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The cubed-sphere gravitational model is a modification of a base model, e.g., the spherical harmonic model, to

allow for the fast evaluation of acceleration. Themodel consists of concentric spheres, eachmapped to the surface of a

cube and combined with an appropriate interpolation scheme. The paper presents a brief description of the cubed-

sphere model and a comparison of it with the spherical harmonic model. The model was configured to achieve a

desired accuracy so that dynamical tests, e.g., evaluation of the integration constant, closely approximate that of the

spherical harmonic model. The new model closely approximates the spherical harmonic model, with propagated

orbits deviating by a fraction of a millimeter at or above feasible Earth-centered altitudes.

Introduction

A LTHOUGH a sphere is an ubiquitous object, constructing a
local basis on it has proven difficult. The basis functions most

commonly used for a sphere are the spherical harmonics. One
solution of Laplace’s equation uses spherical harmonics to solve a
boundary-value problem on the surface of a sphere. A solution in
the spherical system of coordinates is used to construct geopotential
models, such as
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where r, �, and � are the radius, geocentric latitude, and longitude,
respectively; � is the gravitation parameter; R is the radius of the
primary body; Pn;m is the associated Legendre polynomial of degree
and order n and m; and the coefficients Cn;m and Sn;m describe the
geopotential model. Gravitational acceleration, which is required for
most applications, is found by evaluating rU.

When using the spherical harmonics, model accuracy improves by
increasing the degree and order. As demand for improved gravity-
model accuracy increases, so do the computational resources
required for model evaluation. Additionally, orbits about bodies with
irregular mass distributions, such as the moon, require a high-degree
model to properly propagate an orbit [1]. Unfortunately, an increase
in the degree and order of the model by a factor of 10 results in
computation time increasing by a factor of 100 [2]. Interpolation
models have been developed tomake evaluation faster. Someof these
models preserve the spherical coordinate system [3,4], while others
drastically reformulate the evaluation of the gravity field [5,6].

Each term of the spherical harmonicmodel describes a variation in
the geopotential mapped over the complete sphere. For example, the
J2 term describes the equatorial deviation from a sphere for all
longitudes.Hence, each term is part of a globalmodel.Unfortunately,
the spherical harmonic model is unable to meet the demands for
regional representations [7]. Several alternative methods have been
explored to localize the gravity field for these scientific applications
[8,9].

A new model, the cubed sphere, was developed to localize the
representation of the gravity field and decrease the model evaluation
time [2]. At its core, the cubed sphere is an interpolation model
that relies on a localized representation defined on the surface of a
segmented cube.We explore applications of the cubed-sphere model
to orbit propagation: particularly, how it compares with the spherical
harmonic model solutions.

Cubed-Sphere Model

Originally proposed by Beylkin and Cramer [2], the cubed-sphere
model defines a new method to compute geopotential and accel-
eration. Essentially, the sphere is mapped to a cube with a new
coordinate system defined on each face. Each face is segmented by a
uniform grid, and interpolation is performed to find the acceleration.
Multiple spheres, each mapped to a cube, are nested within each
other, and interpolation is performed between adjacent shells to
account for the acceleration variation in the radial direction. The
mapping of a sphere to a cube is illustrated in Fig. 1. A grid-spacing
scheme is established, with values for acceleration precomputed
at intersections of the grid lines. Basis splines, or B-splines, were
selected to represent functions on each face of the cube. The next
subsection describes the cubed-sphere model in detail.

Three models were proposed in [2]: 1) B-splines defined on the
surface of a sphere, 2) polynomials on subdivisions of the surface of
the cube, and 3) B-splines on the surface of a cube. This study uses
the third model, which combines the benefits of the first two. In
option 1, definingB-splines on the surface of the spheremaintains the
stretching and the resulting oversampling near the poles. In option 2,
using piecewise polynomials on the face of the cube requires a higher
sampling rate than using splines. In option 3, using splines on the
faces of the cube does not have stretching near the poles associated
with the first model and uses the lower sampling rate associated with
splines. Hence, option 3 is more efficient for our purposes.

A major goal of the cubed-sphere model development is to
improve computational efficiency when using geopotential models.
Effectively, it is a trade of speed formemory, i.e.,file size. However, a
modern computer has more than the sufficient memory for this
purpose.
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Model Description

The cubed-sphere model may be used to approximate any number
of elements defined on a primary body. For example, it can approxi-
mate each component of acceleration, or the gravity potential. The
accelerations are not directly derived from thepotential, but are stored
separately (in a submodel). Thus, for a model to provide both
potential and three components of acceleration, values of all four
parameters are stored at each point for future interpolation. In the
following sections, any reference to modeling the gravity potential
may also be applied to modeling acceleration (with the appropriate
adjustments). Although the cubed-sphere model has been described
in the literature [2], a more detailed description is included here for
the purpose of clarity.

The cubed-sphere model is currently derived from an existing
gravity model, hereafter called the base model. Although other
models suchas apolyhedronormasconmaybeused,wecurrently use
the spherical harmonic model as the base model. In the cubed-sphere
model, the first four terms of the spherical harmonic expansion [i.e.,
the two-body term, J2, and the ���2;1 and ���2;2 terms] are used
directly. The cubed-sphere model does not include the lower-order
terms to reduce the rangeof approximated values, reducing the cost of
maintaining accuracy in the local model. The geopotential values
computed by the remaining terms in the base model are then
represented by the basis functions on the surface of the cube.

Temporal variations, such as solid or liquid tides, influence the
geopotential. These variations mostly affect lower-degree terms of
the potential. The cubed sphere only models terms of degree greater
than or equal to a chosen minimum degree and order: in this case, 3.
This parameter may be adjusted to allow for perturbations in the
lower-degree terms, whereas higher-degree terms are expressed in
the cubed-sphere formulation. Of course, this may slightly affect
computation time.

A key parameter of the cubed-sphere model is the grid size N.
Similar to the degree and order of the spherical harmonic model, the
grid size defines the density of the grid on each cube face and is a
measure of model fidelity. For a given altitude, the values of latitude
and longitude are segmented such that

�� 2�x; �� 2�y (2)

where x and y are discrete values in the range [0, 1) with spacingN�1.
To have a fast algorithm to compute coefficients of theB-splines from
the values of the spherical harmonic model, the values of the latitude
� are extended to the interval �0; 2��. It may not be readily apparent
how this is done, but this will be explained in a moment.

Latitude and longitude are mapped to a two-dimensional grid
specified by x and y to solve for the B-spline coefficients. As
described in the Appendix, the interpolation coefficients are easily
computed in the Fourier domain. Since the grid variables x and y are
1-periodic, we may use the two-dimensional fast Fourier transform
(FFT) algorithm to provide a fast method for finding the B-spline
coefficients.

If � only varies from ��=2 to �=2 or from 0 to �, then y is not
1-periodic and the FFT algorithm cannot be used directly. To
periodically extend the Earth’s geopotential, we duplicate it to
complete the period. The mathematical formulation of the new
geopotential Up is then

Up�r; �; �� �
�
U�r; �; �� if 0 	 � < �
U�r; 2� � �; �� �� if � 	 � < 2�

(3)

and � is now a value in the range �0; 2��. Thus, Up is 2�-periodic.
The offset of the longitude by � assures that all spherical harmonics
are extended smoothly (with all derivatives) to the interval �0; 2��.
One can see this by the fact that one period of � circumscribes the
primary body. Thus, Up is infinitely differentiable in both variables
so that the trapezoidal rule can be used to discretize the Fourier
integrals. The FFT algorithm may be used directly to compute the
B-spline coefficients. Note that the doubling of the geopotential
model is only used to generate these coefficients. To prevent grid
distortion given the ambiguity of longitude at the poles, the
coordinate system is rotated so that the poles lie along the equator,
which is equivalent to using the transverse Mercator map pro-
jection. A second x–y plane is generated after this rotation, with the
FFT algorithm applied and a second set of B-spline coefficients
determined. B-spline coefficients are defined over the surface of the
two x–y grids, which are then broken into appropriate segments to
generate the faces of a cube. Each cube face has a new x–y grid with
axes defined over the range ��1; 1�. Four segments along the middle
latitudes are selected from the first set of coefficients, with each
segment corresponding to a cube face. The two remaining faces at
the poles are selected from the second set. This process is illustrated
in Fig. 2.

Although grid spacing is preserved along the face of the cube, we
note that the grid size on each face isN=4 by N=4. This parameter is
used in the naming convention for a givenmodel. ACS-Xmodel is a
cubed-sphere model, where X corresponds to the grid size on a cube
face, or N=4. To summarize, we have described the geopotential
model at a given altitude on the surface of a cube.

Since the spherical harmonics is a global model, a uniform grid
density is forced over the complete surface to model the high-
frequency variations. Of course, a true Earth model will have

Fig. 1 Illustration of the mapping from a sphere to a cube.

Fig. 2 Illustration of themapping of the Earth surface to an x–yplane tomakeUp 2�-periodic. Selected portions form the cubed sphere. The second plot

illustrates the process for the rotated coordinate system.
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relatively large variations in the gravity field as location changes.
This is especially true along coastal and mountain regions. As
discussed in [2], the cubed sphere was originally developed with
multiresolution techniques in mind. However, adjusting the grid
density to these levels reveals noise in the original spherical
harmonics terms. The noise could be removed, which effectively
modifies some higher-degree terms. Thus, the cubed sphere would
no longer agree with the spherical harmonic model, which may
currently cause resistance to its use. Additionally, early tests of the
model for [2] demonstrated only small gains in speed as a result of
such change and only a marginal decrease in memory required.

A user-specified number of nested concentric shells are required
for interpolation in the radial direction. Shell spacing is determined
by defining a set number of points (hj) equally spaced in the interval
[0, 1]. Shell locations are then

R

rj
� 1 � h2j (4)

where rj is the radial distance of the spherical shell. We note that as
the shell radius rj approaches infinity, R=rj tends to 0. Shell density
increases for lower altitudes, corresponding to the inverse square
relationship between geopotential and radius. This is illustrated in
Fig. 3. The final shell at infinity is used only as a boundary for
determination of the subshells.

The primary shells each consist of subshells for interpolation in the
radial direction. The cubed sphere approximates the potential using
Chebyshev polynomial interpolation of degree l:

U�x� �
Xl
i�0

aiTi�x� (5)

where ai are (spatially dependent) coefficients and Ti are Chebyshev
polynomials, values of which are computed via the three-term
recurrence:

T0�x� � 1 (6a)

T1�x� � x (6b)

Ti�x� � 2xTi�1�x� � Ti�2�x� (6c)

The space between subshells is mapped to the range ��1; 1�, where
zero corresponds to the midpoint between primary shells. The
subshells are then positioned at the roots of the l� 1 degree
Chebyshev polynomial (the so-called Gaussian nodes). This is
illustrated in Fig. 3 for a fifth-degree Chebyshev scheme with six
subshells. TheGaussian nodes are selected tominimize interpolation
error (see, for example, [10]). In generation of the cubed-sphere
model, each subshell is independent of all others. B-spline

coefficients for each subshell are generated as previously described
using the applicable altitude for the evaluation of Eq. (3). A total of
�l� 1� 
 �M � 1� subshells are computed, where M is the number
of primary shells. It is important to note that the mapping to the cube
is simply used for data storage and finding the spline coefficients. All
values described by the model (more specifically, components of
acceleration) are still represented in the spherical coordinate system.
The cube provides a uniform grid for B-spline coefficients and a data
structure for faster computation.

Grid density is kept constant for all subshells at all altitudes. Since
the high-frequency variations in the spherical harmonics attenuate
quickly with altitude, the required grid density for higher altitudes is
less than those required closer to the planet. This has not been
currently integrated with the cubed sphere, but is a topic of current
research. In [11], the authors are seeking an efficient relationship
between the required grid density and altitude to meet accuracy
requirements. Results of this research may also be incorporated into
the cubed sphere.

Implementation of the cubed-sphere model is fairly straight-
forward. Lower-degree components of geopotential are computed
directly using the spherical harmonic coefficients stored in the
model. For higher-degree terms, the point of interest is mapped to
the cube. The value is obtained by the interpolation on the l� 1
subshells within the primary shell containing the point of interest.
The coefficients required for Eq. (5) are then

ai �
2 � �i0
l� 1

Xl
j�0

UjTi�xj� (7)

where Uj is the potential on the jth subshell at xj, and �ij is the
Kronecker delta function.

The conversion from spherical ��; �� to cube coordinates �x; y; n�
is summarized in Table 1 and was adapted from [2], with some
simplifications and corrections of misprints. For the cube
coordinates, n refers to the face of the cube. The first four faces
represent the sphere at the middle latitudes between ��=4 and �=4,
and faces 5 and 6 correspond to the polar regions. For faces 1–4, the

Fig. 3 Illustration of the increased density of primary shells with closer proximity to the primary body (left figure) and an example of the subshell

spacing between primary shells (right) for the cubed sphere.

Table 1 Spherical to rectangular coordinates conversion.
Note ��� cos� sin�, !� tan�= cos�, and �� 4=�

Face Angle ranges X coordinate Y coordinate

1 �� 	 � < ��=2,
��=4 	 � 	 �=4

��� 3 ��

2 ��=2 	 � < 0, ��=4 	 � 	 �=4 ��� 1 ��
3 0 	 � < �=2, ��=4 	 � 	 �=4 ��� 1 ��
4 �=2 	 � < �, ��=4 	 � 	 �=4 ��� 3 ��
5 � > �=4 �tan�1�!� � 2 �sin�1���
6 � <��=4 �tan�1�!� � 2 �sin�1���

JONES, BORN, AND BEYLKIN 417



conversion to the x–y coordinate system is simply a map from the
appropriate angle range {for example, ���; �=2� to ��1; 1�}. The
mappings for faces 5 and 6 result from rotating the sphere so that the
poles lie on the equator. The original � and � values are converted to
Cartesian coordinates and are then rotated about the x axis by��=2.
The new Cartesian coordinates are converted to a new �0 and �0 and
mapped to the range ��1; 1� in a manner similar to that for faces 1–4.
The equations for faces 5 and 6 in Table 1 are derived from this
procedure.

Model Configuration

Test software was written to evaluate the model at a number of
random points above the primary body. For each point, the cubed-
sphere model is compared with the base model and the absolute
deviation is calculated. The maximum deviation for all points is then
used to characterize the accuracyof themodel. Tests used105 random
points.Any increase in the number of points has beenyielding similar
results. The acceleration computed via the original cubed-sphere
model (developed for [2]) differed from that of the spherical harmonic
model by as much as 10�9 m=s2. Although this error may appear
rather small, the current model was reconfigured, resulting in
improvement of the accuracy to 10�11 m=s2 for high-fidelitymodels.
The main focus of this reconfiguration was to improve model
performance for higher-fidelity models, i.e., equivalents to the 70 

70 models and those of higher degree or order.

The original model configuration was selected to meet Nyquist
rate requirements; the grid spacing equaled half the spatial resolution
described by the given spherical harmonic base model. This new
configuration was empirically determined to meet the desired
accuracy agreement with the base model. Full benefits of the
reconfiguration are demonstrated in the section discussing the
integration-constant performance.

Changes to the cubed-sphere configuration made in the course
of this research, along with other keymodel parameters, are included

in Table 2. Note that the change inChebyshev polynomial degree and
grid densities did increase the file size. Additionally, the original
model was constructed for three acceleration values and did not
include the estimate of the potential. These configuration param-
eters may be tailored to a specific design based on orbit accuracy
requirements and file-size limitations. If the potential is not required,
the file size is reduced by almost 25%. Table 2 defines the base
models for the CS-30, CS-76, and CS-162 models used throughout
this study. Other changes weremade to the software to improve com-
putational speed and switch from the unnormalized to normalized
formulation of the associated Legendre functions in the base model.
Finally, the model storage scheme of the B-spline coefficients was
altered to allow for loading of selected shells to reduce software
memory requirements and decrease the initialization time.

The number of elements that must be stored in the model are
estimated using

number of elements � 6P�l� 1��M � 1�
�
N

4
�m

�
2

(8)

where the meaning of the terms is described in Table 2. Additionally,
there is some memory overhead associated with the file header. For
the CS-30 model, all of this results in a 49 MB file. Similarly, an
856 MB file is required for a CS-162 model. Since the model is
localized, only the subshells required for a given orbit need to be
generated or loaded into memory.

The B-spline coefficients are organized such that no search is
necessary. If the degree of the interpolating functions remains
constant for each grid size, model evaluation time remains constant.
Experimental results demonstrate that the evaluation time of the
cubed-sphere model is slightly more than that for the 20 
 20
spherical harmonic models. Unlike with the spherical harmonic
model, as the degree and order increase, resulting in higher grid
density, the cubed-sphere evaluation time remains constant. Thus,
speedup factors compared with the spherical harmonics rapidly
increases with model fidelity.

Continuity of the model determined values may be a concern for
some applications. Primary shells may be generated to overlap. This
has not yet been explored, but current research into developing
improved models [11,12] would perhaps eliminate this need. Given
the lack of overlap in the primary shells, model discontinuities may
exist at the primary shell boundary. However, this new configuration
reduces these discontinuities to within the model noise. Specifically,
the discontinuities are less than the machine precision for the given
acceleration values. Discontinuities do not exist between faces of the
cube, since the FFT algorithm used to solve for the interpolation
coefficients uses the entire gravity field at the given altitude.

Table 2 Cubed-sphere configurations. The original formulation

refers to [2], the second formulation refers to this paper

Property Original
formulation

Current
formulation

Number of values estimated P 3 4
B-spline degree m 11 11
Chebyshev polynomial degree l 5 11
Number of primary shellsM 14 14
Grid Density N
CS-30=20 
 20 80 120
CS-76=70 
 70 280 304
CS-162=150 
 150 600 648

Fig. 4 Changes in integration constant with the new CS-162 model configuration versus the configuration of [2] for an orbit with an inclination of 15�

and right ascension of 50� at a 300 km altitude.
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Comparisons to the Spherical Harmonic Model

After the cubed-sphere reconfiguration, we compared it with the
spherical harmonicmodel. TheGGM02C [13]modelwas selected as
both the base model of the cubed sphere and the basis of comparison
for the following tests. Evaluations included a comparison of the
integration constant, spatial comparisons of themodels in the form of
gravity anomalies, and the propagated orbits themselves.

Using the TurboProp orbit-integration package [14] minimized
software development time. This software provides integration tools
implemented in C that are compatible with MATLAB and Python.
The cubed-sphere model, along with the necessary interface code,
was implemented within the TurboProp framework. However, the
softwaremay be easily ported to other packages. Tests requiring orbit
propagation used the TurboProp Runge–Kutta 7(8) integrator with

an integration tolerance of 10�12. Other integrators were tested,
including symplectic Runge–Kutta algorithms, and yielded similar
results.

For test orbits, we employed a variety of initial conditions and
output states every 20 s over the 24 h propagation. The initial orbit
altitude spanned 100 to 1000 km at 50 km intervals. Cubed-sphere
model accuracy relative to that of the spherical harmonic model
decreases at lower altitudes. However, since most satellites orbit at
or above 300 km, we provide altitude-specific results at 300 km.
The right ascension of the ascending node (�) ranged from 0 to
180� in 5� increments, and the inclination i varied from 0 to 85� in
2.5� intervals. All other orbit elements were initially set to zero. The
maximum inclination of 85� avoids the singularity at the poles in
the classical formulation of the spherical harmonic model. Thus, for
each altitude, 1295 orbits were tested. The Greenwich sidereal time
was set to 0� at the epoch time, with an Earth rotation rate of 360�

per solar day. The planetary radius and gravitation parameter were
set to the appropriate values as determined by the base model. Each
set of initial conditions was propagated using the cubed-sphere
model and the corresponding base model. The trajectories were
compared and 3-D rms differences were calculated and stored. An
orbit-propagation error refers to the difference between the cubed-
sphere and spherical harmonic model orbits. Tests consisted of three
models and are described in Table 2.

Table 3 Percentage of runs where O�K � K��
is less than the other model

Model Cubed sphere Spherical harmonics

CS-30 0.024% 0.020%
CS-76 0.012% 0.008%
CS-162 0.264% 0.272%

Fig. 5 Comparison of the integration-constant variations for the CS-30 model with the spherical harmonic base model. Error bars are 1-�.

Fig. 6 Comparison of the integration-constant variations for the CS-76 model with the spherical harmonic base model. Error bars are 1-�.
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Integration (Jacobi) Constant Comparisons

A given geopotential model must satisfy the Laplace equation:

r2U� @
2U

@x2
� @

2U

@y2
� @

2U

@z2
� 0 (9)

Unfortunately, the direct calculation of the second derivatives within
the cubed-sphere model from accelerations results in the loss of
accuracy of one–two digits. To avoid such a loss of accuracy, values
of the derivatives may be added to the model based on the variational
equations of the spherical harmonic model. (Of course, this will
almost double the file size.)

Instead of testing the cubed sphere under the Laplace criterion, this
study applies another technique using the Jacobi-like integration
constant [15]:

K �
_r � _r
2
�
�
�

r
� U�r; t�

�
� ! � �r 
 _r� (10)

This constant assumes that the geopotential is time-varying (which is
valid, due to Earth rotation). Here, ! is the angular velocity of the
primary body. For a valid gravity model and a propagated orbit, K
must remain constant over time, or K � K� equals zero. In practice,
the constant fluctuates due to the numerical integration process and
errors in the estimate of the gravity field.

As mentioned previously, the cubed-sphere reconfiguration
improves accuracy: specifically, the integration-constant perform-
ance. Figure 4 illustrates the extent of the improvement. Previously,
the cubed-sphere integration-constant deviations were consistently

one–three orders of magnitude greater. This would have resulted in
reducing the validity of the model for applications requiring long-
term orbit propagation. In some cases, such as this example, the
integration-constant test for the cubed sphere performs even better
than the spherical harmonic model.

A major concern when comparing the variations in the integration
constant for the cubed-sphere and the spherical harmonic models
is the relative magnitude of the fluctuations. In some cases, the
magnitude of the variations of the cubed-sphere model were as much
as an order of magnitude less than the spherical harmonic model, and
vice versa. Table 3 provides the percentage of the 24,605 runs for
each model that exhibited this behavior. In most cases, the orders
of magnitude of the fluctuations were the same. However, a small
percentage of the tests yielded integration-constant changes an order
ofmagnitude less for onemodelwhen comparedwith the other. In the
case of the CS-162 model, where the percentage of runs sharply
increased, tests at altitudes at or below 250 km exhibited the larger
fluctuations.

In Fig. 5, we illustrate the performance of the CS-30 model under
the integration-constant test as compared with the spherical
harmonic model. The top figure depicts the relative performance of
the maximum fluctuations. For the comparison of the fluctuation
magnitude, the maximum absolute deviations for both the cubed-
sphere and the spherical harmonic model orbits are differenced. We
compute the mean, median, min, max, and standard deviations of
these differences for all orbits at a given altitude and illustrate these
values for all altitudes tested. Note that a negative number indicates
that the integration-constant fluctuations for the cubed-sphere model
orbit are less than those of the spherical harmonic model orbit. The

Fig. 7 Comparison of the integration-constant variations for the CS-162 model with the spherical harmonic base model. Error bars are 1-�.

Fig. 8 CS-30 gravity anomalies at 300 km.
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bottom subplot portrays the relative performance of trends in the
integration-constant variations. For each orbit, we perform a linear fit
to the integration-constant fluctuations. The trend in the fluctuations
is described by the slope, with Fig. 5 illustrating the differences in
these trends. For the slope in the trend line, units are designated as
mm2=s2=h, since the units of the integration constant aremm2=s2 (i.
e., change in the constant per hour). For altitudes below 400 km, the
mean and median magnitude differences indicate that the spherical
harmonicmodel slightly outperforms the cubed sphere.However, the

average difference drops to nearly zero above 400 km. Themaximum
andminimumdifferences remain consistent. Given that themean and
median differences in the trend line slope are around zero with 1-�
values within 0:01 mm2=s2=h, the two models typically have the
same long-term trend.

Similarly, Fig. 6 illustrates the integration-constant performance
for the CS-76 model. Note that the magnitude and trend of the
integration-constant change is larger for the cubed sphere at lower
altitudes, but settles at around 300 km. Themedian is smaller than the

Fig. 9 CS-162 gravity anomalies at 300 km.

Fig. 10 Variations in gravity anomalies with altitude for 42 points on the Earth using the CS-30, CS-76, and CS-162 models.

Fig. 11 Summary of the total 3-D rms orbit-propagation differences for the CS-30, CS-76, and CS-162 models at a given initial altitude.
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mean at these lower altitudes, indicating a relatively small number of
tests increase the mean value. Again, the models closely agree for
higher altitudes, as indicated by the mean and median values with
small error bars.

Results for the CS-162 model are provided in Fig. 7. Note that
some extreme values have been truncated to improve visibility of
performance statistics at higher altitudes. In the case of the
differences in themagnitude differences, the minimum values for the
100 and 150 km orbits are �3:39 and �1:51 mm2=s2, respectively.
The maximum values are 5.20 and 1:79 mm2=s2. In the case of
the trend slope differences, the missing maximums are 0.44 and
0:14 mm2=s2=h. Like the CS-76 model, differences between the
cubed-sphere and spherical harmonic models are greater at lower
altitudes. This trend remains consistent through the remaining tests
and is attributed to the greater differences in the gravity anomalies at
lower altitudes seen in the next section. In this case, the differences in
the models settle around 250 km.

Gravity Anomaly Comparisons

This section provides a comparison of the spatial differences in
the acceleration. The results are represented as gravity anomalies

projected onto the surface of the Earth. The acceleration vector was
evaluated at a common altitude with latitude and longitude varied in
0.5� intervals. The magnitude of the differences in the vector is then
illustrated in Figs. 8 and 9. Like in the orbit-propagation tests,
acceleration vectors were not computed at the poles to avoid the
singularity present in the spherical harmonic model.

Figure 8 illustrates the gravity anomalies for the CS-30 model at
an altitude of 300 km and shows that anomalies are less than
10�7 mGal. The cube grid is visible, for example, over the East
Indies. The regions of peak variation correspond to regions of high
gravity fluctuations, as determined by the spherical harmonic model
(e.g., the Himalayan mountain ranges and the East Indies). We note
that the GGM02C gravity model is not accurate to 10�7 mGal, and
the gravity anomalies in Figs. 8 and 9 are within the error of the base
model.

The gravity anomalies for the CS-162 model at 300 km are found
in Fig. 9. The grid spacing is still visible, but areas of peak variations
are isolated to select regions. Like the previous cases, these regions
correspond to those with a generally large variation in the gravity
field. The magnitude of the anomalies is again on the order of
10�8 mGal, with the largest anomaly off of the coast of Haiti at
approximately 18� latitude and �67� longitude. Gravity anomalies
for the CS-76 model are not included, but yield similar results to
those in the previous twomodels. The grid spacing is also visible, but
the regions of higher differences were not as isolated as the CS-162
case.

To illustrate gravity anomaly variations with altitude, Fig. 10
depicts the difference in gravity anomalies for each of the models at
altitudes up to geosynchronous orbit. Most of the 42 points depicted
were randomly selected, although we chose a couple of points to
coincidewith regionsof largeanomalies.Asexpected,peakvariations

Table 4 Average speedup factor for the cubed-sphere

versus the base model

Cubed-sphere
model

Spherical harmonic
model

Average speedup
factor

CS-30 20 
 20 0.73
CS-76 70 
 70 5.97
CS-162 150 
 150 30.82

Fig. 12 Spatial distribution and histogram of the 3-D rms position differences for propagated orbits initially at 300 km with the CS-162 model.

Fig. 13 Spatial distribution and histogram of the 3-D rms velocity differences for propagated orbits initially at 300 km with the CS-162 model.
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in the cubed-sphere model with respect to the spherical harmonics
occur at lower altitudes. Additionally, the largest anomalies occur
for the higher-fidelity models. At various altitudes, the differences
become discretized due to machine precision and the relatively low
contribution the perturbations modeled by the cubed sphere have on
the overall gravity acceleration.

For the CS-162 model, there is a region below 300 km and around
10�10 mGal at which the variations are periodic. In this case, the
differences are close to the machine precision and are not affected by
the grid spacing. Given the Chebyshev interpolation between shells,
approximation error varies based on proximity to the nearby shells.
Thus, as the altitude increases for this point in Fig. 10, the error
periodically increases and decreases.

Orbit-Propagation Comparisons

Figure 11 summarizes the orbit-propagation results for the CS-30,
CS-76, and CS-162 cubed-sphere models. These 3-D rms values
include the state differences at all times and orbits, independent of the
orbit initial conditions. Orbit position and velocity differences are on
the order of fractions of 1 mm and of 1 mm=s, respectively. The
magnitude of the orbit-propagation errors for the three models

converges at 200 km and continues with a slight downward trend as
orbit altitude increases. At low altitudes, model agreement with the
base model increases with reduced fidelity of the base model, which
is consistent with the gravity anomalies provided in Fig. 10. Of
course, these results may be adjusted by an appropriate configuration
of the cubed sphere for high-fidelity base models. However, this
demonstrates that very close agreement with the base model can be
achieved.

In Table 4, we present the ratio of the time required to propagate
the orbit using the spherical harmonics and the cubed sphere. The
computation time used in these calculations includes only the
execution of the RK78 algorithm and does not include file load
times or initialization. As expected, the file load time for the cubed
sphere exceeds that of the spherical harmonics; however, this may
be mitigated through a careful implementation. After the model
reconfiguration (specifically, the increase in the degree of the poly-
nomial interpolation between shells), the evaluation time of the
model increased. The break-even point with the spherical harmonic
model occurs at about degree 20. More recent results (which will be
presented at a later date) demonstrate that the cubed-sphere model is
faster than the spherical harmonic model for all fidelities.

Table 5 Cubed-sphere state 3-D rms performance at 300 km

Position, mm Velocity, mm=s

Model Min Max Mean Median Min Max Mean Median

CS-30 4:70 
 10�5 0.0200 0.0042 0.0036 2:99 
 10�8 2:27 
 10�5 4:84 
 10�6 4:11 
 10�6

CS-76 3:25 
 10�5 0.0177 0.0041 0.0033 3:22 
 10�8 2:04 
 10�5 4:73 
 10�6 3:79 
 10�6

CS-162 5:71 
 10�5 0.0176 0.0040 0.0033 2:50 
 10�8 2:04 
 10�5 4:64 
 10�6 3:80 
 10�6

Fig. 14 Distribution of 3-D rms differences for propagated orbits initially at 300 km with the CS-30 model.

Fig. 15 Distribution of 3-D rms differences for propagated orbits initially at 300 km with the CS-76 model.
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Orbit-propagation performance specific to the CS-162 model at
300 km is illustrated in Figs. 12 and 13. There does not appear to be
any trends in the errors when observing their distribution based on
inclination and �. The relatively large deviation at the � and
inclination combination of 120 and 37.5� is directly correlated with
gravity anomalies in Fig. 9. Specifically, the orbit groundtrack
intersects the large anomalies at approximately 28� latitude and 92�

longitude twice during the orbit and once directly over the peak
anomaly near Haiti. Other than this orbit, all others are within
0.015mmof those computed via the spherical harmonics. The spatial
distribution of the velocity errors roughly corresponds to that of
the position errors. Table 5 provides statistics on the orbit state
differences for all models tested.

Histograms of the propagation state errors for the CS-30 and CS-
76 models at 300 km are provided in Figs. 14 and 15, respectively.
Contour plots of the errors for these models have not been included,
since results are similar to those seen for the CS-162 model.
Accuracy differences in the CS-30 and CS-76 models are illustrated
sufficiently by the histogram plots.

Orbits with an eccentricity of 0.05 were also tested using a similar
scheme, with the altitude of periapsis set at 300 km. Results are
comparable with those depicted here for all three of the cubed-
sphere models. Although increasing the variations in the eccentricity
provides a more comprehensive comparison, larger values yield an
altitude of apoapsis above 1000 km. At these altitudes, the gravity
anomalies of the cubed sphere relative to the spherical harmonics are
below the machine precision (as seen in Fig. 10). Thus, higher
eccentricities are not of significant interest.

To test the effects that shell boundaries have on propagated orbits,
differences for a circular orbit at 358.7702 km were profiled. This
altitude equals the altitude of the fourth primary shell. Both the
integration constant and the orbit differences tests yielded results
comparable with those already illustrated for a 350 km orbit. Thus,
for the current cubed-sphere models, the primary shell boundaries do
not appear to influence the orbit-propagation differences.

Conclusions

Results indicate that the cubed-sphere model closely approx-
imates a spherical harmonic model. Orbit-propagation tests demon-
strated agreements in orbit propagation on the order of fractions
of a millimeter. Integration of orbits via the cubed-sphere model
equivalent to a 150 
 150 spherical harmonic model was over 30
times faster than via the base model. As Table 4 indicates, the break-
even point is achieved at approximately order and degree 20. As of
this writing, tuning of the cubed sphere has been customized to the
degree of the base model, with cubed-sphere evaluation time less
than that of the spherical harmonics for all configurations.

The new model configuration presented here greatly reduced
variations in the integration constant, with changes consistent
between the cubed sphere and the spherical harmonic models. The
agreement between the models is reduced below 200 km. In some
cases, the cubed-sphere model actually performs better than the cor-
responding spherical harmonic model, probably due to the random
nature of fluctuations in the integration constant near the limit of the
machine precision. Gravity anomalieswere also reduced and are now
within 10�6 mGal for all altitudes above the Earth and less than
10�7 mGal for altitudes at or above 300 km when using the current
configuration.

As of this writing, characterization of the accuracy of moon-based
models is still in progress. Initial orbit-propagation results
demonstrated that additional tuning of the cubed sphere for lunar
applications is required. This is due to mass concentrations caused
by asteroid impacts creating relatively extreme gravity variations.
Unlike Earth-centered orbits, lower-altitude orbits are possible at the
moon, since atmospheric drag is not an issue. Thus, tuning of lunar
models should incorporate accurate representations to much lower
altitudes.When the ratio of the primary body radius to the orbit radius
is considered, 300 km is equivalent to a lunar orbit with an altitude of
approximately 82 km. Thus, some additional tuning is required to

improve model performance at the minimum desired altitude of
50 km at the moon.

Future research includes incorporating the cubed sphere with the
orbit determination process for both Earth- and moon-based
missions. Even though second derivatives are not currently included
in the cubed sphere, integration with nonlinear filters, such as the
unscented Kalman, is rather straightforward.

Appendix: Basis Splines

A simple way to introduce basis splines (or B-splines) is to define
them as the convolution:

Bm�x� � �Bm�1 � B0��x� (A1)

where

B0�x� �
�
1; jxj 	 1

2

0; otherwise
(A2)

Thus, Bm is a piecewise polynomial of degree m. On taking the
Fourier transform of B0,Z �1

�1
B0�x�e�2�ix	 dx�

sin�	

�	
(A3)

we obtain

Z �1
1

Bm�x�e�2�ix	 dx�
�
sin�	

�	

�
m�1

(A4)

We only consider B-splines of odd degree and note that in such
cases the mth degree B-spline is nonzero only in the interval
���m� 1�=2; �m� 1�=2�. For our purposes, we use a periodized
version of B-splines on the interval [0, 1]. Subdividing [0, 1] into
N � 2k subintervals, where N 
 m� 1 (in practice, N � m� 1),
we consider the basis of B-splines on this subdivision:

fBm�Nx � j�gj�0;1;...;2k�1

Let us consider a function g�x� that may be written as

g�x� �
XN�1
j�0

�jBm�Nx � j� (A5)

Instead of using the basis of B-splines, we may also write the same
function as

g�x� �
XN�1
j�0

�jLm�Nx � j� (A6)

where Lm are interpolating splines of a given degree m; that is,

Lm�l� � �l;0 (A7)

l is an integer, and �i;j is theKronecker delta function. The definitions
of interpolating splines implies that the coefficients in Eq. (A6) are, in
fact, the values of the function g�x� on the lattice:

�l � g�l=N� (A8)

In our problem, we are given the values �l � g�l=N� and we need
to find the coefficients �j in Eq. (A5). We have

Z
1

0

Bm�Nx � j�e�2�ixn dx�
1

N
B̂m

�
n

N

�
e�2�ijn=N (A9)

and computing the Fourier coefficients of g in Eq. (A5), we obtain

ĝ n �
�
1

N

XN�1
j�0

�je
�2�ijn=N

�
B̂m

�
n

N

�
� �̂nB̂m

�
n

N

�
(A10)
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Similarly, we compute the Fourier coefficients of g in terms of
interpolating splines:

ĝ n �
�
1

N

XN�1
j�0

�je
�2�ijn=N

�
L̂m

�
n

N

�
� �̂nL̂m

�
n

N

�
(A11)

The B-splines and the interpolating splines are related by (see, for
example, [16])

L̂ m

�
n

N

�
�
B̂m�nN�
a�n
N
� (A12)

where

a�!� �
X
j2Z
jB̂m�!� j�j2 (A13)

It may be shown that a is a trigonometric polynomial (see, for
example, [16]),

X
j2Z
jB̂m�!� j�j2 �

Xm
l��m

B2m�1�l�e�2�il! (A14)

thus simplifying the evaluation of a. Finally, substituting Eq. (A12)
into Eq. (A11), we get

ĝ n � �̂n
B̂m�nN�
a�n
N
� (A15)

which implies

�̂ n �
�̂n
a�n
N
� (A16)

In other words, applying the discrete Fourier transform to the data
values �l � g�l=N�, scaling by the factor 1=a�n=N� and applying the
inverse discrete Fourier transform, we obtain the coefficients �j in
Eq. (A5). The two-dimensional case is a straightforward extension,
where

�̂ k;l �
�̂k;l

a�k
N
�a� l

N
� (A17)
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