 
omputing 
on-eigenvalues and 
on-eigenve
tors of positive-de�nite

Cau
hy matri
es, yielding even the tiniest 
on-eigenvalues with high relative a

ura
y. The algo-

rithm 
omputes the mth 
on-eigenvalue in O
(

m2n
)

operations and, sin
e the 
on-eigenvalues of

positive-de�nite Cau
hy matri
es de
ay exponentially fast, we obtain (near) optimal rational ap-

proximations in O

(

n
(

log δ−1
)

2
)

operations, where δ is the approximation error in the L∞
norm.

We provide error bounds demonstrating high relative a

ura
y of the 
omputed 
on-eigenvalues

and the high a

ura
y of the unit 
on-eigenve
tors. We also provide examples of using the al-

gorithm to 
ompute (near) optimal rational approximations of fun
tions with singularities and

sharp transitions, where approximation errors 
lose to ma
hine roundo� are obtained. Finally, we

present numeri
al tests on random (
omplex-valued) Cau
hy matri
es to show that the algorithm


omputes all the 
on-eigenvalues and 
on-eigenve
tors with nearly full pre
ision.

1. Introdu
tion

We present an algorithm for 
omputing with high relative a

ura
y the 
on-eigenvalue de
ompo-

sition of positive-de�nite Cau
hy matri
es,

(1.1) Cum = λmum, Cij =

√
αi
√
αj

1− γiγj
, i, j = 1, . . . , n,

where γi and αi are 
omplex numbers and |γi| < 1.The 
on-eigenvalue λm is only de�ned up to an

arbitrary phase, whi
h we 
hoose so that λm > 0. Although the 
on-eigenvalue de
omposition (see

e.g. [30℄) is less well-known than the eigenvalue de
omposition or the singular value de
omposition,

it arises naturally in 
onstru
ting optimal approximations using exponentials or rational fun
tions

[1, 2, 3, 14, 40, 6, 7℄. For example, for a real-valued rational fun
tion f(z),

(1.2) f(z) =
n∑

i=1

αi
z − γi

+
n∑

i=1

αiz

1− γiz
+ α0,

we may 
onstru
t a rational approximation g(z) with m poles and with an error,

max
x∈[0,1]

∣∣f
(
e2πix

)
− g

(
e2πix

)∣∣ ≈ λm,

by solving the 
on-eigenvalue problem (1.1) (see Se
tion 2.1 for more detail). Ordering the 
on-

eigenvalues, λ1 ≥ . . . ≥ λn > 0, the number of poles m of the approximant g(z) 
orresponds to the

index of the 
on-eigenvalue λm and leads to a near optimal approximation in the L∞
-norm with
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the error 
lose to λm. The form (1.2) ensures that f
(
e2πix

)
is real-valued and periodi
; 
omplex-

valued fun
tions may also be handled using this form by splitting the real and imaginary parts and

performing additional redu
tions (see [7℄).

Current algorithms 
ompute an approximate 
on-eigenvalue λ̂m with an error no better than∣∣∣λm − λ̂m
∣∣∣ / |λ1| = O (ǫ), and an approximate unit 
on-eigenve
tor ûm with an error no better than

‖um − ûm‖2 = O (ǫ) /absgapm, absgapm ≡ min
p6=m
|λm − λp| / |λ1| ,

where ǫ denotes the ma
hine roundo�. This implies that a 
omputed 
on-eigenvalue smaller than

|λ1| ǫ may have few or no 
orre
t digits. Hen
e, in order to obtain a rational approximation with

a

ura
y λm . 10−7
, we may be for
ed to use at least quadruple pre
ision. Sin
e quadruple pre
ision

is typi
ally not supported by the hardware, it slows down the 
omputation by an unpleasant fa
tor

(between 30 and 100). Another undesirable feature of 
urrent algorithms to solve (1.1) is the O
(
n3
)


omplexity for �nding the m≪ n poles of g(z), where n is the original number of poles of f(z).
Although the 
onstru
tion of optimal rational approximations in the L∞

-norm has a long history

(starting with the seminal papers [1, 2, 3℄), the di�
ulties mentioned above limit pra
ti
al appli-


ations of su
h approximations to situations where the problem size is relatively small and a low

a

ura
y is a

eptable. In this regard, we view our results as a stepping stone toward a wider use

of optimal L∞
-approximations in numeri
al analysis (see [27℄).

We develop a fast and a

urate algorithm for 
on-eigenvalue/
on-eigenve
tor 
omputations of

positive-de�nite Cau
hy matri
es that addresses both of the di�
ulties mentioned above. Our

algorithm 
omputes the mth 
on-eigenvalue/
on-eigenve
tor in O
(
m2n

)
operations (see Se
tion 5).

Sin
e the 
on-eigenvalues of positive de�nite Cau
hy matri
es de
ay exponentially fast, for a given

desired a

ura
y ‖f
(
e2πix

)
− g

(
e2πix

)
‖∞ ≈ δ, the number of poles m in the approximant g(z) is

O
(
log δ−1

)
. Therefore, the 
omplexity of our algorithm is O

(
n
(
log δ−1

)2)
, i.e., it is essentially

linear in the number of original poles n and, thus, is mostly 
ontrolled by the number of poles of

the �nal optimal approximation.

The 
on-eigenvalue algorithm a
hieves high relative a

ura
y, i.e., the 
omputed 
on-eigenvalue

λ̂m satis�es

∣∣∣λm − λ̂m
∣∣∣ / |λm| = O (ǫ), and the 
omputed unit 
on-eigenve
tor ûm satis�es

‖um − ûm‖2 = O (ǫ) /relgapm, relgapm ≡ min
l 6=m
|λm − λl| / (λl + λm) ,

(see Theorems 6 and 7 for the exa
t statement). In 
ontrast to the usual perturbation theory for

general matri
es, we show that small perturbations of the poles γm and residues αm (determining

the Cau
hy matrix C = C(α, γ) in (1.1)) lead to 
orrespondingly small perturbations in the 
on-

eigenvalues and 
on-eigenve
tors, as long as the poles are well separated in a relative sense and are

not too 
lose to the unit 
ir
le.

In many appli
ations, the fun
tion f
(
e2πix

)
has sharp transitions, so that the poles are 
lustered


lose to the unit 
ir
le and ea
h other. In su
h 
ases, it is natural to maintain the poles of f (z)
in the form γj = exp (−τj), where Re (τj) > 0 and 0 ≤ Im (τj) < 2π, so that Re (τj) are well-

separated in a relative sense. The redu
tion algorithm produ
es new poles of the same form, where

even the smallest exponents are 
omputed with high relative a

ura
y. This allows us to develop a

numeri
al 
al
ulus that in
ludes fun
tions with singularities and sharp transitions. We address this

issue further in Se
tion 3.

Our approa
h is inspired by papers [20, 23, 18, 15, 29℄, whi
h develop algorithms and theory for

highly a

urate SVDs of 
ertain stru
tured matri
es. Generally speaking, high relative a

ura
y is

a
hieved when it is possible to avoid 
atastrophi
 
an
ellation resulting from subtra
ting two 
lose

�oating point numbers (when the out
ome of su
h 
an
ellation is signi�
ant relative to the �nal

result). We refer to [16℄ for a 
omprehensive analysis of when e�
ient and a

urate algorithms

are possible using �oating point arithmeti
. Classes of matri
es for whi
h highly a

urate SVD or

eigenvalue algorithms exist in
lude bi-diagonal matri
es [19, 13, 26℄, a
y
li
 matri
es [21℄, graded
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positive-de�nite matri
es [20℄, s
aled diagonally dominant matri
es [4℄, totally positive matri
es

[31℄, 
ertain inde�nite matri
es [36℄, and Cau
hy matri
es (as well as, more generally, matri
es with

displa
ement rank one) [15℄. For su
h matri
es, re
ent algorithmi
 advan
es (see [24, 25℄) make the


ost of a
hieving high relative a

ura
y 
omparable to that of alternative (and less a

urate) SVD

methods.

The 
on-eigenvalue algorithm 
onsidered here is based on 
omputing the eigenvalue de
omposition

of the produ
t, CC, of positive-de�nite Cau
hy matri
es C and C, and is similar to the algorithm in

[17℄ for the generalized eigenvalue de
omposition, as well as the algorithm in [23℄ for the produ
t SVD

de
omposition. We also rely on the algorithm in [15℄ for 
omputing, with high relative a

ura
y,

the Cholesky de
omposition (with 
omplete pivoting) C = (PL)D2 (PL)
∗
of a positive-de�nite

Cau
hy matrix C. However, sin
e we are interested in 
omputing only 
on-eigenvalues of some

approximate size δ, we stop Demmel's Cholesky algorithm on
e the diagonal elements Dii are small

with respe
t to δ and the desired pre
ision. Sin
e the diagonal elements Dii de
ay exponentially fast,

this allows us to a

urately 
ompute 
on-eigenvalues of size δ (and the asso
iated 
on-eigenve
tors)

in O
(
n
(
log δ−1

)2)
operations. We also modify the Cholesky de
omposition algorithm in [15℄ to

yield high relative a

ura
y for Cau
hy matri
es Cij =
√
αi
√
αj/ (1− γiγj), with γi = exp (−τj),

where the real parts of the exponents, Re(τj), may be extremely small in magnitude. We observe

that the error bounds developed in [23℄ are not appli
able to our problem sin
e the 
ondition number

of a Cau
hy matrix 
annot be appre
iably redu
ed by s
aling the rows and 
olumns. In 
ontrast, the

error bounds presented in this paper yield high relative a

ura
y for all the 
omputed 
on-eigenvalues

larger than δ (and high a

ura
y for the 
on-eigenve
tors), as long as L is well-
onditioned, and the

relative gap between the 
on-eigenvalues is not too small (we have always observed this to hold

in pra
ti
e). In parti
ular, if δ is 
hosen small enough, the full 
on-eigenvalue de
omposition is

obtained with high relative a

ura
y. The derivation of our error bounds makes 
ru
ial use of the


omponent-wise perturbation theory developed in [20℄ for the singular ve
tors of graded matri
es

(see also [34℄), as well as the 
omponent-wise error analysis in [20℄ and [33℄ for the one-sided Ja
obi

method. We also use the error analysis given in [29℄ for the Householder QR method. We note

that although our error estimates are mu
h more pessimisti
 than what we observe in pra
ti
e, they

provide a framework for understanding the high a

ura
y of the 
on-eigenvalue algorithm of this

paper. In order to limit the size of this paper, proofs 
an be found in its online version [28℄.

It has been an established pra
ti
e, in both numeri
al analysis and signal pro
essing, to use

L2
-type methods for representing fun
tions. On the other hand, it has been understood for some

time that nonlinear approximations may be far superior in a
hieving high a

ura
y with a minimal

number of terms (see e.g., [35℄). However, in spite of many interesting results (see e.g., [32, 37,

14, 38, 39, 40, 6, 8, 22℄), the widespread use of nonlinear approximations has been limited by a

la
k of e�
ient and a

urate algorithms for 
omputing them (parti
ularly for fun
tions with sharp


hanges or singularities). Our algorithms provide the ne
essary tools for 
omputing optimal nonlinear

approximations via rational fun
tions, and 
ome with guaranteed a

ura
y bounds. We believe

that these new a

urate algorithms may greatly extend the pra
ti
al use of L∞
approximations in

numeri
al analysis (see [27℄) and signal pro
essing (see [5℄).

In Se
tion 2.1 we des
ribe the redu
tion problem for rational fun
tions, and 
onne
t its solution

to a 
on-eigenvalue problem for positive de�nite Cau
hy matri
es. We then present new algorithms

for solving the 
on-eigenvalue problem with high relative a

ura
y. We follow up in Se
tion 3 with

examples of using the redu
tion algorithm to 
onstru
t and use optimal rational approximations

for fun
tions with singularities and sharp transitions. In Se
tion 4 we verify the a

ura
y of the


on-eigenvalue algorithm by 
omparing the 
on-eigenvalue de
omposition of randomly generated

Cau
hy matri
es with that obtained via standard algorithms in extended pre
ision. In Se
tion 5, we

provide error bounds that demonstrate the 
on-eigenvalue algorithm a
hieves high relative a

ura
y

and that the 
on-eigenvalue de
omposition is stable with respe
t to small perturbations of the

parameters de�ning the Cau
hy matrix. Finally, Se
tion 6 
ompares the redu
tion algorithm of this
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paper with other algorithms in the literature for 
onstru
ting optimal rational approximations. For

the 
onvenien
e of the reader we also provide relevant ba
kground material in Se
tion 7.

2. A

urate 
on-eigenvalue de
omposition (an informal derivation)

2.1. Constru
ting optimal rational approximations via a 
on-eigenvalue problem. In or-

der to motivate our 
on-eigenvalue algorithm, let us explain how the a

urate 
omputation of small


on-eigenvalues and asso
iated 
on-eigenve
tors allows us to 
onstru
t optimal rational approxima-

tions.

We 
onsider an algorithm to �nd a rational approximation r(e2πix) to f(e2πix) in (1.2) with a

spe
i�ed number of poles and with a (nearly) optimally small error in the L∞
-norm. The algorithm

is based on a theorem of Adamyan, Arov, and Krein (referred to below as the AAK Theorem) [3℄.

We note that the formulation given below in terms of a 
on-eigenvalue problem is similar to the

approa
h taken in [14℄ and [6℄.

Given a target a

ura
y δ for the error in the L∞
-norm, the steps for 
omputing the rational

approximant r(z),

r(z) =
m∑

i=1

βi
z − ηi

+
m∑

i=1

βiz

1− ηiz
+ α0,

are as follows:

(1) Compute a 
on-eigenvalue 0 < λm ≤ δ and 
orresponding 
on-eigenve
tor u of the Cau
hy

matrix Cij = Cij(γi, αj),

(2.1) Cu = λmu, where u =




u1
u2
.

.

.

un


 , Cij =

aibj
xi + yj

, i, j = 1, . . . , n,

and ai =
√
αi/γi, bj =

√
αj , xi = γ−1

i , yj = −γj . The 
on-eigenvalues of C are labeled in

non-in
reasing order, λ1 ≥ λ2 ≥ · · · ≥ λn.
(2) Find the (exa
tly) m zeros ηj in the unit disk of the fun
tion

(2.2) v(z) =
1

λm

n∑

i=1

√
αi ui

1− γiz
.

The fa
t that there are exa
tly m zeros in the unit disk, 
orresponding to the index m of

the 
on-eigenvalue λm, is a 
onsequen
e of the AAK theorem. The poles of r(z) are given
by the zeros ηj of v(z).

(3) Find the residues βm of r(z) by solving the m×m linear system

(2.3)

m∑

i=1

1

1− ηiηj
βi =

n∑

i=1

αi
1− γiηj

.

The L∞
-error of the resulting rational approximation r(e2πix) satis�es ‖f − r‖∞ ≈ λm, and is 
lose

to the best error in the L∞
-norm a
hievable by rational fun
tions with no more than m poles in

the unit disk. Hen
e, we are led to the problem of 
omputing, to high relative a

ura
y, small


on-eigenvalues and the asso
iated 
on-eigenve
tors of positive-de�nite Cau
hy matri
es.

In many appli
ations it is natural (and advisable) to maintain the poles γj in the form γj =
exp (−τj) (see e.g., [6, 8℄). As we explain in Se
tion 3, this is parti
ularly important if the fun
tion

f(e2πix) has singularities or sharp transitions. The advantage of this form is that, on a logarithmi


s
ale, the nodes are well separated (i.e., Re (τj) are well-separated in a relative sense). In su
h 
ases,

our algorithm 
omputes the new poles ηi = exp (−ζi) with nearly full pre
ision in the exponents ζi,

i.e.,

∣∣∣ζ̂i − ζi
∣∣∣ / |ζi| is 
lose to ma
hine pre
ision even if ζi is 
lose to zero.
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Remark 1. In pra
ti
e, �nding the new poles ηi using the formula for v(z) in (2.2) is ill-advised,

sin
e evaluating v(z) in this form 
ould result in loss of signi�
ant digits through 
atastrophi



an
ellation. Indeed, it turns out (see [6, Se
tion 6℄ and [27℄) that the values of the 
on-eigenve
tor


omponents satisfy ui =
√
αiv (γi), i = 1, . . . , n. It then follows that the sum (2.2) must su�er


an
ellation of about log10
(
λ−1
m

)
digits if v (γi) and v (z) are of 
omparable size (note that λm


ontrols the approximation error and, thus, is ne
essarily small). On the other hand, the fun
tion

values v (γi) = ui/
√
αi, i = 1, . . . , n, along with the n poles 1/γi of v(z), 
ompletely determine (2.2).

Sin
e the poles γi of f(z) are often 
lose to the poles ηi of r(z), we have observed that evaluating

v(z) by using rational interpolation via 
ontinued fra
tions with the known values v (γi) allows us
to obtain the new poles ηi with nearly full pre
ision. In parti
ular, an approximation ṽ(z) to v(z) is

omputed via 
ontinued fra
tions,

(2.4) ṽ(z) =
a1

1 + a2 (z − γ1) / (1 + a3 (z − γ2) / (1 + · · · ))
,

where the 
oe�
ients aj are determined from the interpolation 
onditions ṽ(γi) = v (γi). If the poles
γi are given in the form γi = exp (−τi), we �nd that Newton's method on ṽ (exp (−η)) yields the
new poles ηi = exp (−ζi) with nearly full relative a

ura
y even when Re (ζi)≪ 1; see Se
tion 3 for

more details (a
hieving high relative a

ura
y also requires slightly modifying the re
ursion formulas

for the 
ontinued fra
tion 
oe�
ients ai). A more detailed des
ription of the root-�nding algorithm

may be found in [27℄.

2.2. A

urate 
on-eigenvalue de
ompositions of positive-de�nite matri
es with RRDs.

The 
on-eigenvalue problem for a positive-de�nite Cau
hy matrix Cij = aibj/ (xi + yj) redu
es to
an eigenvalue problem,

(2.5) CCu = λCū = |λ|2 u.

We �rst dis
uss a somewhat more general problem of 
omputing a

urate eigenvalues and eigenve
-

tors of matri
es of the form AA, where we assume that A has a fa
torization A = XD2X∗
, with

X a (well-
onditioned) n × m matrix (m ≤ n) and D an m × m diagonal matrix with positive,

non-in
reasing diagonal entries. The re
tangular form of the fa
torization, m ≤ n, will be important

in the sequel.

Let us de�ne them×mmatrixG = D
(
XTX

)
D, and 
onsider its SVD, G =WΣV ∗

. ThenG∗G =

V Σ2V ∗
, and the ith right singular ve
tor (1 ≤ i ≤ m), vi = V (:, i), satis�es

(
DX∗XD

) (
DXTXD

)
vi =

Σ2
iivi. It then follows that zi = XDvi is an eigenve
tor of AA with eigenvalue Σ2

ii, sin
e

AAzi =
(
XD2X∗

) (
XD2XT

)
zi =

= XD
(
DX∗XD

) (
DXTXD

)
vi = Σ2

iiXDvi = Σ2
iizi.

and, thus, zi = XDvi is an eigenve
tor of AA. To summarize: given the de
omposition A = XD2X∗
,

an eigenve
tor zi (i ≤ m) of AA is given by zi = X
(
DviΣ

−1/2
ii

)
, where vi is the ith right singular

ve
tor of the m×mmatrix G = D
(
XTX

)
D. Here Σii is the ith singular value of G, and the ith 
on-

eigenvalue of A. Let us now present an algorithm for a

urately 
omputing the 
on-eigenvalues and


on-eigenve
tors of A (its derivation also relies on the ba
kground material 
olle
ted in Se
tion 7).
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Algorithm 1 ConEig_RRD (X,D) 
omputes a

urate 
on-eigenvalue de
omposition of XD2X∗
.

Input: rank-revealing fa
tors X and D (of dimensions n ×m and m ×m), where the diagonal of

D > 0 is de
reasing. Output: m 
on-eigenvalues/
on-eigenve
tors of XDX∗
, 
ontained in Σ and T .

(Σ, T )← ConEig_RRD (X,D)

1. Form G = D (XTX)D
2. Compute QR fa
tors (Q,R)← Householder_QR of G (G =
QR), with optional pivoting (see Se
tion 7.3)

3. Compute the SVD fa
tors (Ul,Σ, Ur)← Ja
obi (R) of R (R =
UlΣU

∗
r ), using one-sided Ja
obi, applied from the left (see Se
tion 7.4)

4. Compute R1 = D−1RD−1
, X1 = D−1UlΣ

1/2
, and Y1 =

R−1
1 X1 (see (2.6) below)

5. Form the matrix of 
on-eigenve
tors T =
XY1, and output 
on-eigenvalues Σ and 
on-eigenve
tors T

Importantly, for Cau
hy matri
es (A = C) the elements of D de
ay exponentially fast, and it

would appear that 
omputing the 
on-eigenve
tors zi = XDvi/Σ
1/2
ii might lead to wildly ina

urate

results even if the right singular ve
tor of G, vi, is 
omputed a

urately. However, as we show

in Se
tion 5, Algorithm 1 a
hieves high a

ura
y despite the extreme ill-
onditioning of D. The

key reason is that the right singular ve
tor vi, 
orresponding to the singular value Σii, s
ales like

|vi (j)| ≤ cV min
(
Djj/Σ

1/2
ii ,Σ

1/2
ii /Djj

)
, and the 
omputed singular ve
tor v̂i is a

urate relative to

the s
aling in D and Σ in the sense that

|vi (j)− v̂i (j)| ≤ min

{
Djj√
Σii

,

√
Σii
Djj

}
O (ǫ) .

For Cau
hy matri
es, the quantity min
(
Djj/Σ

1/2
ii ,Σ

1/2
ii /Djj

)
de
reases exponentially fast away

from the diagonal i = j.
Let us give an informal explanation of the reasons why Algorithm 1 yields a

urate results. As

dis
ussed in Se
tion 7.3, the QR Householder algorithm 
omputes an a

urate rank-revealing de
om-

position of G = QR. It turns out (see the online version [28, Lemma 11℄) that R may be fa
tored as

R = D2R0, where R0 is graded relative to D in the sense that

∥∥DR0D
−1
∥∥
and

∥∥DR−1
0 D−1

∥∥
are not

too large, as long as the n leading prin
ipal minors of XTX are well-
onditioned. Therefore, from the

dis
ussion in Se
tion 7.4 (see in parti
ular Theorem 10), the one-sided Ja
obi algorithm 
omputes

the ith left singular ve
tor ui of R a

urately relative to the s
aling min
{
Djj/Σ

1/2
ii ,Σ

1/2
ii /Djj

}
. It

follows that D−1uiΣ
1/2
ii may also be 
omputed a

urately. Finally, sin
e the ith right singular ve
tor

vi of R (and G) satis�es

DviΣ
−1/2
ii = DR−1uiΣ

1/2
ii

=
(
DR0D

−1
)−1

(
D−1uiΣ

1/2
ii

)
,(2.6)

the 
on-eigenve
tor zi = X
(
DviΣ

−1/2
ii

)
may be 
omputed a

urately, as long as DR0D

−1
is 
om-

puted a

urately and is well-
onditioned (we show this is the 
ase if n leading prin
ipal minors of

XTX are well-
onditioned). The last step in Algorithm 1 uses the approa
h in [25℄ for 
omputing

highly a

urate right singular ve
tors via solving a triangular linear system of equations.

Remark 2. To obtain optimal rational approximations (see Se
tion 2.1), we need to 
ompute small


on-eigenvalues (and the asso
iated 
on-eigenve
tors) of Cau
hy matri
es of the slightly di�erent

form, Cij =
√
αi
√
αj/ (1− γiγj), i.e., with ai =

√
αi/γi, bj =

√
αj , xi = γ−1

i , and yj = −γj. The
same reasoning as in [15℄ shows that the Cholesky 
omputation of C (see Se
tion 7.2) is performed

with high relative a

ura
y, as long as the di�eren
es γ−1
j − γi are 
omputed with high relative
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a

ura
y. As explained in the next se
tion, γ−1
j −γi may be a

urately 
omputed if γi is of the form

γi = exp (−τi), where the exponents τi are known a

urately (see Se
tion 3 for examples).

Remark 3. Computing the normalized eigenve
tor u via (2.5) determines the 
on-eigenve
tor, the

solution of (2.1), only up to an unknown phase fa
tor e−iφ/2. Indeed, given any solution λ and u of

(2.5) and an arbitrary phase fa
tor e−iφ, it is easy to see that λe−iφ and ue−iφ/2 also satisfy (2.1).

Let us now determine the phase φ so that the 
on-eigenvalues λ are positive. To do so, we 
ompute

the usual inner produ
t

(
C
(
ue−iφ/2

)
, ue−iφ/2

)
= λ

(
ueiφ/2, ue−iφ/2

)
and 
hoose φ so that λ > 0.

Sin
e C is a positive-de�nite matrix, it follows that

(
ueiφ/2, ue−iφ/2

)
> 0. From this we obtain the

phase fa
tor as eiφ = (u, u) / |(u, u)|.

2.3. A

urate 
on-eigenvalue de
ompositions of positive-de�nite Cau
hy matri
es. If

A = C is a positive-de�nite Cau
hy matrix, then the modi�ed GECP algorithm in [15℄ 
omputes the

Cholesky de
omposition C = (PL)D2 (PL)
∗
with high relative a

ura
y (see Se
tion 7.1). There-

fore, Algorithm 1 for the eigenvalue problem of CC may be used, with X = PL, to 
ompute all the

eigenvalues and eigenve
tors (and, therefore, the 
on-eigenve
tors and 
on-eigenvalues of C).
For our purposes, we are only interested in 
omputing a single 
on-eigenve
tor with asso
iated


on-eigenvalue of approximate size δ (see Se
tion 2.1). However, the diagonal elements of D may

be many orders of magnitude smaller than δ, and it is then natural to expe
t that, by 
omputing

a partial Cholesky de
omposition of C, we may obtain the ith 
on-eigenve
tor in mu
h fewer than

O
(
n3
)
operations. In this 
ase, we stop Demmel's algorithm for the Cholesky de
omposition of C

on
e the diagonal elements D2
ii are small with respe
t to the produ
t of δ2 and the ma
hine round-

o� ǫ, that is, as soon as D2
mm ≤ δ2ǫ for some m (noti
e that 
omplete pivoting ensures that the

diagonal elements Dii are non-in
reasing). We then obtain C ≈ C̃ =
(
P̃ L̃
)
D̃2
(
P̃ L̃
)∗
, where P̃ is

an m × n matrix, L̃ is an n ×m matrix and D̃ is a diagonal m ×m matrix. Algorithms 2 and 3


ontain pseudo-
ode for 
omputing L̃, D̃, and P̃ . In the pseudo-
ode I (n,m) denotes the �rst m ≤ n

olumns of the n× n identity matrix.
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Algorithm 2 Pivot_Order (a, b, x, y, δ) pre-
omputes pivot order for Cholesky fa
torization of n×
n positive-de�nite Cau
hy matrix Cij = aibj/ (xi + yj) . Input: a, b, x, and y de�ning Cij =
aibj/ (xi + yj), and target size δ of 
on-eigenvalue. Output: 
orre
tly pivoted ve
tors a, b, x, and y,

trun
ation size m, and m× n permutation matrix P̃(
a, b, x, y, P̃ ,m

)
← Pivot_Order (a, b, x, y, δ)

Form ve
tor gi := aibi/(xi + yi), i = 1, . . . , n
Set 
utoff for GECP termination: η := ǫδ2

Initialize permutation matrix (n× n identity): P̃ = I (n, n)
Compute 
orre
tly pivoted ve
tors:

m := 1
while |g (m)| ≥ η or m = n− 1

Find m ≤ l ≤ n su
h that |g(l)| = max |g (m : n)|
Swap elements:

g(l)↔ g(m), x(l)↔ x(m) , y(l)↔ y(m)
a(l)↔ a(m),b(l)↔ b(m)
Swap rows of permutation matrix:

P̃ (l, :)↔ P̃ (m, :)
Update diagonal of S
hur 
omplement:

g(m+ 1 : n) :=
(x (m+ 1 : n)− x(m)) / (y (m+ 1 : n)− y(m)) g(m+ 1 : n)
In
rement iteration 
ount:

m := m+ 1
Output a, b, x, y, P̃ (1 : m,n) ,m

Algorithm 3 Cholesky_Cau
hy (x, y, a, b, δ) 
omputes partial Cholesky fa
torization of positive-

de�nite Cau
hy matrix Cij = aibj/ (xi + yj). Input: a, b, x, and y de�ning Cij = aibj/ (xi + yj),

and target size δ of 
on-eigenvalue. Output: n ×m matrix L̃, m ×m matrix D̃, and permutation

m× n matrix P̃ in partial Cholesky fa
torization.(
L̃, D̃, P̃

)
← Cholesky_Cau
hy (a, b, x, y, δ)

Compute pivoted ve
tors and matrix size m (Algorithm 2):(
a, b, x, y, P̃ ,m

)
← Pivot_Order(a, b, x, y, δ)

Initialize generators:

α := a, β := b
Compute first 
olumn of S
hur 
omplement:

G (:, 1) := α ∗ β/ (x+ y)
for k = 2,m

Update generators:

α (k : n) := α (k : n) ∗ (x (k : n)− x (k − 1)) / (x (k : n) + y (k − 1))
β (k : n) := β (k : n) ∗ (y (k : n)− y (k − 1)) / (y (k : n) + x (k − 1))

Extra
t kth 
olumn for Cholesky fa
tors:

G (k : n, k) := α (k : n) ∗ β (k : n) / (x (k : n) + y (k : n))
Output partial Cholesky fa
tors:

D̃ = diag (G(1 : n, 1 : m)
1/2

, L̃ = tril (G(1 : n, 1 : m)) D̃−2 + I (n,m), P̃
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On
e the partial Cholesky de
omposition C ≈ C̃ =
(
P̃ L̃
)
D̃2
(
P̃ L̃
)∗

is 
omputed, Algorithm 1 for

the eigenvalue problem of C̃C̃ may then be used, with X = P̃ L̃ andD = D̃, to 
ompute a

urate 
on-

eigenvalues and 
on-eigenve
tors of C̃ (see Theorem 7). Sin
e the 
on-eigenvalues de
ay exponentially

fast, the 
omplexity of this algorithm is O
(
n
(
log(δǫ)−1

)2)
operations. Therefore, when used in

the redu
tion pro
edure outlined in Se
tion 2.1, the near optimal rational approximation may be

obtained by 
omputing the SVD of a matrix that is roughly twi
e the size of the optimal number of

poles. The pseudo-
ode is given in Algorithm 4.

Algorithm 4 Con_Eigve
tor (a, b, x, y, δ) 
omputes a

urate 
on-eigenvalue de
omposition of

positive-de�nite Cau
hy matrix Cij = aibj/ (xi + yj) . Input: a, b, x, and y de�ning Cij =
aibj/ (xi + yj), and target size δ of 
on-eigenvalue. Output: 
on-eigenvalues lager than δ, and
asso
iated 
on-eigenve
tors.

(Σ, T )← Con_Eigve
tor (a, b, x, y, δ)

1. Compute partial Cholesky fa
tors (L,D, P )←
Cholesky_Cau
hy(a, b, x, y, δ) (Algorithm 3) and set X = PL
2. Compute 
on-eigenvalues and 
on-eigenve
tors (Σ, T )←
ConEig_RRD(X,D) using Algorithm 1

3. Sele
t largest l su
h that Σll ≥
δ and output Σ (1 : l, 1 : l), T (1 : n, 1 : l)

Remark 4. In appli
ations involving fun
tions f
(
e2πix

)
with singularities or sharp transitions, the

poles γi are given in the form γi = exp (−τi), where Reτj > 0 and 0 ≤ Imτj < 2π and the exponents

τi are known with high relative a

ura
y. Indeed, this form naturally arises either via a dis
retization

of an integral (see [6, 8℄) or as a result of an intermediate 
omputation as in [27℄. This leads us

to modify Algorithms 2 and 3 so that high relative a

ura
y is a
hieved for poles of this form. In

parti
ular, we modify formulas (7.7), (7.8) and (7.9) in Se
tion 7. For example, the formula for α
(k)
i

in (7.9) involves 
omputing

xj − xk−1

xj + yk−1
=

γ−1
j − γ−1

k−1

γ−1
j − γk−1

=
1− exp (−τj + τk−1)

1− exp (−τj − τk−1)
.

The simple modi�
ation is to use the Taylor expansion 1 − exp (z) ≈ z + z2/2 + . . . if |z| is small.

The other formulas in (7.7), (7.8) and (7.9) are modi�ed in a similar fashion, allowing the LDU

fa
torization of C to be 
omputed with high relative a

ura
y.

In Se
tion 3, we 
onsider a 
ase where the absolute values of many poles agree with 1 to twelve

digits (i.e., the poles γi satisfy|γi| ≈ 0.999999999999xxxx).

3. Examples of optimal rational approximations

In this se
tion, we 
onsider some appli
ations of the redu
tion algorithm.

3.1. Optimal rational approximations of fun
tions with singularities. Using the redu
tion

algorithm, as well as tools developed in [6, 8℄, we 
onstru
t a (near) optimal rational approximation

of a (pie
ewise smooth) fun
tion f with a �nite number of isolated integrable singularities. For

simpli
ity, we assume that singularities of f are at two points, 0 and x0.
Performing integration by parts L times on the expression for the Fourier 
oe�
ients,

f̂n =

ˆ 1

0

f(x)e2πinxdx =

ˆ x0

0

f(x)e2πinxdx+

ˆ 1

x0

f(x)e2πinxdx,

we obtain
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f̂n = hn +
(−1)L

(2πin)L

ˆ x0

0

f (L)(x)e2πinxdx+
(−1)L

(2πin)L

ˆ 1

x0

f (L)(x)e2πinxdx,

where

hn =

L∑

p=1

(−1)p

(2πin)
p

(
e2πinx0F (p−1) (x0) + F (p−1) (0)

)
,

F (p) (x) = f (p) (x+)−f (p) (x−) and x+, x− indi
ate dire
tional limits. As the �rst step in 
onstru
t-

ing a (near) optimal rational approximation to f , we subtra
t the leading L terms of the asymptoti


expansion of f̂n and 
onsider gn = f̂n − hn. Sin
e gn de
ays like O
(
1/nL+1

)
, it is su�
ient to use

the algorithm in [6, 8℄ to 
onstru
t an approximation

(3.1)

∣∣∣∣∣gn −
M∑

m=1

wme
−µmn

∣∣∣∣∣ ≤ ǫ, n ≥ 1.

This algorithm requires quadruple pre
ision for 
omputing small singular values of a Hankel matrix

but, due to the fast de
ay of gn, the matrix is small so that the 
omputational 
ost is insigni�
ant.

An alternative method for obtaining (3.1) based on rational representations of B-splines requires

only double pre
ision and will appear elsewhere [11℄. For hn we use a dis
retization of the integral

representation for 1/np in [8℄ to obtain

(3.2)

∣∣∣∣∣
1

np
−

M2∑

m=−M1

am,pe
−τmn

∣∣∣∣∣ ≤ ǫ, 1 ≤ p ≤ L, 1 ≤ n,

where τm = ehm, am,p = h
(p−1)!e

phm
and h is the step size used in the dis
retization. Results in [8℄

imply that there are at most O
((

log ǫ−1
)2)

terms in the approximation of 1/np for a given a

ura
y

ǫ, for all n ≥ 1. Note that when m < 0 the nodes γm = e−e
hm ≈ 1− ehm are very 
lose to one.

Thus, we arrive at

(3.3)

∣∣∣∣∣hn −
M2∑

m=−M1

ame
−(τm+2πix0)n −

M2∑

m=−M1

bme
−τmn

∣∣∣∣∣ ≤ 2ǫ,

where

am =
L∑

p=1

1

(−2πi)pF
(p−1) (x0) am,p, bm =

L∑

p=1

1

(−2πi)pF
(p−1) (0)am,p.

Combining the approximations (3.1) and (3.3), we obtain the suboptimal approximation

(3.4)

∣∣∣∣∣f̂n −
M∑

m=1

wme
−µmn −

M2∑

m=−M1

ame
−(τm+2πix0)n −

M2∑

m=−M1

bme
−τmn

∣∣∣∣∣ ≤ 3ǫ,

where the number of terms is ex
essive (for the a

ura
y 3ǫ). We now use the redu
tion algorithm on

(3.4) to obtain a nearly optimal number of terms to approximate the Fourier 
oe�
ients fn for n ≥ 1.
This, in turn leads to a near optimal rational approximation to f(x) with a nearly equios
illating

error.

As an example, we apply this pro
edure to

(3.5) f(x) =

{
sin(4/3πx), 0 ≤ x ≤ 3/4

0 3/4 < x ≤ 1

Choosing the parametersM1 = 200,M2 = 10, and h = .316707 in (3.4) (see [8℄ for how to sele
t the

parameters) yields a sub-optimal approximation 
ontaining 426 pairs of 
onjugate-re
ipro
al poles

γj = e−τj , whi
h approximates f (x) in the L∞
norm with error ≈ 5 × 10−14

. We note that many
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Figure 3.1. (a) Error of the rational approximation to f (x) in (3.5). (b) A zoom

on a neighbourhood around one of the singularities x ∈
(
3/4− 10−12, 3/4 + 10−12

)
.

of the poles are extremely 
lose to the unit disk (the magnitudes |γi| ≈ .999999999999xxxx of over

a dozen poles agree with 1 to twelve digits).

We apply the redu
tion algorithm using the approximation error δ = 10−13
(thus, the Cholesky

de
omposition algorithm 3 is trun
ated on
e the diagonal elements are smaller than ǫδ2, where ǫ
denotes the ma
hine roundo�). As explained in Remark 4, Algorithms 2 and 3 are modi�ed to a

u-

rately 
ompute the partial Cholesky de
omposition for poles in the form γj = e−τj . After applying
the redu
tion algorithm with approximation error δ = 10−13

, the resulting rational approximation


ontains 92 pairs of 
onjugate-re
ipro
al poles (i.e., about 46 poles per singularity). The resulting

error is shown in Figure 3.1.

We note that the only step of the redu
tion pro
edure where quadruple pre
ision is used is in


omputing the residues βj (see Step 3 of Se
tion 2.1). However, using the te
hniques des
ribed in the
ba
kground Se
tion 7.2 to fa
tor the m×m Cau
hy matrix, this step takes only O

(
m2
)
operations,

and so does not impa
t the overall speed of the algorithm (re
all that m denotes the number of

redu
ed poles).

We �nd that the exponents, ηi, of the near optimal poles ζi = exp (−ηi) are 
omputed with high

relative a

ura
y, i.e.,

|Re (ηi)− Re (η̂i)| ≤ |Re (ηi)| δ1, |ηi − η̂i| ≤ |ηi| δ2,
where δ1 ≤ 1.48 × 10−13

and δ2 ≤ 14.87 × 10−13
. As a gauge we used the poles ζi obtained in

Mathemati
a

TM
via extended pre
ision arithmeti
. We note that the real parts of some of the

exponents ηi are of size |Re (ηi)| ≈ 10−12
.

3.2. Solving vis
ous Burgers' equation. In [27℄ we use the redu
tion algorithm to solve vis
ous

Burgers' equation,

(3.6) ut − uux = νuxx, u(x, 0) = u0(x), u(0, t) = u(1, t), x ∈ [0, 1], t ≥ 0.

The solution of this equation develops a sho
k (or a sharp transition) on an interval of size O (ν).
We approximate solutions to (3.6) using rational fun
tions of the form

u (x, t) =

M0∑

j=1

αj (t)

e−2πix − γj (t)
+

M0∑

j=1

αj (t)

e2πix − γj (t)
+ α0.

The key idea is to develop a numeri
al 
al
ulus using the redu
tion algorithm. Although opera-

tors su
h as multipli
ation and 
onvolution in
rease the number of poles in the representation, the

redu
tion algorithm is employed at ea
h stage to keep the number of poles near optimally small.

Overall, about 106 appli
ations of the redu
tion algorithm were employed to 
ompute the solutions

illustrated below, thus 
on�rming its robustness and e�
ien
y.
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Figure 3.2 shows the 
omputed solutions u(x, htj) to (3.6), with the vis
osity ν = 10−5
, the

step size ht and the initial 
ondition u0(x) = sin(2πx) + 1/2 sin(4πx). In our redu
tion pro
edure,

we used the step size of ht = 10−5
and the error toleran
e δ = 10−9

(to mat
h the error of our

time dis
retization). The solution u(x, htj) is shown for time steps tj = htj, j = 102, 104, 2 ×
104, 3× 104, 5× 104. We see that the solution u(x, t) develops two moving sharp transition regions,

whi
h approa
h ea
h other and eventually merge into a single one about x ≈ 1/2. The rational

representations of u(x, tj) have 4, 11, 33, 29, and 19 pairs of 
onjugate-re
ipro
al poles, respe
tively.
It also demonstrates that the transition regions of u(x, t) o

ur within intervals of width of O (ν).

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

0.49996 0.49998 0.50000 0.50002 0.50004

-0.5

0.5

Figure 3.2. (a) Solution u(x, tj), for tj = 10−3
, .1, .2, .3, and .5. (b) u(x, tj) in the

transition region

(
1/2− 10−5, 1/2 + 10−5

)
, for tj = 0.4 (from [27℄). These solutions

are represented with 4, 11, 33, 29, and 19 pairs of 
onjugate-re
ipro
al poles.

4. A

ura
y verifi
ation

We test the a

ura
y of Algorithm 4 on 500 random Cau
hy matri
es, Cij = (αiαj) / (1− γiγj),
i, j = 1, . . . , 120. The 
omplex poles γj = ρje

2πiφj
and residues αj = ζje

2πiψj
are generated by taking

ρj , φj , and ψj from the uniform distribution on (0, 1), and taking ζj from the uniform distribution

on (0, 10). For ea
h randomly generated matrix, we �rst 
ompute, as a gauge, CC = ZΣZ−1
using

the in-built Mathemati
a

TM
eigenvalue solver with 300 digits of pre
ision, and 
ompare the result

with Ẑ and Σ̂ 
omputed via Algorithm 4 using standard double pre
ision. We then evaluate the

maximum relative error in the 
on-eigenvalues λj = Σjj , maxj

∣∣∣λj − λ̂j
∣∣∣ / |λj |, and the maximum

error in the 
omputed 
on-eigenve
tors, maxj

∥∥∥Z (:, j)− Ẑ (:, j)
∥∥∥
2
/ ‖Z (:, j)‖2. We �rst s
ale Ẑ (:, j)

by the 
omplex-valued 
onstant Z (i0, j) /Ẑ (i0, j), i0 = max1≤i≤n |Z (i, j)|, sin
e Z (:, j) and Ẑ (:, j)
are de�ned only up to an arbitrary 
omplex-valued fa
tor.

Figures 4.1 and 4.2 summarize the result of a typi
al run. Figure 4.1(a) shows the distribution of

the poles γj inside the unit disk and Figure 4.1(b) displays log10 λ
2
j as a fun
tion of the index j. Fig-

ures 4.2(a) 4.2(b) show the relative errors in the 
on-eigenvalues

∣∣∣λj − λ̂j
∣∣∣ / |λj | and the normalized


on-eigenve
tors ‖zj − ẑj‖2 / ‖zj‖2, both as fun
tions of the index j.
In Figures 4.3 and 4.4 for ea
h of the 500 random Cau
hy matri
es, we plot the error in the 
om-

puted 
on-eigenvalues

∣∣∣λ̂j − λj
∣∣∣ / |λj | and 
on-eigenve
tors ‖ẑj − zj‖2 / ‖zj‖2for j = 1, 40, 80, 120

(note the exponential de
ay of λj). We see that the 
on-eigenvalues and the 
on-eigenve
tors

are 
omputed with nearly full pre
ision for all the Cau
hy matri
es. In fa
t, the largest errors∣∣∣λ̂j − λj
∣∣∣ / |λj | and ‖ẑj − zj‖2 / ‖zj‖2 in the 
omputed 
on-eigenvalues and 
on-eigenve
tors, for any

of the 500 Cau
hy matri
es and any 1 ≤ j ≤ n, are 5.13× 10−12
and 5.35× 10−12

.
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Figure 4.1. (a) Distribution of poles γj determining Cau
hy matrix C in a typi
al

run. (b) Exponential de
ay of the eigenvalues λ2j of CC as a fun
tion of the index

j using log10 s
ale.

5. A

ura
y and perturbation bounds

We present error bounds that demonstrate Algorithm 4 of the previous se
tion a
hieves high

relative a

ura
y. We also provide bounds that demonstrate that small perturbations of ai, bj ,
xi, and yj determining C lead to small relative perturbations of the 
on-eigenvalues and small

perturbations of the angles between subspa
es spanned by the 
on-eigenve
tors, as long as the

parameters xi and yj are not too 
lose in a relative sense. In the bounds below, ‖·‖ denotes the
Frobenius norm.

In Theorems 5-7 below we always assume that the 
on-eigenvalues are simple, although this is

not a 
ru
ial restri
tion. In the statements of these theorems, the impli
it 
onstant fa
tor implied

by the notation O (η) and O (ǫ) (here ǫ, η ≪ 1) depends only on the size n of the matrix C. We note

that all these impli
it 
onstants may be tra
ked more 
arefully and are modest-sized fun
tions of n.
The bounds in the theorems below depend on the Cholesky fa
tors in the de
omposition C =

(PL)D2 (PL)∗. In parti
ular, the estimates in Theorems 5 - 7 depend on the quantities

µ0 (L) =
∥∥L−1

∥∥2 κ (L) ,(5.1)

µ1 (L) = max
{∥∥L−1

∥∥2 , ‖L‖2
}
κ (L) ,

µ2 (L) =
∥∥L−1

∥∥2 µ1 (L)κ
3 (L) ,
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Figure 4.2. (a) Relative error in the jth 
on-eigenvalue,

∣∣∣λj − λ̂j
∣∣∣ / |λj |, as a fun
-

tion of the index j. (b) The error in the jth 
on-eigenve
tor, ‖zj − ẑj‖2 / ‖zj‖2,
zj = Z (:, j), as a fun
tion of the index j.

where the 
ondition number κ (L) = ‖L‖
∥∥L−1

∥∥
is typi
ally small. The estimates in Theorems 6-7

also depend on

(5.2) µ3 (L) =
∥∥L−1

∥∥ (ρµψµ2 (L) + νκ3 (L)
)
,

where ρ, µ, and ψ are �pivot growth� fa
tors asso
iated with the QR fa
torization (see Se
tion 7.3),

and the fa
tor ν is asso
iated with the one-sided Ja
obi algorithm (see (7.12)).

Remark. There are simple formulas for Lij and
(
L−1

)
ij
([10℄) in terms of the parameters ai, bj , xi

and yj de�ning the Cau
hy matrix C, and it is possible that the bounds below may be improved by

using this additional stru
ture.

Theorem 5. Suppose that the parameters de�ning the positive-de�nite Cau
hy matrix C = C(a, b, x, y)

are perturbed to ã = a+ δa, b̃ = b+ δb, x = x+ δx, and y = y + δy. Let us de�ne

η = (1/η1 + 1/η2 + 1/η3)max {‖δa‖∞ , ‖δb‖∞ , ‖δx‖∞ , ‖δy‖∞} ,
where

η1 = min
i6=j

|xi − xj |
|xj |+ |xi|

, η2 = min
i6=j

|yi − yj|
|yj|+ |yi|

, η3 = min
i6=j

|xi + yj|
|xi|+ |yj|

.

Let C = LDL∗
denote the Cholesky fa
torization of C, and let C̃ = C(ã, b̃, x̃, ỹ) denote the Cau
hy

matrix 
orresponding to the perturbed parameters. Finally, let zi, z̃i denote the 
on-eigenve
tors of

C and C̃, 
orresponding to 
on-eigenvalues λi and λ̃i .

Then the relative di�eren
e in the 
on-eigenvalues λi and λ̃i is bounded as

∣∣∣∣∣
λi − λ̃i
λi

∣∣∣∣∣ ≤ µ0 (L)O (η) ,
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Figure 4.3. Relative error in the 
omputed 
on-eigenvalues,

∣∣∣λ̂j − λj
∣∣∣ / |λj |, for

j = 1, 40, 80, 120 ((a), (b), (
), and (d), respe
tively), plotted for ea
h of the 500
random Cau
hy matri
es.

and the a
ute angle between the 
on-eigenve
tors zi and z̃i is bounded by

sin (∠zi, z̃i) ≤ κ (L)
(
µ2 (L)

relgapi
+ µ0 (L)µ1 (L)

)
O (η) .

Here µ0 (L), µ1 (L) and µ2 (L) are de�ned in (5.1), and

relgapi = min
j 6=i

|λi − λj |
|λi|+ |λj |

.

Next we state

Theorem 6. Suppose that Algorithm 4 is used to 
ompute the full 
on-eigenvalue de
omposition

of a positive-de�nite Cau
hy matrix C. Suppose also that C has the Cholesky fa
torization C =
(PL)D2 (PL)∗, where P is the permutation matrix that en
odes 
omplete pivoting.

Then the relative error between the 
omputed 
on-eigenvalue λ̂i and the exa
t λi is bounded as∣∣∣λ̂i − λi
∣∣∣

|λi|
≤ (ρµψµ0 (L) + ν)O (ǫ) ,
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(d)
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Figure 4.4. Relative error in the 
omputed 
on-eigenve
tors, ‖ẑj−zj‖2/‖zj‖2, for
j = 1, 40, 80, 120 ((a), (b), (
), and (d), respe
tively), plotted for ea
h of the 500
random Cau
hy matri
es.

where ρ, µ, and ψ are �pivot growth� fa
tors asso
iated with the QR fa
torization (see Se
tion 7.3),

and the fa
tor ν is asso
iated with the one-sided Ja
obi algorithm (see (7.12)).

Letting zi, ẑi denote exa
t and 
omputed 
on-eigenve
tors of C, the a
ute angle between zi and
ẑi then satis�es

sin (∠ẑi, zi) ≤ κ (L)
(
µ3 (L)

relgapi
+
∥∥L−1

∥∥2 κ3 (L)
)
O (ǫ) ,

where relgapi is de�ned as in Theorem 5 and µ3 (L) is de�ned in 5.2.

Theorem 7. Suppose Algorithm 4 is used to 
ompute m approximate 
on-eigenvalues and 
on-

eigenve
tors of a positive-de�nite Cau
hy matrix C. Suppose also that C has the Cholesky fa
tor-

ization C = (PL)D2 (PL)
∗
, where P is the permutation matrix that en
odes 
omplete pivoting.

Assuming that D2
mm ≤ λiǫ for some 1 ≤ i ≤ m, the following error bound holds for the 
omputed


on-eigenvalue λ̂i, ∣∣∣λ̂i − λi
∣∣∣

|λi|
≤
(
ρµψµ0 (L) + ν + ‖C‖µ2

1 (L)
)
O (ǫ) ,

and the a
ute angle between zi and ẑi is bounded by

sin (∠ẑi, zi) ≤ κ (L)
(
µ3 (L) + ‖C‖µ2

1 (L)

relgapi
+
∥∥L−1

∥∥2 κ3 (L)
)
O (ǫ) .

In the above estimates, ρ, µ, and ψ are �pivot growth� fa
tors asso
iated with the QR fa
torization

(see Se
tion 7.3), and the fa
tor ν is asso
iated with the one-sided Ja
obi algorithm (see (7.12)).

The proofs of the theorems in this se
tion may be found in the online version of this paper [28℄.

Remark 8. We note that the 
onstants in the theorems above are signi�
antly more pessimisti
 than

we a
tually observe in numeri
al experiments. Indeed, while the bounds on the 
on-eigenve
tors
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depend only on the well-
onditioned matrix L (and, in parti
ular, are independent of the exponen-

tially de
aying diagonal matrix D), they still s
ale like κ9 (L); the bounds on the 
on-eigenvalues are

better�they s
ale like κ3(L). However, in pra
ti
e Algorithm 4 a
hieves nearly full pre
ision for all

the 
on-eigenvalues and 
on-eigenve
tors. While it is likely that better estimates 
an be obtained,

those presented here elu
idate the basi
 me
hanism behind the high a

ura
y that we observe in our

experiments.

6. Dis
ussion: 
omparison with related approa
hes for 
onstru
ting optimal

rational approximations

Numeri
al approa
hes for �nding near optimal rational approximations originate in theoreti
al

results of Adamyan, Arov, and Krein [1, 2, 3℄. In parti
ular, given a periodi
 fun
tion f
(
e2πix

)
∈

L∞(0, 1), AAK theory yields an optimal �rational-like� approximation rM
(
e2πix

)
,

(6.1) rM (z) =
a0 + a1z + a2z

2 + . . .

(z − ζ1) . . . (z − ζM )
, |ζj | < 1,


onstru
ted from the left and right singular ve
tors 
orresponding to the Mth singular value, σM ,

of the in�nite Hankel matrix Hij = f̂ (i+ j − 1) , i, j = 1, 2, . . .. The numerator of rM (z) in (6.1)

is analyti
 in the unit disk. The approximation error satis�es

max
x

∣∣f
(
e2πix

)
− rM

(
e2πix

)∣∣ = σM ,

where the number of poles ζj in (6.1) equals the index M of the singular value σM (index 
ounting

starts from zero). Moreover, the L∞
-norm approximation error is optimal among all fun
tions of

the form (6.1).

In order to use AAK theory to 
ompute (near) optimal rational approximations, standard numer-

i
al approa
hes 
ompute singular ve
tors of a trun
ated Hankel matrix. The poles of the rational

approximation are obtained as roots of a polynomial whose 
oe�
ients are the entries of the sin-

gular ve
tor. Su
h approa
hes have a long history of their own and, in parti
ular, let us mention

the pioneering papers [37, 38, 39℄. A re
ent version (in
orporating additional ideas) 
an be found in

[22℄.

Instead of trun
ating the Hankel matrix, the approa
h of this paper is based on the observation

that it is always possible (see e.g. [6, 8, 5, 11℄) to 
onstru
t a sub-optimal rational approximation,

i.e., an approximation with ex
essive number of poles for a desired a

ura
y. This leads us to spe
ial-

ize AAK theory to proper rational fun
tions f
(
e2πix

)
, and to formulate the redu
tion problem (see

Se
tion 2.1 and [6, Se
tion 6℄). Importantly, this results in a 
on-eigenvalue problem of �nite size

and with no additional approximations. Moreover, this formulation allows us to develop a numeri
al


al
ulus based on rational fun
tions (numeri
al operations su
h as addition and multipli
ation in-


rease the number of poles; the redu
tion algorithm is applied to keep their number near optimally

small, see [27℄). Early approa
hes of this type 
an be found in [32, 14, 40℄; however, these algorithms

may require extended pre
ision for high a

ura
y and also s
ale 
ubi
ally in the number of original

poles.

Comparing our approa
h with that in e.g. [22℄, we make two observations. First, to justify the

trun
ation of an in�nite Hankel matrix, the Fourier 
oe�
ients have to de
ay below the desired

a

ura
y of approximation. Thus, for fun
tions that have sharp transitions (as in the example of

Se
tion 3.2) or singularities (as in the example of Se
tion 3.1), where the Fourier 
oe�
ients de
ay

slowly, this would require 
omputing singular values of very large matri
es. In the examples of

Se
tions 3.1 and 3.2, Hankel matri
es of size ≈ 107× 107 and ≈ 106× 106 would be needed in order

to attain a 
omparable a

ura
y. This approa
h would also require �nding roots of polynomials with

≈ 107 and ≈ 106 
oe�
ients, respe
tively.

Our se
ond observation is that using Hankel matri
es may require extended pre
ision arithmeti


if high a

ura
y is desired, as is the 
ase in examples of Se
tions 3.1 and 3.2. Indeed, existing SVD

algorithms do not a

urately 
ompute small singular values of Hankel matri
es. Also, the roots of
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high degree polynomials (determined at the SVD step) may be sensitive to perturbations in their


oe�
ients. However, when limited to approximating smooth fun
tions, these �trun
ated Hankel�

methods 
an yield surprisingly high a

ura
y sin
e the errors in the poles may be 
ompensated by

the residues. As far as we are aware, trun
ated Hankel methods for 
onstru
ting optimal rational

approximations for fun
tions with singularities generally do not a
hieve approximation errors better

than ≈ 10−4
. In 
ontrast, in Se
tion 3.1 we show that the redu
tion algorithm approximates

pie
ewise smooth fun
tions with errors 
lose to ma
hine pre
ision.

We also note that the results in [27℄ (illustrated in Se
tion 3.2) demonstrate an e�e
tive numeri
al


al
ulus based on the redu
tion algorithm, 
apable of 
omputing highly a

urate solutions to vis
ous

Burgers' equation for vis
osity as small as 10−5
. These solutions exhibit moving transitions regions

of width ≈ 10−5
, and 
omputing them with high a

ura
y over long time intervals is a nontrivial

task for any numeri
al method. The 
on-eigenvalue algorithm of this paper is 
riti
al to the high

a

ura
y and e�
ien
y of this numeri
al 
al
ulus.

7. Appendix: ba
kground on algorithms for high relative a

ura
y

Here we provide ne
essary ba
kground on 
omputing highly a

urate SVDs. Although the results

we need in [20, 33, 17, 34, 15, 29℄ are only stated there for real-valued matri
es, they 
arry over to


omplex-valued matri
es with minor modi�
ations and are formulated as su
h.

7.1. A

urate SVDs of matri
es with rank-revealing de
ompositions. A

ording to the

usual perturbation theory for the SVD (see e.g. [12℄), perturbations δA of a matrix A 
hange the ith
singular value σi by δσi and 
orresponding unit eigenve
tor ui by δui, where (assuming for simpli
ity

that σi is simple),

(7.1) |δσi| /σ1 ≤ ‖δA‖ , ‖δui‖ ≤
‖δA‖

absgapi

, absgapi = min
i6=j
|σi − σj | /σ1.

Therefore, small perturbations in the elements of A may lead to large relative 
hanges in the small

singular values and the asso
iated singular ve
tors. Moreover, sin
e standard algorithms 
ompute an

SVD of some nearby matrix A+ δA, where ‖δA‖ / ‖A‖ = O (ǫ), the perturbation bound (7.1) shows

that the 
omputed small singular values and 
orresponding singular ve
tors will be ina

urate.

In 
ontrast, the authors in [17℄ show that, for many stru
tured matri
es, the ith singular value

σi ≪ σ1 and the asso
iated singular ve
tor are robust with respe
t to small perturbations of the

matrix that preserve its underlying stru
ture. The sensitivity is instead governed by the ith relative

gap

relgapi = min
i6=j

|σi − σj |
σi + σj

.

More pre
isely, let us 
onsider the 
lass of matri
es for whi
h a rank-revealing de
omposition A =
XDY ∗

is available and may be 
omputed a

urately. Here X and Y are n×m well-
onditioned ma-

tri
es andD is anm×m diagonal matrix that 
ontains any possible ill-
onditioning of A. As is shown
in [17℄, a perturbation of A = XDY ∗

that is of the form A+ δA = (X + δX) (D + δD) (Y + δY )
∗
,

where

(7.2)

‖δX‖
‖X‖ = O (ǫ) ,

‖δY ‖
‖Y ‖ = O (ǫ) ,

|δDii|
|Dii|

= O (ǫ) ,


hanges the ith singular value σi and asso
iated left (or right) singular ve
tor ui by amounts δσi
and δui bounded by

(7.3)

|δσi|
σi
≤ max (κ (X) , κ (Y ))O (ǫ) , ‖δui‖ ≤

max (κ (X) , κ (Y ))

relgapi

O (ǫ) ,

where κ(X) = ‖X‖
∥∥X†

∥∥
and X†

denotes the pseudo-inverse of A. One reason this 
lass of matri
es

is so useful is that Gaussian elimination with 
omplete pivoting (GECP) (or simple modi�
ations)


omputes a

urate rank-revealing de
ompositions of many types of stru
tured matri
es (see [17℄ and
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[15℄). Moreover, small perturbations of su
h matri
es that preserve their underlying stru
ture lead

to small perturbations in the rank-revealing fa
tors and, therefore, small relative perturbations of

the singular values.

Given the de
omposition A = XDY ∗
, it is shown in [17, Algorithm 3.1℄ that an SVD of A may

be 
omputed with high relative a

ura
y, and with about the same 
ost as standard, less a

urate

SVD algorithms for dense matri
es. The key to this algorithm is the one-sided Ja
obi algorithm

(brie�y reviewed in Se
tion 7.4), whi
h, with an appropriate stopping 
riterion, a

urately 
omputes

the SVD of matri
es of the form DB, where D is diagonal (and typi
ally highly ill-
onditioned) and

B is well-
onditioned (see [20℄ and [33℄). In parti
ular, the algorithm in [17, Algorithm 3.1℄ yields


omputed singular values σ̂i and left (or right) singular ve
tors ûi that satisfy

(7.4)

|σi − σ̂i|
σi

≤ max (κ (X) , κ (Y ))O (ǫ) ,

(7.5) ‖ui − ûi‖ ≤
max (κ (X) , κ (Y ))

relgapi

O (ǫ) ,

7.2. LDU fa
torization of Cau
hy matri
es. In this se
tion we review how a modi�
ation of

GECP 
omputes a

urate rank-revealing de
ompositions of Cau
hy matri
es [15℄.

We des
ribe Demmel's algorithm (see Algorithms 3 and 4 in [15℄ and Algorithm 2.5 in [9℄) for


omputing an a

urate rank-revealing de
omposition of a n × n positive-de�nite Cau
hy matrix

Cij = aibj/ (xi + yj) (note that Demmel refers to su
h matri
es as quasi-Cau
hy). The algorithm is

based on a modi�
ation of Gaussian elimination for 
omputing, in O
(
n2
)
operations, the Cholesky

fa
torization C = (PL)D (PD)
∗
of a positive-de�nite Cau
hy matrix (more generally, the algorithm


omputes an LDU fa
torization for an arbitrary Cau
hy matrix in O
(
n3
)
operations). Here P is a

permutation matrix, L is a unit lower triangular matrix, and D is a diagonal matrix with positive

diagonal elements. It is shown in [15℄ that, remarkably, the 
omponents of the LDU fa
tors L̂, Û ,

and D̂ are 
omputed to high relative a

ura
y,

(7.6)

∣∣∣L̂ij − Lij
∣∣∣ ≤ |Lij | cnǫ,

∣∣∣Ûij − Uij
∣∣∣ ≤ cn |Uij | ǫ,

∣∣∣D̂ii −Dii

∣∣∣ ≤ cn |Dii| ǫ,

where cn is a modest-sized fun
tion of n. The basi
 reason the algorithm a
hieves high relative

a

ura
y is that the only operations involved are multipli
ation and division of �oating point numbers

(additions and subtra
tions in the algorithm involve only xi and yj , whi
h are assumed to be exa
t).

We now review the basi
 idea behind the algorithm in [15℄. First, ignoring pivoting for a moment,

we assume that, after k steps of Gaussian elimination, the Cau
hy matrix is transformed to the

matrix G(k)
,

G(k) =

(
G

(k)
11 G

(k)
12

0 G
(k)
22

)
.

The elements of the S
hur 
omplement G
(k+1)
22 may be 
omputed from those of G

(k)
22 by using the

re
ursion

G
(k)
ij =

(
xi − xk
xi + yk

)(
yj − yk
yj + xk

)
G

(k−1)
ij , i, j = k + 1, . . . , n.(7.7)

Introdu
ing pivoting, we observe that the matrix G(k)
may be obtained by applying Gaussian elim-

ination to a Cau
hy matrix C(k) = C(k)
(
a(k), b(k), x(k), y(k)

)
, where a(k), b(k), x(k) and y(k) are

permutations of a, b, x and y 
orresponding to the row and 
olumn pivoting of C. As long as the

ve
tors a, b, x and y are permuted a

ording to the pivoting of G(k)
, the re
ursive formula (7.7) still

holds.

It is observed in [15℄ that if C is positive-de�nite (and, therefore, only diagonal pivoting is needed),

then the pivot order may be determined in advan
e in O
(
n2
)
operations by 
omputing diag

(
G(k)

)

from formula (7.7). On
e the 
orre
t pivot order is known, we do not need to 
ompute the entire



CON-EIGENVALUE ALGORITHM FOR OPTIMAL RATIONAL APPROXIMATIONS 20

S
hur 
omplement G(k)
to extra
t the 
omponents of L and U , but only its kth row and kth 
olumn.

Indeed, we may use Algorithm 2.5 in [9℄, whi
h uses the displa
ement stru
ture of C, to 
ompute an

a

urate Cholesky de
omposition in O
(
n2
)
operations. To see how, note that it easily follows from

(7.7) that the S
hur 
omplement of a Cau
hy matrix is a Cau
hy matrix,

(7.8) G(k) (i, j) =
α
(k)
i β

(k)
j

xi + yj
, i, j = k + 1, . . . , n,

where the parameters α
(k)
i and β

(k)
i satisfy the re
ursion

(7.9) α
(k)
i =

xi − xk
xi + yk

α
(k−1)
i , β

(k)
i =

yi − yk
yi + xk

β
(k−1)
i , i = k + 1, . . . , n.

Sin
e the kth 
olumn L (:, k) may be extra
ted from G(k) (:, k), we therefore only require O (n) oper-

ations at ea
h step of Gaussian elimination to 
ompute L (:, k). Updating α
(k)
i and β

(k)
i also requires

only O (n) operations. In Se
tion 2.3 (see Algorithms 2 and 3), we present an O
(
n
(
log δ−1

)2)

algorithm to 
ompute 
on-eigenvalues greater than a user spe
i�ed 
uto� δ and, as a result, yield-

ing a fast algorithm for obtaining nearly optimal rational approximations. On
e an a

urate LDU

fa
torization C ≈
(
PL̂
)
D̂
(
PD̂

)∗
is available, an a

urate SVD of C may be obtained using the

algorithm in [17, Algorithm 3.1℄.

7.3. Rank-revealing de
ompositions of graded matri
es. We also review how a variant of the

QR Householder algorithm with 
omplete pivoting 
omputes a

urate rank-revealing de
ompositions

of graded matri
es [29℄.

It is shown in [29℄ that the Householder QR algorithm with 
omplete pivoting may be used to


ompute a rank-revealing de
omposition of a graded matrix of the form A = D1BD2. Here D1 and

D2 are diagonal matri
es that a

ount for the ill-
onditioning of A. Re
all that the Householder

QR algorithm uses repeated appli
ations of orthogonal matri
es to redu
e A to an upper-triangular

matrix R. On the �rst step, the parameter β1 and the ve
tor v1 of the Householder re�e
tion matrix

Q(1) = I − β1v1v∗1 are 
hosen so that

Q(1)




a11
a21
.

.

.

an1


 =




a
(1)
11

0
.

.

.

0


 .

Consequently, the �rst appli
ation of Q(1)
to A results in a matrix of the form

A(1) = Q(1)A =




a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(1)
22 . . . a

(1)
2n

.

.

.

.

.

.

.

.

.

.

.

.

0 a
(1)
n2 . . . a

(1)
nn



.

This pro
ess is repeated on the (n− 1) × (n− 1) lower blo
k
[
a
(1)
ij

]
2≤i,j≤n

and, after n − 1 su
h

steps, A(n−1) = Q(n−1) . . . Q(1)A = R, where R is upper triangular. In the version 
onsidered in

[29℄, the rows of A are �rst pre-sorted so that so that ‖A (1, :)‖∞ ≥ · · · ≥ ‖A (n, :)‖∞. The algorithm

then pro
eeds as above, ex
ept that at ea
h step, k, 
olumn pivoting is performed to ensure that∥∥A(k) (k : n, k)
∥∥
2
≥ · · · ≥

∥∥A(k) (k : n, n)
∥∥
2
. Letting P1 denote the row permutation matrix that

pre-sorts the rows of A, and letting P2 denote the 
olumn permutation matrix 
orresponding to the


olumn pivoting, the QR Householder algorithm produ
es the QR fa
torization P1AP2 = QR.
Following [29℄, we 
onsider the error analysis of the Householder algorithm (without pivoting)

applied to P1AP2, where P1 and P2 are 
hosen so that no 
olumn or row ex
hanges are ne
essary (e.g.
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the matrix A is pre-pivoted). Assume that the matrix P1AP2 may be fa
tored as P1AP2 = D1BD2,

where D1 and D2 are diagonal matri
es, and that the Householder algorithm, applied to the row-

s
aled matrix C = D1B, produ
es intermediate matri
es C(k)
with 
olumns c

(k)
j . Finally, de�ne the

quantities ρ, µ, and ψ by

(7.10) ρ = max
i

maxj,k

∣∣∣c(k)ij
∣∣∣

maxj |cij |
, µ = max

k
max
j≥k

∥∥∥c(k)j (k : m)
∥∥∥

∥∥∥c(k)k (k : m)
∥∥∥
, ψ = max

1≤i≤n

i≤k≤n

maxj |ckj |
maxj |cij |

.

The above quantities measure the extent to whi
h the Householder algorithm preserves the s
aling

in the intermediate matri
es A(k)
, and are almost always small (this is analogous to the pivot growth

fa
tor in Gaussian elimination with row pivoting). It is shown in [29℄ that

Theorem 9. Suppose that A is pre-pivoted, and the Householder algorithm is used to 
ompute the

upper triangular matrix R̂ of the QR de
omposition. Then there is an orthogonal matrix Q su
h that

QR̂ = D1 (B + δB)D2, where δB satis�es

‖δB‖ ≤ ρψµ ‖B‖O (ǫ) ,

and ρ, µ, and ψ are de�ned in (7.10).

In [29℄ Theorem 9 is 
ombined with the theory developed in [17℄ (e.g., see Theorems 4.1 and 4.2
in [17℄) to show that the QR algorithm with 
omplete pivoting produ
es a

urate rank revealing

de
ompositions of graded matri
es of the form A = D1BD2, as long as the prin
ipal minors of

B are well-
onditioned and the diagonal elements of D1 and D2 are approximately de
reasing in

magnitude.

Remark. Instead of pre-sorting the rows of A and applying the Householder algorithm with 
olumn

pivoting, one may also use a version of the Householder algorithm in whi
h both row and 
olumn

pivoting is employed (see [29℄ for more details). Gaussian elimination with 
omplete pivoting may

also be used to obtain a

urate rank-revealing de
ompositions of graded matri
es [17℄.

7.4. Modi�ed one-sided Ja
obi algorithm . The heart of the algorithm in [17, Algorithm 3.1℄

is the modi�ed one-sided Ja
obi algorithm, whi
h a

urately 
omputes the SVD of matri
es of the

form DB and BD, where D is diagonal and typi
ally highly graded, and B is well-
onditioned (see

[20℄, [33℄, [24, 25℄). Although we fo
us on the one-sided Ja
obi algorithm as applied to G = BD,

analogous 
onsiderations apply to G = DB by repla
ing G by G∗
. The one-sided Ja
obi algorithm

works by applying a sequen
e of Ja
obi matri
es J1, . . . , JM to G from the right (i.e., the same side

as the s
aling, whi
h ensures that 
omponents of the right singular ve
tors are 
omputed with high

relative a

ura
y). Ea
h Ja
obi matrix J is 
hosen to orthogonalize two sele
ted 
olumns, and one

sweep 
onsists of orthogonalizing 
olumns in the order (1, 1), (1, 2), . . . , (1, n), followed by 
olumns

(2, 3), (2, 4), . . . , (2, n), and so on. Sweeps are repeated until all the 
olumns are orthogonal to ea
h

other to within the bound

G (J1 · · · JM ) =W,
|w∗
iwj |

|w∗
iwi|

1/2 |w∗
iwi|

1/2
≤ nǫ, if i 6= j.

This stopping 
riterion is used to ensure that even the smallest singular values are 
omputed with

high relative a

ura
y. The SVD of G = UΣV ∗
immediately follows by taking Σii = W (:, i),

V =W/Σ, and U = (J1J2 · · · JM )
∗
.

It will be 
ru
ial for the error bounds developed in this paper that the 
omponents of the left

singular ve
tors of DB (or the right singular ve
tors of BD) s
ale in a way similar to D, and are


omputed a

urately relative to this s
aling. At ea
h step m of the Ja
obi algorithm, we write

(J0 · · · Jm)G = BmDm, where the 
olumns of Bm have unit l2-norm and the matrix Dm is diagonal.

We also de�ne

(7.11) ν0 = max
1≤m≤M

κ2 (Bm) ,
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and

(7.12) ν = ρ (M,n) ν20 ,

where ρ (M,n) is proportional to M · n3/2
, and ν0 in de�ned in (7.11). Then we have the following

result from [33℄ and [20℄.

Theorem 10. Let G = DB be a n×n full-rank, 
omplex-valued matrix, where the diagonal matrix D
is 
hosen so that the l2-norm of ea
h 
olumn of B is unity. Suppose that one-sided Ja
obi algorithm

is used to 
ompute an approximation ûi to the ith left singular ve
tor ui of G, 
orresponding to

singular value Σii, and the iteration 
onverges after M sweeps. Then the following error bound

holds on the 
omputed 
omponents of ui:

(7.13) |ui (j)− ûi (j)| ≤ min

{
Djj√
Σii

,

√
Σii
Djj

}(
ν

relgapi

ǫ+O
(
ǫ2
))

,

where

relgapi =
|σi − σj |
σi + σj

.

Moreover, the 
omputed singular value Σ̃ii satis�es∣∣∣Σii − Σ̃ii

∣∣∣
Σii

≤ ν0O (ǫ) .
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