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Abstrat. The need to ompute small on-eigenvalues and the assoiated on-eigenvetors of

positive-de�nite Cauhy matries naturally arises when onstruting rational approximations with

a (near) optimally small L∞
error. Spei�ally, given a rational funtion with n poles in the unit

disk, a rational approximation with m ≪ n poles in the unit disk may be obtained from the mth

on-eigenvetor of an n × n Cauhy matrix, where the assoiated on-eigenvalue λm > 0 gives

the approximation error in the L∞
norm. Unfortunately, standard algorithms do not aurately

ompute small on-eigenvalues (and the assoiated on-eigenvetors) and, in partiular, yield few

or no orret digits for on-eigenvalues smaller than the mahine roundo�. We develop a fast

and aurate algorithm for omputing on-eigenvalues and on-eigenvetors of positive-de�nite

Cauhy matries, yielding even the tiniest on-eigenvalues with high relative auray. The algo-

rithm omputes the mth on-eigenvalue in O
(

m2n
)

operations and, sine the on-eigenvalues of

positive-de�nite Cauhy matries deay exponentially fast, we obtain (near) optimal rational ap-

proximations in O

(

n
(

log δ−1
)

2
)

operations, where δ is the approximation error in the L∞
norm.

We provide error bounds demonstrating high relative auray of the omputed on-eigenvalues

and the high auray of the unit on-eigenvetors. We also provide examples of using the al-

gorithm to ompute (near) optimal rational approximations of funtions with singularities and

sharp transitions, where approximation errors lose to mahine roundo� are obtained. Finally, we

present numerial tests on random (omplex-valued) Cauhy matries to show that the algorithm

omputes all the on-eigenvalues and on-eigenvetors with nearly full preision.

1. Introdution

We present an algorithm for omputing with high relative auray the on-eigenvalue deompo-

sition of positive-de�nite Cauhy matries,

(1.1) Cum = λmum, Cij =

√
αi
√
αj

1− γiγj
, i, j = 1, . . . , n,

where γi and αi are omplex numbers and |γi| < 1.The on-eigenvalue λm is only de�ned up to an

arbitrary phase, whih we hoose so that λm > 0. Although the on-eigenvalue deomposition (see

e.g. [30℄) is less well-known than the eigenvalue deomposition or the singular value deomposition,

it arises naturally in onstruting optimal approximations using exponentials or rational funtions

[1, 2, 3, 14, 40, 6, 7℄. For example, for a real-valued rational funtion f(z),

(1.2) f(z) =
n∑

i=1

αi
z − γi

+
n∑

i=1

αiz

1− γiz
+ α0,

we may onstrut a rational approximation g(z) with m poles and with an error,

max
x∈[0,1]

∣∣f
(
e2πix

)
− g

(
e2πix

)∣∣ ≈ λm,

by solving the on-eigenvalue problem (1.1) (see Setion 2.1 for more detail). Ordering the on-

eigenvalues, λ1 ≥ . . . ≥ λn > 0, the number of poles m of the approximant g(z) orresponds to the

index of the on-eigenvalue λm and leads to a near optimal approximation in the L∞
-norm with
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the error lose to λm. The form (1.2) ensures that f
(
e2πix

)
is real-valued and periodi; omplex-

valued funtions may also be handled using this form by splitting the real and imaginary parts and

performing additional redutions (see [7℄).

Current algorithms ompute an approximate on-eigenvalue λ̂m with an error no better than∣∣∣λm − λ̂m
∣∣∣ / |λ1| = O (ǫ), and an approximate unit on-eigenvetor ûm with an error no better than

‖um − ûm‖2 = O (ǫ) /absgapm, absgapm ≡ min
p6=m
|λm − λp| / |λ1| ,

where ǫ denotes the mahine roundo�. This implies that a omputed on-eigenvalue smaller than

|λ1| ǫ may have few or no orret digits. Hene, in order to obtain a rational approximation with

auray λm . 10−7
, we may be fored to use at least quadruple preision. Sine quadruple preision

is typially not supported by the hardware, it slows down the omputation by an unpleasant fator

(between 30 and 100). Another undesirable feature of urrent algorithms to solve (1.1) is the O
(
n3
)

omplexity for �nding the m≪ n poles of g(z), where n is the original number of poles of f(z).
Although the onstrution of optimal rational approximations in the L∞

-norm has a long history

(starting with the seminal papers [1, 2, 3℄), the di�ulties mentioned above limit pratial appli-

ations of suh approximations to situations where the problem size is relatively small and a low

auray is aeptable. In this regard, we view our results as a stepping stone toward a wider use

of optimal L∞
-approximations in numerial analysis (see [27℄).

We develop a fast and aurate algorithm for on-eigenvalue/on-eigenvetor omputations of

positive-de�nite Cauhy matries that addresses both of the di�ulties mentioned above. Our

algorithm omputes the mth on-eigenvalue/on-eigenvetor in O
(
m2n

)
operations (see Setion 5).

Sine the on-eigenvalues of positive de�nite Cauhy matries deay exponentially fast, for a given

desired auray ‖f
(
e2πix

)
− g

(
e2πix

)
‖∞ ≈ δ, the number of poles m in the approximant g(z) is

O
(
log δ−1

)
. Therefore, the omplexity of our algorithm is O

(
n
(
log δ−1

)2)
, i.e., it is essentially

linear in the number of original poles n and, thus, is mostly ontrolled by the number of poles of

the �nal optimal approximation.

The on-eigenvalue algorithm ahieves high relative auray, i.e., the omputed on-eigenvalue

λ̂m satis�es

∣∣∣λm − λ̂m
∣∣∣ / |λm| = O (ǫ), and the omputed unit on-eigenvetor ûm satis�es

‖um − ûm‖2 = O (ǫ) /relgapm, relgapm ≡ min
l 6=m
|λm − λl| / (λl + λm) ,

(see Theorems 6 and 7 for the exat statement). In ontrast to the usual perturbation theory for

general matries, we show that small perturbations of the poles γm and residues αm (determining

the Cauhy matrix C = C(α, γ) in (1.1)) lead to orrespondingly small perturbations in the on-

eigenvalues and on-eigenvetors, as long as the poles are well separated in a relative sense and are

not too lose to the unit irle.

In many appliations, the funtion f
(
e2πix

)
has sharp transitions, so that the poles are lustered

lose to the unit irle and eah other. In suh ases, it is natural to maintain the poles of f (z)
in the form γj = exp (−τj), where Re (τj) > 0 and 0 ≤ Im (τj) < 2π, so that Re (τj) are well-

separated in a relative sense. The redution algorithm produes new poles of the same form, where

even the smallest exponents are omputed with high relative auray. This allows us to develop a

numerial alulus that inludes funtions with singularities and sharp transitions. We address this

issue further in Setion 3.

Our approah is inspired by papers [20, 23, 18, 15, 29℄, whih develop algorithms and theory for

highly aurate SVDs of ertain strutured matries. Generally speaking, high relative auray is

ahieved when it is possible to avoid atastrophi anellation resulting from subtrating two lose

�oating point numbers (when the outome of suh anellation is signi�ant relative to the �nal

result). We refer to [16℄ for a omprehensive analysis of when e�ient and aurate algorithms

are possible using �oating point arithmeti. Classes of matries for whih highly aurate SVD or

eigenvalue algorithms exist inlude bi-diagonal matries [19, 13, 26℄, ayli matries [21℄, graded
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positive-de�nite matries [20℄, saled diagonally dominant matries [4℄, totally positive matries

[31℄, ertain inde�nite matries [36℄, and Cauhy matries (as well as, more generally, matries with

displaement rank one) [15℄. For suh matries, reent algorithmi advanes (see [24, 25℄) make the

ost of ahieving high relative auray omparable to that of alternative (and less aurate) SVD

methods.

The on-eigenvalue algorithm onsidered here is based on omputing the eigenvalue deomposition

of the produt, CC, of positive-de�nite Cauhy matries C and C, and is similar to the algorithm in

[17℄ for the generalized eigenvalue deomposition, as well as the algorithm in [23℄ for the produt SVD

deomposition. We also rely on the algorithm in [15℄ for omputing, with high relative auray,

the Cholesky deomposition (with omplete pivoting) C = (PL)D2 (PL)
∗
of a positive-de�nite

Cauhy matrix C. However, sine we are interested in omputing only on-eigenvalues of some

approximate size δ, we stop Demmel's Cholesky algorithm one the diagonal elements Dii are small

with respet to δ and the desired preision. Sine the diagonal elements Dii deay exponentially fast,

this allows us to aurately ompute on-eigenvalues of size δ (and the assoiated on-eigenvetors)

in O
(
n
(
log δ−1

)2)
operations. We also modify the Cholesky deomposition algorithm in [15℄ to

yield high relative auray for Cauhy matries Cij =
√
αi
√
αj/ (1− γiγj), with γi = exp (−τj),

where the real parts of the exponents, Re(τj), may be extremely small in magnitude. We observe

that the error bounds developed in [23℄ are not appliable to our problem sine the ondition number

of a Cauhy matrix annot be appreiably redued by saling the rows and olumns. In ontrast, the

error bounds presented in this paper yield high relative auray for all the omputed on-eigenvalues

larger than δ (and high auray for the on-eigenvetors), as long as L is well-onditioned, and the

relative gap between the on-eigenvalues is not too small (we have always observed this to hold

in pratie). In partiular, if δ is hosen small enough, the full on-eigenvalue deomposition is

obtained with high relative auray. The derivation of our error bounds makes ruial use of the

omponent-wise perturbation theory developed in [20℄ for the singular vetors of graded matries

(see also [34℄), as well as the omponent-wise error analysis in [20℄ and [33℄ for the one-sided Jaobi

method. We also use the error analysis given in [29℄ for the Householder QR method. We note

that although our error estimates are muh more pessimisti than what we observe in pratie, they

provide a framework for understanding the high auray of the on-eigenvalue algorithm of this

paper. In order to limit the size of this paper, proofs an be found in its online version [28℄.

It has been an established pratie, in both numerial analysis and signal proessing, to use

L2
-type methods for representing funtions. On the other hand, it has been understood for some

time that nonlinear approximations may be far superior in ahieving high auray with a minimal

number of terms (see e.g., [35℄). However, in spite of many interesting results (see e.g., [32, 37,

14, 38, 39, 40, 6, 8, 22℄), the widespread use of nonlinear approximations has been limited by a

lak of e�ient and aurate algorithms for omputing them (partiularly for funtions with sharp

hanges or singularities). Our algorithms provide the neessary tools for omputing optimal nonlinear

approximations via rational funtions, and ome with guaranteed auray bounds. We believe

that these new aurate algorithms may greatly extend the pratial use of L∞
approximations in

numerial analysis (see [27℄) and signal proessing (see [5℄).

In Setion 2.1 we desribe the redution problem for rational funtions, and onnet its solution

to a on-eigenvalue problem for positive de�nite Cauhy matries. We then present new algorithms

for solving the on-eigenvalue problem with high relative auray. We follow up in Setion 3 with

examples of using the redution algorithm to onstrut and use optimal rational approximations

for funtions with singularities and sharp transitions. In Setion 4 we verify the auray of the

on-eigenvalue algorithm by omparing the on-eigenvalue deomposition of randomly generated

Cauhy matries with that obtained via standard algorithms in extended preision. In Setion 5, we

provide error bounds that demonstrate the on-eigenvalue algorithm ahieves high relative auray

and that the on-eigenvalue deomposition is stable with respet to small perturbations of the

parameters de�ning the Cauhy matrix. Finally, Setion 6 ompares the redution algorithm of this
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paper with other algorithms in the literature for onstruting optimal rational approximations. For

the onveniene of the reader we also provide relevant bakground material in Setion 7.

2. Aurate on-eigenvalue deomposition (an informal derivation)

2.1. Construting optimal rational approximations via a on-eigenvalue problem. In or-

der to motivate our on-eigenvalue algorithm, let us explain how the aurate omputation of small

on-eigenvalues and assoiated on-eigenvetors allows us to onstrut optimal rational approxima-

tions.

We onsider an algorithm to �nd a rational approximation r(e2πix) to f(e2πix) in (1.2) with a

spei�ed number of poles and with a (nearly) optimally small error in the L∞
-norm. The algorithm

is based on a theorem of Adamyan, Arov, and Krein (referred to below as the AAK Theorem) [3℄.

We note that the formulation given below in terms of a on-eigenvalue problem is similar to the

approah taken in [14℄ and [6℄.

Given a target auray δ for the error in the L∞
-norm, the steps for omputing the rational

approximant r(z),

r(z) =
m∑

i=1

βi
z − ηi

+
m∑

i=1

βiz

1− ηiz
+ α0,

are as follows:

(1) Compute a on-eigenvalue 0 < λm ≤ δ and orresponding on-eigenvetor u of the Cauhy

matrix Cij = Cij(γi, αj),

(2.1) Cu = λmu, where u =




u1
u2
.

.

.

un


 , Cij =

aibj
xi + yj

, i, j = 1, . . . , n,

and ai =
√
αi/γi, bj =

√
αj , xi = γ−1

i , yj = −γj . The on-eigenvalues of C are labeled in

non-inreasing order, λ1 ≥ λ2 ≥ · · · ≥ λn.
(2) Find the (exatly) m zeros ηj in the unit disk of the funtion

(2.2) v(z) =
1

λm

n∑

i=1

√
αi ui

1− γiz
.

The fat that there are exatly m zeros in the unit disk, orresponding to the index m of

the on-eigenvalue λm, is a onsequene of the AAK theorem. The poles of r(z) are given
by the zeros ηj of v(z).

(3) Find the residues βm of r(z) by solving the m×m linear system

(2.3)

m∑

i=1

1

1− ηiηj
βi =

n∑

i=1

αi
1− γiηj

.

The L∞
-error of the resulting rational approximation r(e2πix) satis�es ‖f − r‖∞ ≈ λm, and is lose

to the best error in the L∞
-norm ahievable by rational funtions with no more than m poles in

the unit disk. Hene, we are led to the problem of omputing, to high relative auray, small

on-eigenvalues and the assoiated on-eigenvetors of positive-de�nite Cauhy matries.

In many appliations it is natural (and advisable) to maintain the poles γj in the form γj =
exp (−τj) (see e.g., [6, 8℄). As we explain in Setion 3, this is partiularly important if the funtion

f(e2πix) has singularities or sharp transitions. The advantage of this form is that, on a logarithmi

sale, the nodes are well separated (i.e., Re (τj) are well-separated in a relative sense). In suh ases,

our algorithm omputes the new poles ηi = exp (−ζi) with nearly full preision in the exponents ζi,

i.e.,

∣∣∣ζ̂i − ζi
∣∣∣ / |ζi| is lose to mahine preision even if ζi is lose to zero.
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Remark 1. In pratie, �nding the new poles ηi using the formula for v(z) in (2.2) is ill-advised,

sine evaluating v(z) in this form ould result in loss of signi�ant digits through atastrophi

anellation. Indeed, it turns out (see [6, Setion 6℄ and [27℄) that the values of the on-eigenvetor

omponents satisfy ui =
√
αiv (γi), i = 1, . . . , n. It then follows that the sum (2.2) must su�er

anellation of about log10
(
λ−1
m

)
digits if v (γi) and v (z) are of omparable size (note that λm

ontrols the approximation error and, thus, is neessarily small). On the other hand, the funtion

values v (γi) = ui/
√
αi, i = 1, . . . , n, along with the n poles 1/γi of v(z), ompletely determine (2.2).

Sine the poles γi of f(z) are often lose to the poles ηi of r(z), we have observed that evaluating

v(z) by using rational interpolation via ontinued frations with the known values v (γi) allows us
to obtain the new poles ηi with nearly full preision. In partiular, an approximation ṽ(z) to v(z) is
omputed via ontinued frations,

(2.4) ṽ(z) =
a1

1 + a2 (z − γ1) / (1 + a3 (z − γ2) / (1 + · · · ))
,

where the oe�ients aj are determined from the interpolation onditions ṽ(γi) = v (γi). If the poles
γi are given in the form γi = exp (−τi), we �nd that Newton's method on ṽ (exp (−η)) yields the
new poles ηi = exp (−ζi) with nearly full relative auray even when Re (ζi)≪ 1; see Setion 3 for

more details (ahieving high relative auray also requires slightly modifying the reursion formulas

for the ontinued fration oe�ients ai). A more detailed desription of the root-�nding algorithm

may be found in [27℄.

2.2. Aurate on-eigenvalue deompositions of positive-de�nite matries with RRDs.

The on-eigenvalue problem for a positive-de�nite Cauhy matrix Cij = aibj/ (xi + yj) redues to
an eigenvalue problem,

(2.5) CCu = λCū = |λ|2 u.

We �rst disuss a somewhat more general problem of omputing aurate eigenvalues and eigenve-

tors of matries of the form AA, where we assume that A has a fatorization A = XD2X∗
, with

X a (well-onditioned) n × m matrix (m ≤ n) and D an m × m diagonal matrix with positive,

non-inreasing diagonal entries. The retangular form of the fatorization, m ≤ n, will be important

in the sequel.

Let us de�ne them×mmatrixG = D
(
XTX

)
D, and onsider its SVD, G =WΣV ∗

. ThenG∗G =

V Σ2V ∗
, and the ith right singular vetor (1 ≤ i ≤ m), vi = V (:, i), satis�es

(
DX∗XD

) (
DXTXD

)
vi =

Σ2
iivi. It then follows that zi = XDvi is an eigenvetor of AA with eigenvalue Σ2

ii, sine

AAzi =
(
XD2X∗

) (
XD2XT

)
zi =

= XD
(
DX∗XD

) (
DXTXD

)
vi = Σ2

iiXDvi = Σ2
iizi.

and, thus, zi = XDvi is an eigenvetor of AA. To summarize: given the deomposition A = XD2X∗
,

an eigenvetor zi (i ≤ m) of AA is given by zi = X
(
DviΣ

−1/2
ii

)
, where vi is the ith right singular

vetor of the m×mmatrix G = D
(
XTX

)
D. Here Σii is the ith singular value of G, and the ith on-

eigenvalue of A. Let us now present an algorithm for aurately omputing the on-eigenvalues and

on-eigenvetors of A (its derivation also relies on the bakground material olleted in Setion 7).
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Algorithm 1 ConEig_RRD (X,D) omputes aurate on-eigenvalue deomposition of XD2X∗
.

Input: rank-revealing fators X and D (of dimensions n ×m and m ×m), where the diagonal of

D > 0 is dereasing. Output: m on-eigenvalues/on-eigenvetors of XDX∗
, ontained in Σ and T .

(Σ, T )← ConEig_RRD (X,D)

1. Form G = D (XTX)D
2. Compute QR fators (Q,R)← Householder_QR of G (G =
QR), with optional pivoting (see Setion 7.3)

3. Compute the SVD fators (Ul,Σ, Ur)← Jaobi (R) of R (R =
UlΣU

∗
r ), using one-sided Jaobi, applied from the left (see Setion 7.4)

4. Compute R1 = D−1RD−1
, X1 = D−1UlΣ

1/2
, and Y1 =

R−1
1 X1 (see (2.6) below)

5. Form the matrix of on-eigenvetors T =
XY1, and output on-eigenvalues Σ and on-eigenvetors T

Importantly, for Cauhy matries (A = C) the elements of D deay exponentially fast, and it

would appear that omputing the on-eigenvetors zi = XDvi/Σ
1/2
ii might lead to wildly inaurate

results even if the right singular vetor of G, vi, is omputed aurately. However, as we show

in Setion 5, Algorithm 1 ahieves high auray despite the extreme ill-onditioning of D. The

key reason is that the right singular vetor vi, orresponding to the singular value Σii, sales like

|vi (j)| ≤ cV min
(
Djj/Σ

1/2
ii ,Σ

1/2
ii /Djj

)
, and the omputed singular vetor v̂i is aurate relative to

the saling in D and Σ in the sense that

|vi (j)− v̂i (j)| ≤ min

{
Djj√
Σii

,

√
Σii
Djj

}
O (ǫ) .

For Cauhy matries, the quantity min
(
Djj/Σ

1/2
ii ,Σ

1/2
ii /Djj

)
dereases exponentially fast away

from the diagonal i = j.
Let us give an informal explanation of the reasons why Algorithm 1 yields aurate results. As

disussed in Setion 7.3, the QR Householder algorithm omputes an aurate rank-revealing deom-

position of G = QR. It turns out (see the online version [28, Lemma 11℄) that R may be fatored as

R = D2R0, where R0 is graded relative to D in the sense that

∥∥DR0D
−1
∥∥
and

∥∥DR−1
0 D−1

∥∥
are not

too large, as long as the n leading prinipal minors of XTX are well-onditioned. Therefore, from the

disussion in Setion 7.4 (see in partiular Theorem 10), the one-sided Jaobi algorithm omputes

the ith left singular vetor ui of R aurately relative to the saling min
{
Djj/Σ

1/2
ii ,Σ

1/2
ii /Djj

}
. It

follows that D−1uiΣ
1/2
ii may also be omputed aurately. Finally, sine the ith right singular vetor

vi of R (and G) satis�es

DviΣ
−1/2
ii = DR−1uiΣ

1/2
ii

=
(
DR0D

−1
)−1

(
D−1uiΣ

1/2
ii

)
,(2.6)

the on-eigenvetor zi = X
(
DviΣ

−1/2
ii

)
may be omputed aurately, as long as DR0D

−1
is om-

puted aurately and is well-onditioned (we show this is the ase if n leading prinipal minors of

XTX are well-onditioned). The last step in Algorithm 1 uses the approah in [25℄ for omputing

highly aurate right singular vetors via solving a triangular linear system of equations.

Remark 2. To obtain optimal rational approximations (see Setion 2.1), we need to ompute small

on-eigenvalues (and the assoiated on-eigenvetors) of Cauhy matries of the slightly di�erent

form, Cij =
√
αi
√
αj/ (1− γiγj), i.e., with ai =

√
αi/γi, bj =

√
αj , xi = γ−1

i , and yj = −γj. The
same reasoning as in [15℄ shows that the Cholesky omputation of C (see Setion 7.2) is performed

with high relative auray, as long as the di�erenes γ−1
j − γi are omputed with high relative
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auray. As explained in the next setion, γ−1
j −γi may be aurately omputed if γi is of the form

γi = exp (−τi), where the exponents τi are known aurately (see Setion 3 for examples).

Remark 3. Computing the normalized eigenvetor u via (2.5) determines the on-eigenvetor, the

solution of (2.1), only up to an unknown phase fator e−iφ/2. Indeed, given any solution λ and u of

(2.5) and an arbitrary phase fator e−iφ, it is easy to see that λe−iφ and ue−iφ/2 also satisfy (2.1).

Let us now determine the phase φ so that the on-eigenvalues λ are positive. To do so, we ompute

the usual inner produt

(
C
(
ue−iφ/2

)
, ue−iφ/2

)
= λ

(
ueiφ/2, ue−iφ/2

)
and hoose φ so that λ > 0.

Sine C is a positive-de�nite matrix, it follows that

(
ueiφ/2, ue−iφ/2

)
> 0. From this we obtain the

phase fator as eiφ = (u, u) / |(u, u)|.

2.3. Aurate on-eigenvalue deompositions of positive-de�nite Cauhy matries. If

A = C is a positive-de�nite Cauhy matrix, then the modi�ed GECP algorithm in [15℄ omputes the

Cholesky deomposition C = (PL)D2 (PL)
∗
with high relative auray (see Setion 7.1). There-

fore, Algorithm 1 for the eigenvalue problem of CC may be used, with X = PL, to ompute all the

eigenvalues and eigenvetors (and, therefore, the on-eigenvetors and on-eigenvalues of C).
For our purposes, we are only interested in omputing a single on-eigenvetor with assoiated

on-eigenvalue of approximate size δ (see Setion 2.1). However, the diagonal elements of D may

be many orders of magnitude smaller than δ, and it is then natural to expet that, by omputing

a partial Cholesky deomposition of C, we may obtain the ith on-eigenvetor in muh fewer than

O
(
n3
)
operations. In this ase, we stop Demmel's algorithm for the Cholesky deomposition of C

one the diagonal elements D2
ii are small with respet to the produt of δ2 and the mahine round-

o� ǫ, that is, as soon as D2
mm ≤ δ2ǫ for some m (notie that omplete pivoting ensures that the

diagonal elements Dii are non-inreasing). We then obtain C ≈ C̃ =
(
P̃ L̃
)
D̃2
(
P̃ L̃
)∗
, where P̃ is

an m × n matrix, L̃ is an n ×m matrix and D̃ is a diagonal m ×m matrix. Algorithms 2 and 3

ontain pseudo-ode for omputing L̃, D̃, and P̃ . In the pseudo-ode I (n,m) denotes the �rst m ≤ n
olumns of the n× n identity matrix.
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Algorithm 2 Pivot_Order (a, b, x, y, δ) pre-omputes pivot order for Cholesky fatorization of n×
n positive-de�nite Cauhy matrix Cij = aibj/ (xi + yj) . Input: a, b, x, and y de�ning Cij =
aibj/ (xi + yj), and target size δ of on-eigenvalue. Output: orretly pivoted vetors a, b, x, and y,

trunation size m, and m× n permutation matrix P̃(
a, b, x, y, P̃ ,m

)
← Pivot_Order (a, b, x, y, δ)

Form vetor gi := aibi/(xi + yi), i = 1, . . . , n
Set utoff for GECP termination: η := ǫδ2

Initialize permutation matrix (n× n identity): P̃ = I (n, n)
Compute orretly pivoted vetors:

m := 1
while |g (m)| ≥ η or m = n− 1

Find m ≤ l ≤ n suh that |g(l)| = max |g (m : n)|
Swap elements:

g(l)↔ g(m), x(l)↔ x(m) , y(l)↔ y(m)
a(l)↔ a(m),b(l)↔ b(m)
Swap rows of permutation matrix:

P̃ (l, :)↔ P̃ (m, :)
Update diagonal of Shur omplement:

g(m+ 1 : n) :=
(x (m+ 1 : n)− x(m)) / (y (m+ 1 : n)− y(m)) g(m+ 1 : n)
Inrement iteration ount:

m := m+ 1
Output a, b, x, y, P̃ (1 : m,n) ,m

Algorithm 3 Cholesky_Cauhy (x, y, a, b, δ) omputes partial Cholesky fatorization of positive-

de�nite Cauhy matrix Cij = aibj/ (xi + yj). Input: a, b, x, and y de�ning Cij = aibj/ (xi + yj),

and target size δ of on-eigenvalue. Output: n ×m matrix L̃, m ×m matrix D̃, and permutation

m× n matrix P̃ in partial Cholesky fatorization.(
L̃, D̃, P̃

)
← Cholesky_Cauhy (a, b, x, y, δ)

Compute pivoted vetors and matrix size m (Algorithm 2):(
a, b, x, y, P̃ ,m

)
← Pivot_Order(a, b, x, y, δ)

Initialize generators:

α := a, β := b
Compute first olumn of Shur omplement:

G (:, 1) := α ∗ β/ (x+ y)
for k = 2,m

Update generators:

α (k : n) := α (k : n) ∗ (x (k : n)− x (k − 1)) / (x (k : n) + y (k − 1))
β (k : n) := β (k : n) ∗ (y (k : n)− y (k − 1)) / (y (k : n) + x (k − 1))

Extrat kth olumn for Cholesky fators:

G (k : n, k) := α (k : n) ∗ β (k : n) / (x (k : n) + y (k : n))
Output partial Cholesky fators:

D̃ = diag (G(1 : n, 1 : m)
1/2

, L̃ = tril (G(1 : n, 1 : m)) D̃−2 + I (n,m), P̃
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One the partial Cholesky deomposition C ≈ C̃ =
(
P̃ L̃
)
D̃2
(
P̃ L̃
)∗

is omputed, Algorithm 1 for

the eigenvalue problem of C̃C̃ may then be used, with X = P̃ L̃ andD = D̃, to ompute aurate on-

eigenvalues and on-eigenvetors of C̃ (see Theorem 7). Sine the on-eigenvalues deay exponentially

fast, the omplexity of this algorithm is O
(
n
(
log(δǫ)−1

)2)
operations. Therefore, when used in

the redution proedure outlined in Setion 2.1, the near optimal rational approximation may be

obtained by omputing the SVD of a matrix that is roughly twie the size of the optimal number of

poles. The pseudo-ode is given in Algorithm 4.

Algorithm 4 Con_Eigvetor (a, b, x, y, δ) omputes aurate on-eigenvalue deomposition of

positive-de�nite Cauhy matrix Cij = aibj/ (xi + yj) . Input: a, b, x, and y de�ning Cij =
aibj/ (xi + yj), and target size δ of on-eigenvalue. Output: on-eigenvalues lager than δ, and
assoiated on-eigenvetors.

(Σ, T )← Con_Eigvetor (a, b, x, y, δ)

1. Compute partial Cholesky fators (L,D, P )←
Cholesky_Cauhy(a, b, x, y, δ) (Algorithm 3) and set X = PL
2. Compute on-eigenvalues and on-eigenvetors (Σ, T )←
ConEig_RRD(X,D) using Algorithm 1

3. Selet largest l suh that Σll ≥
δ and output Σ (1 : l, 1 : l), T (1 : n, 1 : l)

Remark 4. In appliations involving funtions f
(
e2πix

)
with singularities or sharp transitions, the

poles γi are given in the form γi = exp (−τi), where Reτj > 0 and 0 ≤ Imτj < 2π and the exponents

τi are known with high relative auray. Indeed, this form naturally arises either via a disretization

of an integral (see [6, 8℄) or as a result of an intermediate omputation as in [27℄. This leads us

to modify Algorithms 2 and 3 so that high relative auray is ahieved for poles of this form. In

partiular, we modify formulas (7.7), (7.8) and (7.9) in Setion 7. For example, the formula for α
(k)
i

in (7.9) involves omputing

xj − xk−1

xj + yk−1
=

γ−1
j − γ−1

k−1

γ−1
j − γk−1

=
1− exp (−τj + τk−1)

1− exp (−τj − τk−1)
.

The simple modi�ation is to use the Taylor expansion 1 − exp (z) ≈ z + z2/2 + . . . if |z| is small.

The other formulas in (7.7), (7.8) and (7.9) are modi�ed in a similar fashion, allowing the LDU

fatorization of C to be omputed with high relative auray.

In Setion 3, we onsider a ase where the absolute values of many poles agree with 1 to twelve

digits (i.e., the poles γi satisfy|γi| ≈ 0.999999999999xxxx).

3. Examples of optimal rational approximations

In this setion, we onsider some appliations of the redution algorithm.

3.1. Optimal rational approximations of funtions with singularities. Using the redution

algorithm, as well as tools developed in [6, 8℄, we onstrut a (near) optimal rational approximation

of a (pieewise smooth) funtion f with a �nite number of isolated integrable singularities. For

simpliity, we assume that singularities of f are at two points, 0 and x0.
Performing integration by parts L times on the expression for the Fourier oe�ients,

f̂n =

ˆ 1

0

f(x)e2πinxdx =

ˆ x0

0

f(x)e2πinxdx+

ˆ 1

x0

f(x)e2πinxdx,

we obtain
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f̂n = hn +
(−1)L

(2πin)L

ˆ x0

0

f (L)(x)e2πinxdx+
(−1)L

(2πin)L

ˆ 1

x0

f (L)(x)e2πinxdx,

where

hn =

L∑

p=1

(−1)p

(2πin)
p

(
e2πinx0F (p−1) (x0) + F (p−1) (0)

)
,

F (p) (x) = f (p) (x+)−f (p) (x−) and x+, x− indiate diretional limits. As the �rst step in onstrut-

ing a (near) optimal rational approximation to f , we subtrat the leading L terms of the asymptoti

expansion of f̂n and onsider gn = f̂n − hn. Sine gn deays like O
(
1/nL+1

)
, it is su�ient to use

the algorithm in [6, 8℄ to onstrut an approximation

(3.1)

∣∣∣∣∣gn −
M∑

m=1

wme
−µmn

∣∣∣∣∣ ≤ ǫ, n ≥ 1.

This algorithm requires quadruple preision for omputing small singular values of a Hankel matrix

but, due to the fast deay of gn, the matrix is small so that the omputational ost is insigni�ant.

An alternative method for obtaining (3.1) based on rational representations of B-splines requires

only double preision and will appear elsewhere [11℄. For hn we use a disretization of the integral

representation for 1/np in [8℄ to obtain

(3.2)

∣∣∣∣∣
1

np
−

M2∑

m=−M1

am,pe
−τmn

∣∣∣∣∣ ≤ ǫ, 1 ≤ p ≤ L, 1 ≤ n,

where τm = ehm, am,p = h
(p−1)!e

phm
and h is the step size used in the disretization. Results in [8℄

imply that there are at most O
((

log ǫ−1
)2)

terms in the approximation of 1/np for a given auray

ǫ, for all n ≥ 1. Note that when m < 0 the nodes γm = e−e
hm ≈ 1− ehm are very lose to one.

Thus, we arrive at

(3.3)

∣∣∣∣∣hn −
M2∑

m=−M1

ame
−(τm+2πix0)n −

M2∑

m=−M1

bme
−τmn

∣∣∣∣∣ ≤ 2ǫ,

where

am =
L∑

p=1

1

(−2πi)pF
(p−1) (x0) am,p, bm =

L∑

p=1

1

(−2πi)pF
(p−1) (0)am,p.

Combining the approximations (3.1) and (3.3), we obtain the suboptimal approximation

(3.4)

∣∣∣∣∣f̂n −
M∑

m=1

wme
−µmn −

M2∑

m=−M1

ame
−(τm+2πix0)n −

M2∑

m=−M1

bme
−τmn

∣∣∣∣∣ ≤ 3ǫ,

where the number of terms is exessive (for the auray 3ǫ). We now use the redution algorithm on

(3.4) to obtain a nearly optimal number of terms to approximate the Fourier oe�ients fn for n ≥ 1.
This, in turn leads to a near optimal rational approximation to f(x) with a nearly equiosillating

error.

As an example, we apply this proedure to

(3.5) f(x) =

{
sin(4/3πx), 0 ≤ x ≤ 3/4

0 3/4 < x ≤ 1

Choosing the parametersM1 = 200,M2 = 10, and h = .316707 in (3.4) (see [8℄ for how to selet the

parameters) yields a sub-optimal approximation ontaining 426 pairs of onjugate-reiproal poles

γj = e−τj , whih approximates f (x) in the L∞
norm with error ≈ 5 × 10−14

. We note that many
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Figure 3.1. (a) Error of the rational approximation to f (x) in (3.5). (b) A zoom

on a neighbourhood around one of the singularities x ∈
(
3/4− 10−12, 3/4 + 10−12

)
.

of the poles are extremely lose to the unit disk (the magnitudes |γi| ≈ .999999999999xxxx of over

a dozen poles agree with 1 to twelve digits).

We apply the redution algorithm using the approximation error δ = 10−13
(thus, the Cholesky

deomposition algorithm 3 is trunated one the diagonal elements are smaller than ǫδ2, where ǫ
denotes the mahine roundo�). As explained in Remark 4, Algorithms 2 and 3 are modi�ed to au-

rately ompute the partial Cholesky deomposition for poles in the form γj = e−τj . After applying
the redution algorithm with approximation error δ = 10−13

, the resulting rational approximation

ontains 92 pairs of onjugate-reiproal poles (i.e., about 46 poles per singularity). The resulting

error is shown in Figure 3.1.

We note that the only step of the redution proedure where quadruple preision is used is in

omputing the residues βj (see Step 3 of Setion 2.1). However, using the tehniques desribed in the
bakground Setion 7.2 to fator the m×m Cauhy matrix, this step takes only O

(
m2
)
operations,

and so does not impat the overall speed of the algorithm (reall that m denotes the number of

redued poles).

We �nd that the exponents, ηi, of the near optimal poles ζi = exp (−ηi) are omputed with high

relative auray, i.e.,

|Re (ηi)− Re (η̂i)| ≤ |Re (ηi)| δ1, |ηi − η̂i| ≤ |ηi| δ2,
where δ1 ≤ 1.48 × 10−13

and δ2 ≤ 14.87 × 10−13
. As a gauge we used the poles ζi obtained in

Mathematia

TM
via extended preision arithmeti. We note that the real parts of some of the

exponents ηi are of size |Re (ηi)| ≈ 10−12
.

3.2. Solving visous Burgers' equation. In [27℄ we use the redution algorithm to solve visous

Burgers' equation,

(3.6) ut − uux = νuxx, u(x, 0) = u0(x), u(0, t) = u(1, t), x ∈ [0, 1], t ≥ 0.

The solution of this equation develops a shok (or a sharp transition) on an interval of size O (ν).
We approximate solutions to (3.6) using rational funtions of the form

u (x, t) =

M0∑

j=1

αj (t)

e−2πix − γj (t)
+

M0∑

j=1

αj (t)

e2πix − γj (t)
+ α0.

The key idea is to develop a numerial alulus using the redution algorithm. Although opera-

tors suh as multipliation and onvolution inrease the number of poles in the representation, the

redution algorithm is employed at eah stage to keep the number of poles near optimally small.

Overall, about 106 appliations of the redution algorithm were employed to ompute the solutions

illustrated below, thus on�rming its robustness and e�ieny.
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Figure 3.2 shows the omputed solutions u(x, htj) to (3.6), with the visosity ν = 10−5
, the

step size ht and the initial ondition u0(x) = sin(2πx) + 1/2 sin(4πx). In our redution proedure,

we used the step size of ht = 10−5
and the error tolerane δ = 10−9

(to math the error of our

time disretization). The solution u(x, htj) is shown for time steps tj = htj, j = 102, 104, 2 ×
104, 3× 104, 5× 104. We see that the solution u(x, t) develops two moving sharp transition regions,

whih approah eah other and eventually merge into a single one about x ≈ 1/2. The rational

representations of u(x, tj) have 4, 11, 33, 29, and 19 pairs of onjugate-reiproal poles, respetively.
It also demonstrates that the transition regions of u(x, t) our within intervals of width of O (ν).

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

0.49996 0.49998 0.50000 0.50002 0.50004

-0.5

0.5

Figure 3.2. (a) Solution u(x, tj), for tj = 10−3
, .1, .2, .3, and .5. (b) u(x, tj) in the

transition region

(
1/2− 10−5, 1/2 + 10−5

)
, for tj = 0.4 (from [27℄). These solutions

are represented with 4, 11, 33, 29, and 19 pairs of onjugate-reiproal poles.

4. Auray verifiation

We test the auray of Algorithm 4 on 500 random Cauhy matries, Cij = (αiαj) / (1− γiγj),
i, j = 1, . . . , 120. The omplex poles γj = ρje

2πiφj
and residues αj = ζje

2πiψj
are generated by taking

ρj , φj , and ψj from the uniform distribution on (0, 1), and taking ζj from the uniform distribution

on (0, 10). For eah randomly generated matrix, we �rst ompute, as a gauge, CC = ZΣZ−1
using

the in-built Mathematia

TM
eigenvalue solver with 300 digits of preision, and ompare the result

with Ẑ and Σ̂ omputed via Algorithm 4 using standard double preision. We then evaluate the

maximum relative error in the on-eigenvalues λj = Σjj , maxj

∣∣∣λj − λ̂j
∣∣∣ / |λj |, and the maximum

error in the omputed on-eigenvetors, maxj

∥∥∥Z (:, j)− Ẑ (:, j)
∥∥∥
2
/ ‖Z (:, j)‖2. We �rst sale Ẑ (:, j)

by the omplex-valued onstant Z (i0, j) /Ẑ (i0, j), i0 = max1≤i≤n |Z (i, j)|, sine Z (:, j) and Ẑ (:, j)
are de�ned only up to an arbitrary omplex-valued fator.

Figures 4.1 and 4.2 summarize the result of a typial run. Figure 4.1(a) shows the distribution of

the poles γj inside the unit disk and Figure 4.1(b) displays log10 λ
2
j as a funtion of the index j. Fig-

ures 4.2(a) 4.2(b) show the relative errors in the on-eigenvalues

∣∣∣λj − λ̂j
∣∣∣ / |λj | and the normalized

on-eigenvetors ‖zj − ẑj‖2 / ‖zj‖2, both as funtions of the index j.
In Figures 4.3 and 4.4 for eah of the 500 random Cauhy matries, we plot the error in the om-

puted on-eigenvalues

∣∣∣λ̂j − λj
∣∣∣ / |λj | and on-eigenvetors ‖ẑj − zj‖2 / ‖zj‖2for j = 1, 40, 80, 120

(note the exponential deay of λj). We see that the on-eigenvalues and the on-eigenvetors

are omputed with nearly full preision for all the Cauhy matries. In fat, the largest errors∣∣∣λ̂j − λj
∣∣∣ / |λj | and ‖ẑj − zj‖2 / ‖zj‖2 in the omputed on-eigenvalues and on-eigenvetors, for any

of the 500 Cauhy matries and any 1 ≤ j ≤ n, are 5.13× 10−12
and 5.35× 10−12

.
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Figure 4.1. (a) Distribution of poles γj determining Cauhy matrix C in a typial

run. (b) Exponential deay of the eigenvalues λ2j of CC as a funtion of the index

j using log10 sale.

5. Auray and perturbation bounds

We present error bounds that demonstrate Algorithm 4 of the previous setion ahieves high

relative auray. We also provide bounds that demonstrate that small perturbations of ai, bj ,
xi, and yj determining C lead to small relative perturbations of the on-eigenvalues and small

perturbations of the angles between subspaes spanned by the on-eigenvetors, as long as the

parameters xi and yj are not too lose in a relative sense. In the bounds below, ‖·‖ denotes the
Frobenius norm.

In Theorems 5-7 below we always assume that the on-eigenvalues are simple, although this is

not a ruial restrition. In the statements of these theorems, the impliit onstant fator implied

by the notation O (η) and O (ǫ) (here ǫ, η ≪ 1) depends only on the size n of the matrix C. We note

that all these impliit onstants may be traked more arefully and are modest-sized funtions of n.
The bounds in the theorems below depend on the Cholesky fators in the deomposition C =

(PL)D2 (PL)∗. In partiular, the estimates in Theorems 5 - 7 depend on the quantities

µ0 (L) =
∥∥L−1

∥∥2 κ (L) ,(5.1)

µ1 (L) = max
{∥∥L−1

∥∥2 , ‖L‖2
}
κ (L) ,

µ2 (L) =
∥∥L−1

∥∥2 µ1 (L)κ
3 (L) ,
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Figure 4.2. (a) Relative error in the jth on-eigenvalue,

∣∣∣λj − λ̂j
∣∣∣ / |λj |, as a fun-

tion of the index j. (b) The error in the jth on-eigenvetor, ‖zj − ẑj‖2 / ‖zj‖2,
zj = Z (:, j), as a funtion of the index j.

where the ondition number κ (L) = ‖L‖
∥∥L−1

∥∥
is typially small. The estimates in Theorems 6-7

also depend on

(5.2) µ3 (L) =
∥∥L−1

∥∥ (ρµψµ2 (L) + νκ3 (L)
)
,

where ρ, µ, and ψ are �pivot growth� fators assoiated with the QR fatorization (see Setion 7.3),

and the fator ν is assoiated with the one-sided Jaobi algorithm (see (7.12)).

Remark. There are simple formulas for Lij and
(
L−1

)
ij
([10℄) in terms of the parameters ai, bj , xi

and yj de�ning the Cauhy matrix C, and it is possible that the bounds below may be improved by

using this additional struture.

Theorem 5. Suppose that the parameters de�ning the positive-de�nite Cauhy matrix C = C(a, b, x, y)

are perturbed to ã = a+ δa, b̃ = b+ δb, x = x+ δx, and y = y + δy. Let us de�ne

η = (1/η1 + 1/η2 + 1/η3)max {‖δa‖∞ , ‖δb‖∞ , ‖δx‖∞ , ‖δy‖∞} ,
where

η1 = min
i6=j

|xi − xj |
|xj |+ |xi|

, η2 = min
i6=j

|yi − yj|
|yj|+ |yi|

, η3 = min
i6=j

|xi + yj|
|xi|+ |yj|

.

Let C = LDL∗
denote the Cholesky fatorization of C, and let C̃ = C(ã, b̃, x̃, ỹ) denote the Cauhy

matrix orresponding to the perturbed parameters. Finally, let zi, z̃i denote the on-eigenvetors of

C and C̃, orresponding to on-eigenvalues λi and λ̃i .

Then the relative di�erene in the on-eigenvalues λi and λ̃i is bounded as

∣∣∣∣∣
λi − λ̃i
λi

∣∣∣∣∣ ≤ µ0 (L)O (η) ,



CON-EIGENVALUE ALGORITHM FOR OPTIMAL RATIONAL APPROXIMATIONS 15

(a)

100 200 300 400 500

1.´10-12

2.´10-12

3.´10-12

4.´10-12

5.´10-12

(b)

100 200 300 400 500

1.´10-14

2.´10-14

3.´10-14

4.´10-14

5.´10-14

()

100 200 300 400 500

1.´10-14

2.´10-14

3.´10-14

4.´10-14

5.´10-14

(d)

100 200 300 400 500

1.´10-14

2.´10-14

3.´10-14

4.´10-14

Figure 4.3. Relative error in the omputed on-eigenvalues,

∣∣∣λ̂j − λj
∣∣∣ / |λj |, for

j = 1, 40, 80, 120 ((a), (b), (), and (d), respetively), plotted for eah of the 500
random Cauhy matries.

and the aute angle between the on-eigenvetors zi and z̃i is bounded by

sin (∠zi, z̃i) ≤ κ (L)
(
µ2 (L)

relgapi
+ µ0 (L)µ1 (L)

)
O (η) .

Here µ0 (L), µ1 (L) and µ2 (L) are de�ned in (5.1), and

relgapi = min
j 6=i

|λi − λj |
|λi|+ |λj |

.

Next we state

Theorem 6. Suppose that Algorithm 4 is used to ompute the full on-eigenvalue deomposition

of a positive-de�nite Cauhy matrix C. Suppose also that C has the Cholesky fatorization C =
(PL)D2 (PL)∗, where P is the permutation matrix that enodes omplete pivoting.

Then the relative error between the omputed on-eigenvalue λ̂i and the exat λi is bounded as∣∣∣λ̂i − λi
∣∣∣

|λi|
≤ (ρµψµ0 (L) + ν)O (ǫ) ,
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Figure 4.4. Relative error in the omputed on-eigenvetors, ‖ẑj−zj‖2/‖zj‖2, for
j = 1, 40, 80, 120 ((a), (b), (), and (d), respetively), plotted for eah of the 500
random Cauhy matries.

where ρ, µ, and ψ are �pivot growth� fators assoiated with the QR fatorization (see Setion 7.3),

and the fator ν is assoiated with the one-sided Jaobi algorithm (see (7.12)).

Letting zi, ẑi denote exat and omputed on-eigenvetors of C, the aute angle between zi and
ẑi then satis�es

sin (∠ẑi, zi) ≤ κ (L)
(
µ3 (L)

relgapi
+
∥∥L−1

∥∥2 κ3 (L)
)
O (ǫ) ,

where relgapi is de�ned as in Theorem 5 and µ3 (L) is de�ned in 5.2.

Theorem 7. Suppose Algorithm 4 is used to ompute m approximate on-eigenvalues and on-

eigenvetors of a positive-de�nite Cauhy matrix C. Suppose also that C has the Cholesky fator-

ization C = (PL)D2 (PL)
∗
, where P is the permutation matrix that enodes omplete pivoting.

Assuming that D2
mm ≤ λiǫ for some 1 ≤ i ≤ m, the following error bound holds for the omputed

on-eigenvalue λ̂i, ∣∣∣λ̂i − λi
∣∣∣

|λi|
≤
(
ρµψµ0 (L) + ν + ‖C‖µ2

1 (L)
)
O (ǫ) ,

and the aute angle between zi and ẑi is bounded by

sin (∠ẑi, zi) ≤ κ (L)
(
µ3 (L) + ‖C‖µ2

1 (L)

relgapi
+
∥∥L−1

∥∥2 κ3 (L)
)
O (ǫ) .

In the above estimates, ρ, µ, and ψ are �pivot growth� fators assoiated with the QR fatorization

(see Setion 7.3), and the fator ν is assoiated with the one-sided Jaobi algorithm (see (7.12)).

The proofs of the theorems in this setion may be found in the online version of this paper [28℄.

Remark 8. We note that the onstants in the theorems above are signi�antly more pessimisti than

we atually observe in numerial experiments. Indeed, while the bounds on the on-eigenvetors
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depend only on the well-onditioned matrix L (and, in partiular, are independent of the exponen-

tially deaying diagonal matrix D), they still sale like κ9 (L); the bounds on the on-eigenvalues are

better�they sale like κ3(L). However, in pratie Algorithm 4 ahieves nearly full preision for all

the on-eigenvalues and on-eigenvetors. While it is likely that better estimates an be obtained,

those presented here eluidate the basi mehanism behind the high auray that we observe in our

experiments.

6. Disussion: omparison with related approahes for onstruting optimal

rational approximations

Numerial approahes for �nding near optimal rational approximations originate in theoretial

results of Adamyan, Arov, and Krein [1, 2, 3℄. In partiular, given a periodi funtion f
(
e2πix

)
∈

L∞(0, 1), AAK theory yields an optimal �rational-like� approximation rM
(
e2πix

)
,

(6.1) rM (z) =
a0 + a1z + a2z

2 + . . .

(z − ζ1) . . . (z − ζM )
, |ζj | < 1,

onstruted from the left and right singular vetors orresponding to the Mth singular value, σM ,

of the in�nite Hankel matrix Hij = f̂ (i+ j − 1) , i, j = 1, 2, . . .. The numerator of rM (z) in (6.1)

is analyti in the unit disk. The approximation error satis�es

max
x

∣∣f
(
e2πix

)
− rM

(
e2πix

)∣∣ = σM ,

where the number of poles ζj in (6.1) equals the index M of the singular value σM (index ounting

starts from zero). Moreover, the L∞
-norm approximation error is optimal among all funtions of

the form (6.1).

In order to use AAK theory to ompute (near) optimal rational approximations, standard numer-

ial approahes ompute singular vetors of a trunated Hankel matrix. The poles of the rational

approximation are obtained as roots of a polynomial whose oe�ients are the entries of the sin-

gular vetor. Suh approahes have a long history of their own and, in partiular, let us mention

the pioneering papers [37, 38, 39℄. A reent version (inorporating additional ideas) an be found in

[22℄.

Instead of trunating the Hankel matrix, the approah of this paper is based on the observation

that it is always possible (see e.g. [6, 8, 5, 11℄) to onstrut a sub-optimal rational approximation,

i.e., an approximation with exessive number of poles for a desired auray. This leads us to speial-

ize AAK theory to proper rational funtions f
(
e2πix

)
, and to formulate the redution problem (see

Setion 2.1 and [6, Setion 6℄). Importantly, this results in a on-eigenvalue problem of �nite size

and with no additional approximations. Moreover, this formulation allows us to develop a numerial

alulus based on rational funtions (numerial operations suh as addition and multipliation in-

rease the number of poles; the redution algorithm is applied to keep their number near optimally

small, see [27℄). Early approahes of this type an be found in [32, 14, 40℄; however, these algorithms

may require extended preision for high auray and also sale ubially in the number of original

poles.

Comparing our approah with that in e.g. [22℄, we make two observations. First, to justify the

trunation of an in�nite Hankel matrix, the Fourier oe�ients have to deay below the desired

auray of approximation. Thus, for funtions that have sharp transitions (as in the example of

Setion 3.2) or singularities (as in the example of Setion 3.1), where the Fourier oe�ients deay

slowly, this would require omputing singular values of very large matries. In the examples of

Setions 3.1 and 3.2, Hankel matries of size ≈ 107× 107 and ≈ 106× 106 would be needed in order

to attain a omparable auray. This approah would also require �nding roots of polynomials with

≈ 107 and ≈ 106 oe�ients, respetively.

Our seond observation is that using Hankel matries may require extended preision arithmeti

if high auray is desired, as is the ase in examples of Setions 3.1 and 3.2. Indeed, existing SVD

algorithms do not aurately ompute small singular values of Hankel matries. Also, the roots of
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high degree polynomials (determined at the SVD step) may be sensitive to perturbations in their

oe�ients. However, when limited to approximating smooth funtions, these �trunated Hankel�

methods an yield surprisingly high auray sine the errors in the poles may be ompensated by

the residues. As far as we are aware, trunated Hankel methods for onstruting optimal rational

approximations for funtions with singularities generally do not ahieve approximation errors better

than ≈ 10−4
. In ontrast, in Setion 3.1 we show that the redution algorithm approximates

pieewise smooth funtions with errors lose to mahine preision.

We also note that the results in [27℄ (illustrated in Setion 3.2) demonstrate an e�etive numerial

alulus based on the redution algorithm, apable of omputing highly aurate solutions to visous

Burgers' equation for visosity as small as 10−5
. These solutions exhibit moving transitions regions

of width ≈ 10−5
, and omputing them with high auray over long time intervals is a nontrivial

task for any numerial method. The on-eigenvalue algorithm of this paper is ritial to the high

auray and e�ieny of this numerial alulus.

7. Appendix: bakground on algorithms for high relative auray

Here we provide neessary bakground on omputing highly aurate SVDs. Although the results

we need in [20, 33, 17, 34, 15, 29℄ are only stated there for real-valued matries, they arry over to

omplex-valued matries with minor modi�ations and are formulated as suh.

7.1. Aurate SVDs of matries with rank-revealing deompositions. Aording to the

usual perturbation theory for the SVD (see e.g. [12℄), perturbations δA of a matrix A hange the ith
singular value σi by δσi and orresponding unit eigenvetor ui by δui, where (assuming for simpliity

that σi is simple),

(7.1) |δσi| /σ1 ≤ ‖δA‖ , ‖δui‖ ≤
‖δA‖

absgapi

, absgapi = min
i6=j
|σi − σj | /σ1.

Therefore, small perturbations in the elements of A may lead to large relative hanges in the small

singular values and the assoiated singular vetors. Moreover, sine standard algorithms ompute an

SVD of some nearby matrix A+ δA, where ‖δA‖ / ‖A‖ = O (ǫ), the perturbation bound (7.1) shows

that the omputed small singular values and orresponding singular vetors will be inaurate.

In ontrast, the authors in [17℄ show that, for many strutured matries, the ith singular value

σi ≪ σ1 and the assoiated singular vetor are robust with respet to small perturbations of the

matrix that preserve its underlying struture. The sensitivity is instead governed by the ith relative

gap

relgapi = min
i6=j

|σi − σj |
σi + σj

.

More preisely, let us onsider the lass of matries for whih a rank-revealing deomposition A =
XDY ∗

is available and may be omputed aurately. Here X and Y are n×m well-onditioned ma-

tries andD is anm×m diagonal matrix that ontains any possible ill-onditioning of A. As is shown
in [17℄, a perturbation of A = XDY ∗

that is of the form A+ δA = (X + δX) (D + δD) (Y + δY )
∗
,

where

(7.2)

‖δX‖
‖X‖ = O (ǫ) ,

‖δY ‖
‖Y ‖ = O (ǫ) ,

|δDii|
|Dii|

= O (ǫ) ,

hanges the ith singular value σi and assoiated left (or right) singular vetor ui by amounts δσi
and δui bounded by

(7.3)

|δσi|
σi
≤ max (κ (X) , κ (Y ))O (ǫ) , ‖δui‖ ≤

max (κ (X) , κ (Y ))

relgapi

O (ǫ) ,

where κ(X) = ‖X‖
∥∥X†

∥∥
and X†

denotes the pseudo-inverse of A. One reason this lass of matries

is so useful is that Gaussian elimination with omplete pivoting (GECP) (or simple modi�ations)

omputes aurate rank-revealing deompositions of many types of strutured matries (see [17℄ and
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[15℄). Moreover, small perturbations of suh matries that preserve their underlying struture lead

to small perturbations in the rank-revealing fators and, therefore, small relative perturbations of

the singular values.

Given the deomposition A = XDY ∗
, it is shown in [17, Algorithm 3.1℄ that an SVD of A may

be omputed with high relative auray, and with about the same ost as standard, less aurate

SVD algorithms for dense matries. The key to this algorithm is the one-sided Jaobi algorithm

(brie�y reviewed in Setion 7.4), whih, with an appropriate stopping riterion, aurately omputes

the SVD of matries of the form DB, where D is diagonal (and typially highly ill-onditioned) and

B is well-onditioned (see [20℄ and [33℄). In partiular, the algorithm in [17, Algorithm 3.1℄ yields

omputed singular values σ̂i and left (or right) singular vetors ûi that satisfy

(7.4)

|σi − σ̂i|
σi

≤ max (κ (X) , κ (Y ))O (ǫ) ,

(7.5) ‖ui − ûi‖ ≤
max (κ (X) , κ (Y ))

relgapi

O (ǫ) ,

7.2. LDU fatorization of Cauhy matries. In this setion we review how a modi�ation of

GECP omputes aurate rank-revealing deompositions of Cauhy matries [15℄.

We desribe Demmel's algorithm (see Algorithms 3 and 4 in [15℄ and Algorithm 2.5 in [9℄) for

omputing an aurate rank-revealing deomposition of a n × n positive-de�nite Cauhy matrix

Cij = aibj/ (xi + yj) (note that Demmel refers to suh matries as quasi-Cauhy). The algorithm is

based on a modi�ation of Gaussian elimination for omputing, in O
(
n2
)
operations, the Cholesky

fatorization C = (PL)D (PD)
∗
of a positive-de�nite Cauhy matrix (more generally, the algorithm

omputes an LDU fatorization for an arbitrary Cauhy matrix in O
(
n3
)
operations). Here P is a

permutation matrix, L is a unit lower triangular matrix, and D is a diagonal matrix with positive

diagonal elements. It is shown in [15℄ that, remarkably, the omponents of the LDU fators L̂, Û ,

and D̂ are omputed to high relative auray,

(7.6)

∣∣∣L̂ij − Lij
∣∣∣ ≤ |Lij | cnǫ,

∣∣∣Ûij − Uij
∣∣∣ ≤ cn |Uij | ǫ,

∣∣∣D̂ii −Dii

∣∣∣ ≤ cn |Dii| ǫ,

where cn is a modest-sized funtion of n. The basi reason the algorithm ahieves high relative

auray is that the only operations involved are multipliation and division of �oating point numbers

(additions and subtrations in the algorithm involve only xi and yj , whih are assumed to be exat).

We now review the basi idea behind the algorithm in [15℄. First, ignoring pivoting for a moment,

we assume that, after k steps of Gaussian elimination, the Cauhy matrix is transformed to the

matrix G(k)
,

G(k) =

(
G

(k)
11 G

(k)
12

0 G
(k)
22

)
.

The elements of the Shur omplement G
(k+1)
22 may be omputed from those of G

(k)
22 by using the

reursion

G
(k)
ij =

(
xi − xk
xi + yk

)(
yj − yk
yj + xk

)
G

(k−1)
ij , i, j = k + 1, . . . , n.(7.7)

Introduing pivoting, we observe that the matrix G(k)
may be obtained by applying Gaussian elim-

ination to a Cauhy matrix C(k) = C(k)
(
a(k), b(k), x(k), y(k)

)
, where a(k), b(k), x(k) and y(k) are

permutations of a, b, x and y orresponding to the row and olumn pivoting of C. As long as the

vetors a, b, x and y are permuted aording to the pivoting of G(k)
, the reursive formula (7.7) still

holds.

It is observed in [15℄ that if C is positive-de�nite (and, therefore, only diagonal pivoting is needed),

then the pivot order may be determined in advane in O
(
n2
)
operations by omputing diag

(
G(k)

)

from formula (7.7). One the orret pivot order is known, we do not need to ompute the entire



CON-EIGENVALUE ALGORITHM FOR OPTIMAL RATIONAL APPROXIMATIONS 20

Shur omplement G(k)
to extrat the omponents of L and U , but only its kth row and kth olumn.

Indeed, we may use Algorithm 2.5 in [9℄, whih uses the displaement struture of C, to ompute an

aurate Cholesky deomposition in O
(
n2
)
operations. To see how, note that it easily follows from

(7.7) that the Shur omplement of a Cauhy matrix is a Cauhy matrix,

(7.8) G(k) (i, j) =
α
(k)
i β

(k)
j

xi + yj
, i, j = k + 1, . . . , n,

where the parameters α
(k)
i and β

(k)
i satisfy the reursion

(7.9) α
(k)
i =

xi − xk
xi + yk

α
(k−1)
i , β

(k)
i =

yi − yk
yi + xk

β
(k−1)
i , i = k + 1, . . . , n.

Sine the kth olumn L (:, k) may be extrated from G(k) (:, k), we therefore only require O (n) oper-

ations at eah step of Gaussian elimination to ompute L (:, k). Updating α
(k)
i and β

(k)
i also requires

only O (n) operations. In Setion 2.3 (see Algorithms 2 and 3), we present an O
(
n
(
log δ−1

)2)

algorithm to ompute on-eigenvalues greater than a user spei�ed uto� δ and, as a result, yield-

ing a fast algorithm for obtaining nearly optimal rational approximations. One an aurate LDU

fatorization C ≈
(
PL̂
)
D̂
(
PD̂

)∗
is available, an aurate SVD of C may be obtained using the

algorithm in [17, Algorithm 3.1℄.

7.3. Rank-revealing deompositions of graded matries. We also review how a variant of the

QR Householder algorithm with omplete pivoting omputes aurate rank-revealing deompositions

of graded matries [29℄.

It is shown in [29℄ that the Householder QR algorithm with omplete pivoting may be used to

ompute a rank-revealing deomposition of a graded matrix of the form A = D1BD2. Here D1 and

D2 are diagonal matries that aount for the ill-onditioning of A. Reall that the Householder

QR algorithm uses repeated appliations of orthogonal matries to redue A to an upper-triangular

matrix R. On the �rst step, the parameter β1 and the vetor v1 of the Householder re�etion matrix

Q(1) = I − β1v1v∗1 are hosen so that

Q(1)




a11
a21
.

.

.

an1


 =




a
(1)
11

0
.

.

.

0


 .

Consequently, the �rst appliation of Q(1)
to A results in a matrix of the form

A(1) = Q(1)A =




a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(1)
22 . . . a

(1)
2n

.

.

.

.

.

.

.

.

.

.

.

.

0 a
(1)
n2 . . . a

(1)
nn



.

This proess is repeated on the (n− 1) × (n− 1) lower blok
[
a
(1)
ij

]
2≤i,j≤n

and, after n − 1 suh

steps, A(n−1) = Q(n−1) . . . Q(1)A = R, where R is upper triangular. In the version onsidered in

[29℄, the rows of A are �rst pre-sorted so that so that ‖A (1, :)‖∞ ≥ · · · ≥ ‖A (n, :)‖∞. The algorithm

then proeeds as above, exept that at eah step, k, olumn pivoting is performed to ensure that∥∥A(k) (k : n, k)
∥∥
2
≥ · · · ≥

∥∥A(k) (k : n, n)
∥∥
2
. Letting P1 denote the row permutation matrix that

pre-sorts the rows of A, and letting P2 denote the olumn permutation matrix orresponding to the

olumn pivoting, the QR Householder algorithm produes the QR fatorization P1AP2 = QR.
Following [29℄, we onsider the error analysis of the Householder algorithm (without pivoting)

applied to P1AP2, where P1 and P2 are hosen so that no olumn or row exhanges are neessary (e.g.
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the matrix A is pre-pivoted). Assume that the matrix P1AP2 may be fatored as P1AP2 = D1BD2,

where D1 and D2 are diagonal matries, and that the Householder algorithm, applied to the row-

saled matrix C = D1B, produes intermediate matries C(k)
with olumns c

(k)
j . Finally, de�ne the

quantities ρ, µ, and ψ by

(7.10) ρ = max
i

maxj,k

∣∣∣c(k)ij
∣∣∣

maxj |cij |
, µ = max

k
max
j≥k

∥∥∥c(k)j (k : m)
∥∥∥

∥∥∥c(k)k (k : m)
∥∥∥
, ψ = max

1≤i≤n

i≤k≤n

maxj |ckj |
maxj |cij |

.

The above quantities measure the extent to whih the Householder algorithm preserves the saling

in the intermediate matries A(k)
, and are almost always small (this is analogous to the pivot growth

fator in Gaussian elimination with row pivoting). It is shown in [29℄ that

Theorem 9. Suppose that A is pre-pivoted, and the Householder algorithm is used to ompute the

upper triangular matrix R̂ of the QR deomposition. Then there is an orthogonal matrix Q suh that

QR̂ = D1 (B + δB)D2, where δB satis�es

‖δB‖ ≤ ρψµ ‖B‖O (ǫ) ,

and ρ, µ, and ψ are de�ned in (7.10).

In [29℄ Theorem 9 is ombined with the theory developed in [17℄ (e.g., see Theorems 4.1 and 4.2
in [17℄) to show that the QR algorithm with omplete pivoting produes aurate rank revealing

deompositions of graded matries of the form A = D1BD2, as long as the prinipal minors of

B are well-onditioned and the diagonal elements of D1 and D2 are approximately dereasing in

magnitude.

Remark. Instead of pre-sorting the rows of A and applying the Householder algorithm with olumn

pivoting, one may also use a version of the Householder algorithm in whih both row and olumn

pivoting is employed (see [29℄ for more details). Gaussian elimination with omplete pivoting may

also be used to obtain aurate rank-revealing deompositions of graded matries [17℄.

7.4. Modi�ed one-sided Jaobi algorithm . The heart of the algorithm in [17, Algorithm 3.1℄

is the modi�ed one-sided Jaobi algorithm, whih aurately omputes the SVD of matries of the

form DB and BD, where D is diagonal and typially highly graded, and B is well-onditioned (see

[20℄, [33℄, [24, 25℄). Although we fous on the one-sided Jaobi algorithm as applied to G = BD,

analogous onsiderations apply to G = DB by replaing G by G∗
. The one-sided Jaobi algorithm

works by applying a sequene of Jaobi matries J1, . . . , JM to G from the right (i.e., the same side

as the saling, whih ensures that omponents of the right singular vetors are omputed with high

relative auray). Eah Jaobi matrix J is hosen to orthogonalize two seleted olumns, and one

sweep onsists of orthogonalizing olumns in the order (1, 1), (1, 2), . . . , (1, n), followed by olumns

(2, 3), (2, 4), . . . , (2, n), and so on. Sweeps are repeated until all the olumns are orthogonal to eah

other to within the bound

G (J1 · · · JM ) =W,
|w∗
iwj |

|w∗
iwi|

1/2 |w∗
iwi|

1/2
≤ nǫ, if i 6= j.

This stopping riterion is used to ensure that even the smallest singular values are omputed with

high relative auray. The SVD of G = UΣV ∗
immediately follows by taking Σii = W (:, i),

V =W/Σ, and U = (J1J2 · · · JM )
∗
.

It will be ruial for the error bounds developed in this paper that the omponents of the left

singular vetors of DB (or the right singular vetors of BD) sale in a way similar to D, and are

omputed aurately relative to this saling. At eah step m of the Jaobi algorithm, we write

(J0 · · · Jm)G = BmDm, where the olumns of Bm have unit l2-norm and the matrix Dm is diagonal.

We also de�ne

(7.11) ν0 = max
1≤m≤M

κ2 (Bm) ,
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and

(7.12) ν = ρ (M,n) ν20 ,

where ρ (M,n) is proportional to M · n3/2
, and ν0 in de�ned in (7.11). Then we have the following

result from [33℄ and [20℄.

Theorem 10. Let G = DB be a n×n full-rank, omplex-valued matrix, where the diagonal matrix D
is hosen so that the l2-norm of eah olumn of B is unity. Suppose that one-sided Jaobi algorithm

is used to ompute an approximation ûi to the ith left singular vetor ui of G, orresponding to

singular value Σii, and the iteration onverges after M sweeps. Then the following error bound

holds on the omputed omponents of ui:

(7.13) |ui (j)− ûi (j)| ≤ min

{
Djj√
Σii

,

√
Σii
Djj

}(
ν

relgapi

ǫ+O
(
ǫ2
))

,

where

relgapi =
|σi − σj |
σi + σj

.

Moreover, the omputed singular value Σ̃ii satis�es∣∣∣Σii − Σ̃ii

∣∣∣
Σii

≤ ν0O (ǫ) .
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