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Abstract. We describe a fast algorithm to propagate, for any user-specified
accuracy, a time-harmonic electromagnetic field between two parallel planes
separated by a linear, isotropic, and homogeneous medium. The analytic for-
mulation of this problem (circa 1897) requires the evaluation of the so-called
Rayleigh-Sommerfeld integral. If the distance between the planes is small,
this integral can be accurately evaluated in the Fourier domain; if the dis-
tance is very large, it can be accurately approximated by asymptotic meth-
ods. In the large intermediate region of practical interest, where the oscillatory
Rayleigh-Sommerfeld kernel must be applied directly, current numerical meth-
ods can be highly inaccurate without indicating this fact to the user. In our
approach, for any user-specified accuracy ǫ > 0, we approximate the kernel
by a short sum of Gaussians with complex-valued exponents and then effi-
ciently apply the result to the input data using the unequally spaced fast
Fourier transform. The resulting algorithm has computational complexity
O

(

N2 logN log2 ǫ−1 +M2 log4 ǫ−1
)

, where we evaluate the solution on an
N×N grid of output points given an M×M grid of input samples. Our algo-
rithm maintains its accuracy throughout the entire computational domain.

1. Introduction

A measurement system can be no more accurate than the least accurate of its
constituent parts. A critical part of many computational optical systems is a nu-
merical algorithm to propagate a time-harmonic electromagnetic field between two
parallel planes separated by a linear, isotropic, and homogeneous medium. Within
the experimental community, it is well understood that algorithms used for this
purpose give approximate solutions. However, virtually none of the current algo-
rithms provide a mechanism to control their error and, for this reason, may generate
inaccurate results without indicating this fact to the user. This state of affairs is
somewhat surprising since one might expect that in the computer age, of all the
sources of error in an optical system, numerical error ought to be the easiest to
eliminate.

At the end of 19th century, Lord Rayleigh [21] (see also [9, 8]) described wave
propagation via the integral
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(1.1) u (x, z) = − 1

2π

∫

R2

f (y)
∂

∂z

(
ei2πR

R

)
dy, z > 0,

where R =

√
z2 + ‖x− y‖2. Given the field u (y, 0) = f (y) in the plane z = 0,

(1.1) describes the field u (x, z), z > 0, that satisfies the Sommerfeld radiation
condition. Expressing all distances in wavelengths, we note that if the propagation
distance is small, then the kernel of this integral operator is highly oscillatory, but
the computation can then proceed in an accurate manner in the Fourier domain.
On the other hand, if the distance is very large, then application of this kernel
asymptotically reduces to a scaled Fourier transform. The computational difficulties
arise in the intermediate region where, in order to obtain an accurate solution, it is
necessary to apply this oscillatory kernel as is. Currently in this intermediate region,
the standard practice is to replace the kernel by its Fresnel approximation. We show
that this approximation yields only limited accuracy even near the optical axis, and
that the accuracy deteriorates significantly away from the optical axis. Perhaps
what is most troubling is that the accuracy of approximation is not controlled.

In this paper we present a fast algorithm to evaluate the Rayleigh-Sommerfeld
integral (1.1) with any user-specified accuracy. We approximate the kernel by a
short sum of Gaussians with complex-valued exponents. The number of terms in our
approximation is nearly minimal for a given accuracy ǫ. The resulting approximate
kernel is then efficiently applied to input data using the unequally spaced fast
Fourier transform (USFFT) [11, 3, 19], yielding an algorithm of computational

complexity O
(
N2 logN log2 ǫ−1 +M2 log4 ǫ−1

)
, where we evaluate the solution on

an N×N grid of output points given a grid ofM×M input samples, the same order
of complexity as algorithms based on the Fresnel approximation. Our approach also
significantly increases the size of the output region where the evaluation of (1.1) is
accurate.

The Fresnel approximation is an important, often-used, and frequently-referenced,
approximation to the propagated field. While our method can be viewed as a gen-
eralization of the Fresnel approximation, the two approximations are not directly
related. The Fresnel approximation replaces the Rayleigh-Sommerfeld kernel by a
single Gaussian with a purely imaginary exponent. In our method, for any user-
specified target accuracy, we use a nonlinear algorithm to approximate the kernel
as a short linear combination of Gaussians with complex-valued exponents. In both
the Fresnel approximation and our method, the use of Gaussians leads to a fast algo-
rithm to apply the approximate kernel. However, accuracy control in our approach
relies on analysis-based approximations rather than directly on analytic formulae.
Equally as important as the approximation of the kernel with respect to accuracy
control is a careful discretization of the resulting integrals using quadratures for
band-limited functions (see §2.2).

Given the known limitations of the Fresnel approximation (see, e.g., [22, 30, 12]),
many researchers have sought methods to improve its accuracy, e.g., by constructing
series expansions of the propagated field where the Fresnel approximation appears
as the first term in the series [13, 1]. Unfortunately (to the best of our knowledge)
such an approach does not lead to a fast algorithm with controlled accuracy. The
expansions derived in these papers can be used in a limited number of cases if the
boundary data are known analytically. However, if the boundary data are provided
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numerically (e.g., measured, or produced by a computational procedure such as
phase recovery), such analytic expansions can yield only a limited accuracy. We
further comment on this topic in §C.4 of the online supplement.

The need for an accurate propagation algorithm arises in areas such as compu-
tational holography [14], optical component design [20], and antenna design [2]. A
particularly interesting application area is X-ray diffraction microscopy [23], and
related techniques, where one attempts to form an image of a microscopic sam-
ple from measurements of the magnitude of its diffraction pattern. These inverse
problems are usually solved by iterative methods that include a light propagation
algorithm. Therefore, the accuracy of the propagation algorithm ultimately limits
the accuracy of the reconstructed image. The speed of a propagation algorithm is
obviously also of critical importance for applications employing iterative methods.

The numerical algorithms that we use are designed to yield any user-specified
accuracy. This includes controlled accuracy in the rapid computation of integrals.
The methods that we employ for this purpose (specifically the USFFT and gener-
alized Gaussian quadratures for band-limited functions) can significantly improve
the performance and accuracy of even the standard methods for light propagation
(see §§A and B of the online supplement).

The paper is organized as follows. The necessary mathematical preliminaries
are reviewed in §2. We describe our new algorithm in §3, then discuss its region of
validity in §4. In §5 we provide several numerical examples, then summarize our
results in §6. By introducing this new algorithm, we hope to stimulate accuracy
improvements in computational optical systems by essentially eliminating numerical
errors.

2. Preliminaries

2.1. The Rayleigh-Sommerfeld Formula. The behavior of a time-harmonic
electromagnetic field in a linear, isotropic, and homogeneous medium is described
by the scalar Helmholtz equation,

(2.1)
(
∆+ k2

)
u = 0,

where the wavenumber k = 2π/λ, λ is the wavelength, and u (x, y, z) is the complex
amplitude of one component of the vector-valued electric field at a point (x, y, z) ∈
R3. We may consider each component of the field separately since their governing
equations decouple in an isotropic homogeneous medium, allowing us to work with
the scalar form of the Helmholtz equation instead of its vector form.

It is convenient to associate one coordinate of the three-dimensional Cartesian
system with the optical axis—we choose the z-coordinate for this purpose, and will
often represent a point (x, y, z0) ∈ R3 as (x, z0), where x ∈ R2 lies in the plane
z = z0 transverse to the optical axis. We find it natural to measure distances in
the units of wavelengths and therefore, for the remainder of this paper, set the
wavenumber k = 2π.

The Rayleigh-Sommerfeld integral (1.1) yields the solution u (x, z) of the Dirich-
let problem for (2.1) in the half-space z > 0 that satisfies the Sommerfeld radiation
condition [28, 29],

lim
s→∞

s

(
∂u

∂s
− i2πu

)
= 0, where s = ‖(x, z)‖ and z > 0.
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Given the boundary data u (x, 0) = f(x), we rewrite (1.1) as

(2.2) u (x, z) =

∫

R2

f (y)Kz (‖x− y‖) dy,

where the Rayleigh-Sommerfeld kernel Kz (r) is given by

(2.3) Kz (r) =
ei2πz

√
1+(r/z)2

iz




1

1 + (r/z)
2 +

i

2πz
(
1 + (r/z)

2
) 3

2


 , r ≥ 0.

Denoting the Fourier transform of the boundary data as

f̂ (p) =

∫

R2

f (x) e−i2πx·p dx,

we write (2.2) in the Fourier domain as

(2.4) u (x, z) =

∫

R2

f̂ (p) K̂z (‖p‖) ei2πx·p dp,

where the Fourier transform of the Rayleigh-Sommerfeld kernel (cf. [24] and refer-
ences therein) is given by

(2.5) K̂z (ρ) = ei2πz
√

1−ρ2
, ρ ≥ 0.

Our goal is to evaluate (2.2) accurately in such a way that the computational cost
does not increase with the distance z. It is clear that the spatial kernel Kz (r) is a
highly oscillatory function of r when z is small, and that the Fourier domain kernel

K̂z (ρ) is a highly oscillatory function of ρ when z is large. For many physically

interesting choices of the distance z in the intermediate region, Kz (r) and K̂z (ρ)
are both highly oscillatory, making the direct numerical computation of u using
either (2.2) or (2.4) impractical. In §3 we will show how to approximate (2.3)
with controlled error and then describe a fast and accurate algorithm to apply the
resulting approximate Green’s function to boundary data. Our algorithm mainly
addresses the propagation problem for intermediate and large values of z. For small
values of z, it is well known that the problem may be solved using Fourier methods
and for very large values of z, the problem may be solved using asymptotic methods
(see §§A and B of the online supplement).

Remark 1. Given the normal derivative of the boundary data

∂

∂z
u(x, z)

∣∣∣∣
z=0

= g (x) ,

Lord Rayleigh’s formula for the Neumann problem reads

(2.6) u (x, z) = − 1

2π

∫

R2

g (y)
ei2πR

R
dy, R =

(
z2 + ‖x− y‖2

) 1
2

, z > 0.

With minor modifications, our approach is also applicable to evaluating (2.6).
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2.2. Slepian Functions. All physically realistic fields must eventually decay in
space and, at the same time, are essentially band-limited in the Fourier domain. An
appropriate mathematical description of such fields was initiated by Slepian and his
collaborators in [27, 17, 18, 25, 26] by considering a space-limiting and band-limiting
integral operator and using its eigenfunctions to identify a class of functions that
have controlled concentration in both the space and the Fourier domains. Slepian
et al. showed that this integral operator commutes with the differential operator
of classical mathematical physics describing the prolate spheroidal wave functions,
i.e., both operators share the same eigenfunctions.

For our purposes, we use eigenfunctions with controlled concentration in a square
in the spatial domain and band-limited to a disk in the Fourier domain. The
construction of such eigenfunctions is described in [4]; it differs from the traditional
construction since there is no differential operator available in this case.

Denoting a square in the spatial domain by A =
[
−a

2 ,
a
2

]2
and selecting a disk

of radius c in the Fourier domain, following [4] let us define the space-limiting and
band-limiting operator Q : L2 (A) → L2 (A),

Q [f ] (x) =

∫

A

f (y)
cJ1 (2πc ‖x− y‖)

‖x− y‖ dy,

where J1 is the first order Bessel function of the first kind. It is shown in [4] that,
similar to the classical case, the eigenvalues of this operator,

Qψj = µjψj , j = 0, 1, . . . ,

quantify the fraction of energy (L2-norm) of ψj outside of A,

1− µ2
j =

∫
R2\A

|ψj (x)|2 dx
∫
R2 |ψj (x)|2 dx

.

The eigenvalues satisfy 0 < µj < 1 and we order them in decreasing order, µ0 >
µ1 ≥ µ2 ≥ · · · > 0. Since they have a sharp transition from being nearly one to
being nearly zero (see [4]), for a user-specified accuracy ǫ, we select a linear subspace

of the eigenfunctions, span {ψj}Jj=0 , with corresponding eigenvalues µj ≥ 1 − ǫ.

Given boundary data f , we project f onto this subspace, where the choice of
parameters, i.e., the domain A and the bandlimit c, is described in §2.3 below.

Identifying this subspace allows us to accurately evaluate integrals involving the
boundary data. Following [4, 5] (see also [33]), we have

Theorem 2. Let W =
[
−w

2 ,
w
2

]2
be a square output window and A =

[
−a

2 ,
a
2

]2

be the spatial domain. Then for all functions f ∈ span {ψj}Jj=0 and for any target

accuracy ǫ, we can use the algorithms in [4, 5] to obtain a (nearly optimal) tensor
product grid of quadrature nodes ymm′ = (ym, ym′) ∈ A, m,m′ = 1, . . . ,M , and
corresponding weights τmτm′ > 0, so that

∣∣∣∣∣∣

∫

A

f (y) eix·y dy −
M∑

m,m′=1

τmτm′f (ymm′) eix·ymm′

∣∣∣∣∣∣
≤ ǫ ‖f‖1 , x ∈W.

The number of quadrature nodes required to obtain accuracy ǫ depends on the space-
bandwidth product (a+ w) c as M = O

(
(a+ w) c log ǫ−1

)
. These quadratures are

known as generalized Gaussian quadratures for band-limited functions.



FAST AND ACCURATE PROPAGATION OF COHERENT LIGHT 6

2.2.1. The Unequally Spaced Fast Fourier Transform. We need to evaluate trigono-
metric sums of the form

M∑

m,m′=1

τmτm′f (ymm′) eix·ymm′

at output points xnn′ = (xn, xn′), where n, n′ = 1, . . . , N . Such sums can be
evaluated rapidly, for any user-specified accuracy ǫ, using the USFFT (see [11, 3,

19]) with computational complexity O
(
N2 logN +M2 log2 ǫ−1

)
.

2.3. Band-Limiting the Boundary Data. For a given accuracy ǫ, there exists

some square region A = A (ǫ) =
[
−a

2 ,
a
2

]2
such that the values of the boundary

data f in (2.2) outside of A may be neglected,

(2.7)

∫

x/∈A

|f (x)|2 dx ≤ ǫ2 ‖f‖22 .

In this paper, we refer to the region A where the field is concentrated as an aperture.
Let us determine the highest spatial frequency c that must be propagated in

order to evaluate (2.2) accurately. It follows from (2.5) that evanescent waves cor-
responding to spatial frequencies above ρ = ‖p‖ > 1 are attenuated exponentially
fast as a function of the propagation distance z. This implies that, for a given
distance z and accuracy ǫ, there exists some bandlimit ce > 1 such that frequencies
greater than ce may be neglected,

∣∣∣∣∣∣∣
u (x, z)−

∫

‖p‖≤ce

f̂ (p) K̂z (‖p‖) ei2πx·p dp

∣∣∣∣∣∣∣
≤ ǫ ‖f‖2 .

A good estimate of this bandlimit is obtained by setting e−2πz
√

c2e−1 = ǫ so that

(2.8) ce =

√

1 +

(
log ǫ−1

2πz

)2

.

It may happen that the boundary data f has a bandlimit much larger than ce.
In such cases, we set cf = 2ce and replace f by its band-limited version,

f̃ (x) =

∫

‖p‖≤2ce

f̂ (p)h (‖p‖) ei2πx·p dp,

where the window function h (ρ) satisfies |h (ρ)− 1| ≤ ǫ for 0 ≤ ρ ≤ ce and drops

smoothly to zero in the interval ρ ∈ (ce, 2ce]. The function f̃ will be band-limited

to the disk of radius cf and concentrated in a square aperture Ã that is somewhat
larger than the original aperture A. This spreading can be controlled by an ap-
propriate choice of the function h—one convenient choice is a linear combination
of shifted Gaussians. We use this new, larger, aperture in place of the original

aperture and therefore set A = Ã. It may also happen that the bandlimit cf of
boundary data is known a priori and is less than ce, so it is not necessary to prop-
agate spatial frequencies with magnitudes ρ = ‖p‖ ∈ [cf , ce]. In either case, we
set the highest spatial frequency that must be propagated to c = cf , where cf is
defined as just described.
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2.4. Approximation of Functions by Linear Combinations of Exponentials

and Gaussians. We use an algorithm in [6] (see also [7]) to approximate, for a
target accuracy ǫ, a smooth function f (x) by a nearly optimal linear combination of
Gaussians. Since the algorithm in [6] finds a nearly minimal number of exponential
terms, we apply it to the function g (t) = f

(√
t
)
. Changing variables back, t 7→ x2,

yields an approximation by Gaussians with a (nearly) minimal number of complex-
valued weights wℓ and exponents ηℓ, such that

(2.9)

∣∣∣∣∣f (x)−
L∑

ℓ=1

wℓe
−ηℓx

2

∣∣∣∣∣ ≤ ǫ, x ∈ [0, 1] .

For completeness, we recall this algorithm for approximation by exponentials in
§C.1 of the online supplement.

For the functions f (x) considered in this paper, the number of terms L in ap-
proximation (2.9) satisfies L = O

(
log ǫ−1

)
. This behavior is typical and occurs for

a wide variety of functions encountered in applications.

2.5. Decompositions of Low-Rank Matrices. In order to compute the singular
value decomposition (SVD) of a low-rank matrix S ∈ CN×M , where S has numer-
ical rank k for a given accuracy ǫ, we use algorithms described in [10, 16]. The
computational complexity of these algorithms is O

(
MN log k + (M +N) k2

)
(cf.

O (MNk) for the direct approach utilizing a rank-revealing QR factorization).

2.6. The Approximations of Fresnel and Fraunhofer. Our method of ap-
proximating the kernel (2.3) resembles the approach that leads to the Fresnel ap-
proximation, which we now recall. If the propagation distance is significantly larger
than both the spatial extent of the input field and the desired output region, so
that r = ‖x− y‖ < z, it is common to use this assumption to make the (rather
dramatic) approximations in (2.3)

(2.10)
1

1 + (r/z)
2 +

i

2πz
(
1 + (r/z)

2
) 3

2

≈ 1

and

(2.11) ei2πz
√

1+(r/z)2 ≈ ei2πzei
π
z
r2 .

The Fresnel approximation uses this approximate kernel in place of the Rayleigh-
Sommerfeld kernel in (2.2), yielding

u (x, z) ≈ ei2πz

iz

∫

R2

f (y) ei
π
z
‖x−y‖2 dy

=
ei2πzei

π
z
‖x‖2

iz

∫

R2

f (y) ei
π
z
‖y‖2

e−i 2π
z
x·y dy(2.12)

(see, e.g., [15, §4.2]). Since the latter integral can be computed using the fast
Fourier transform (FFT), this approximation is widely used despite its potentially
low accuracy (it turns out that the poor approximation of the kernel’s phase in
(2.11) is especially deleterious—see §5.3). In §§4 and 5 we demonstrate that the
accuracy of the Fresnel approximation rapidly deteriorates away from the optical
axis.
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When z is much larger than the spatial extent of f (y), it is common to make

the further approximation ei
π
z
‖y‖2 ≈ 1, which, when used in (2.12), leads to the

Fraunhofer (sometimes called far-field) approximation

(2.13) u (x, z) ≈ ei2πzei
π
z
‖x‖2

iz
f̂
(x
z

)

(see, e.g., [15, §4.3]). The Fraunhofer approximation, which relates the output field
to the scaled Fourier transform of the input field, is especially common in antenna
design and X-ray diffraction microscopy. A more accurate approximation in the far
field is given by

(2.14) u (x, z) ∼ − ize
i2π

√
z2+‖x‖2

z2 + ‖x‖2
f̂


 x√

z2 + ‖x‖2


 , z → ∞,

which may be evaluated via the USFFT. We further discuss the Fraunhofer approx-
imation and derive (2.14) in §B of the online supplement.

3. A New Algorithm for Fast and Accurate Light Propagation

In this section we describe a fast algorithm to compute, for a fixed propagation
distance z and any user-specified accuracy ǫ > 0, the field u (x, z) in a square output

windowW =
[
−w

2 ,
w
2

]2
. We assume that the boundary data f has already been re-

placed with its space-limited and band-limited version, as described in §2.3. Hence,
f is band-limited with some bandlimit c and concentrated in a square aperture

A =
[
−a

2 ,
a
2

]2
so that, according to (2.2), we need to compute

(3.1) u (x, z) =

∫

A

f (y)Kz (‖x− y‖) dy, x ∈ W,

where Kz is the Rayleigh-Sommerfeld kernel (2.3). Our algorithm comprises three
steps. First, in §3.1, we accurately approximate the Rayleigh-Sommerfeld kernel
by a linear combination of Gaussians using the algorithm briefly described in §2.4.
Second, in §3.2, we use the resulting approximation in (3.1) and accurately discretize
the ensuing integrals via the generalized Gaussian quadratures for band-limited
functions from Theorem 2. Finally, in §3.3, we use the algorithms referred to in
§2.5 for computing the SVDs of low-rank matrices to rearrange the resulting sums
for rapid and accurate evaluation via the USFFT (see §2.2.1).

3.1. Approximation of the Kernel with Controlled Error. The key obser-
vation behind the Fresnel approximation is that the phase of the kernel (2.3) is
approximately quadratic, cf. (2.11), at least for small values of r/z. We also use
this observation but, in addition, exploit the fact that the rest of the phase can
be accommodated via an approximation with controlled error, valid throughout a
large computational domain.

Due to the finite sizes of the output window W and input aperture A, it is only
necessary to approximate the kernel Kz (r) on the interval 0 ≤ r ≤ (a+ w) /

√
2.

We demonstrate how to obtain, for any user-specified accuracy ǫK > 0, an approx-

imation K̃z (r) such that

(3.2)
∣∣∣Kz (r)− K̃z (r)

∣∣∣ ≤ ǫK
z
, r ∈

[
0,
a+ w√

2

]
.
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We emphasize that in (3.2) the desired accuracy ǫK is scaled by the propagation
distance z since the magnitude of the kernel decays like z−1 along the optical axis.

Inspired by the Fresnel approximation, we rewrite the kernel as

Kz (r) =
ei2πzei

π
z
r2

iz
Az (r) ,

where

(3.3) Az (r) =




1

1 + (r/z)
2 +

i

2πz
(
1 + (r/z)

2
) 3

2


 e

i2πz
(√

1+(r/z)2−1− 1
2 (r/z)

2
)

.

Having removed the factor ei
π
z
r2capturing most of the oscillatory behavior of the

kernel, the function Az is non-oscillatory over a large region of space. We use
the algorithm in §2.4 to compute, for a desired accuracy ǫK > 0, complex-valued
weights wℓ and exponents ηℓ such that

(3.4)

∣∣∣∣∣Az (r)−
L∑

ℓ=1

wℓe
−ηℓr

2

∣∣∣∣∣ ≤ ǫK , r ∈
[
0,
a+ w√

2

]
,

leading to the approximation

(3.5) K̃z (r) =
ei2πz

iz

L∑

ℓ=1

wℓe
−(ηℓ−iπ

z )r
2

,

satisfying (3.2). We define ũ (x, z) to be the result of using the approximate kernel

K̃z (r) in (3.1),

(3.6) ũ (x, z) =
ei2πz

iz

L∑

ℓ=1

wℓ

∫

A

f (y) e−(ηℓ−iπ
z )‖x−y‖2

dy.

The following proposition bounds the absolute error of the approximation and is
an immediate consequence of the preceding discussion.

Proposition 3. Let ũ be the function defined in (3.6), with weights wℓ and expo-
nents ηℓ, ℓ = 1, . . . , L, as in (3.4). Then

(3.7) |u (x, z)− ũ (x, z)| ≤ ǫK ‖f‖1
z

, x ∈
[
−w

2
,
w

2

]2
,

where the field u (x, z) is given by (3.1).

3.2. Discretization of Integrals. Letting αℓ = Re ηℓ and βℓ = Im ηℓ− π
z , where

ηℓ, ℓ = 1, . . . , L, are as in (3.4), we rearrange (3.6) as

(3.8) ũ (x, z) =
ei2πz

iz

×
L∑

ℓ=1

wℓe
−(αℓ+iβℓ)‖x‖

2

∫

A

f (y) e−(αℓ+iβℓ)‖y‖
2

e2αℓx·yei2βℓx·y dy.

A straightforward estimate of the bandlimit of the integrands (see §C.3.2 of the
online supplement) may be bounded (for each term, independently of ℓ) by

c′ = c+
a2

2
√
2z

+
πaw√
2z
,
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where c is the bandlimit of the input function f . Using the bandlimit c′, we dis-
cretize the integrals in (3.8), for a desired accuracy ǫQ, using the quadratures from
Theorem 2.

Let ymm′ = (ym, ym′) ∈ A, m,m′ = 1, . . . ,M , be the M×M tensor product grid
of quadrature nodes with the corresponding quadrature weights τmτm′ . We select
an N×N grid of output locations xnn′ = (xn, xn′) ∈ W , n, n′ = 1, . . . , N . We
then apply the quadrature from Theorem 2 to the integrals in (3.8) and obtain an
approximation to the output field at the desired locations as

(3.9) unn′ =
ei2πz

iz

L∑

ℓ=1

wℓ

M∑

m,m′=1

τmτm′T
(ℓ)
nn′mm′f (ymm′) ei2βℓxnn′ ·ymm′ .

In (3.9) the N×N×M×M fourth-order tensors T(ℓ), ℓ = 1, . . . , L, are given by

(3.10) T
(ℓ)
nn′mm′ = e−(αℓ+iβℓ)‖xnn′‖2

e−(αℓ+iβℓ)‖ymm′‖2

S(ℓ)
nmS

(ℓ)
n′m′ ,

where n, n′ = 1, . . . , N and m,m′ = 1, . . . ,M , and the N×M second-order tensors
(matrices) S(ℓ), ℓ = 1, . . . , L, are given by

(3.11) S(ℓ)
nm = e2αℓxnym ,

where n = 1, . . . , N and m = 1, . . . ,M . From Theorem 2 we obtain the bound

(3.12) |ũ (xnn′ , z)− unn′ | ≤ ǫQ ‖f‖1
z

,

where ũ (xnn′ , z) is given by (3.6) and unn′ by (3.9).

3.3. Rapid Evaluation of the Field. In the Fresnel approximation of the kernel,
the exponent in the quadratic phase factor is purely imaginary, making it easy to
compute (2.12) via either the FFT or the USFFT. In our approach, the exponents
in approximation (3.5) are complex-valued, although the magnitude of their real
parts is small relative to the aperture and output window sizes (we describe below
how to ensure that this is the case). This observation allows us to develop a fast
algorithm to evaluate (3.9).

In order to evaluate the inner summations in (3.9) rapidly, we look for an ap-

proximation of S
(ℓ)
nmS

(ℓ)
n′m′ in a form where the output indices n, n′ are split from

the input indices m,m′. As the first step, we use the SVD to write the matrices in
(3.11) as a sum of outer products,

(3.13) S(ℓ)
nm =

min(M,N)∑

q=1

σ(ℓ)
q U(ℓ)

nqV
(ℓ)
mq,

where the singular values σ
(ℓ)
1 ≥ σ

(ℓ)
2 ≥ · · · ≥ 0 are arranged in decreasing order

and the columns of matrices U(ℓ) and V(ℓ) are orthonormal. By properly select-
ing parameters as described below in §3.4, we ensure that the N×M matrices S(ℓ)

have a low numerical rank (typically less than 25). We then use the algorithms de-
scribed in §2.5 to compute these SVDs rapidly and apply the result to approximate

S
(ℓ)
nmS

(ℓ)
n′m′ by a low-separation-rank tensor with indices n, n′ split from the indices

m,m′. The error estimate is provided by (see §C.2 of the online supplement for a
proof)
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Lemma 4. Let σ
(ℓ)
q , U

(ℓ)
nq , and V

(ℓ)
mq, where ℓ = 1, . . . , L, q = 1, . . . ,min (M,N),

n = 1, . . . , N , and m = 1, . . . ,M , be as in (3.13). For a desired accuracy ǫR > 0,
let I(ℓ), ℓ = 1, . . . , L, be the smallest integer such that

min(M,N)∑

q=I(ℓ)+1

σ(ℓ)
q ≤ ǫR.

Then for ℓ = 1, . . . , L, n = 1, . . . , N , and m = 1, . . . ,M , we have the approxima-
tions ∣∣∣∣∣∣

S(ℓ)
nmS

(ℓ)
n′m′ −

I(ℓ)∑

q,s=1

σ(ℓ)
q σ(ℓ)

s U(ℓ)
nqU

(ℓ)
n′sV

(ℓ)
mqV

(ℓ)
m′s

∣∣∣∣∣∣
≤ ǫR2e

|αℓ|
2 aw.

Using Lemma 4, we approximate T(ℓ) in (3.10) as
∑R(ℓ)

r=1 P
(ℓ)
nn′rQ

(ℓ)
mm′r, with ℓ =

1, . . . , L, n, n′ = 1, . . . , N , and m,m′ = 1, . . . ,M , where we have re-indexed the
resulting double summation using a single index and, also, have collected terms
that depend on the output coordinate xnn′ as the N×N×R(ℓ) tensors P(ℓ) and
terms that depend on the input coordinate ymm′ as the M×M×R(ℓ) tensors Q(ℓ).
Lemma 4 implies that

(3.14)

∣∣∣∣∣∣
T

(ℓ)
nn′mm′ −

R(ℓ)∑

r=1

P
(ℓ)
nn′rQ

(ℓ)
mm′r

∣∣∣∣∣∣
≤ ǫR2e

|αℓ|
2 (a2+w2+aw).

We define ũnn′ to be the result of using approximation (3.14) in (3.9),

(3.15) ũnn′ =
ei2πz

iz

L∑

ℓ=1

wℓ

R(ℓ)∑

r=1

P
(ℓ)
nn′r

M∑

m,m′=1

τmτm′Q
(ℓ)
mm′rf (ymm′) ei2βℓxnn′ ·ymm′ .

It follows from (3.14) and the estimate

M∑

m,m′=1

τmτm′ |f (ymm′)| ≈ ‖f‖1

that

(3.16) |unn′ − ũnn′ | ≤ ǫR ‖f‖1
z

2

L∑

ℓ=1

|wℓ| e
|αℓ|
2 (a2+w2+aw),

where unn′ is given by (3.9). We also have

2

L∑

ℓ=1

|wℓ| e
|αℓ|
2 (a2+w2+aw) ≤ b,

where b is a small constant (this can be shown using the techniques from §C.3 of
the online supplement). Incorporating b into ǫR, the bound (3.16) becomes

(3.17) |unn′ − ũnn′ | ≤ ǫR ‖f‖1
z

.

Combining the error bounds (3.7), (3.12), and (3.17), we obtain
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Theorem 5. The error of computing the field u from (3.1) using (3.15) is bounded
by

(3.18) |u (xnn′ , z)− ũnn′ | ≤ (ǫK + ǫQ + ǫR) ‖f‖1
z

.

The expression for ũnn′ in (3.15) allows us to evaluate the field rapidly. We first

apply Q
(ℓ)
mm′r as a pre-factor to the input samples f (ymm′), then compute the inner

sums using the USFFT, and finally apply P
(ℓ)
nn′r to the result as a post-factor.

In the three steps of deriving the final approximation of the field (3.15), we
used three different accuracies, ǫK , ǫQ, and ǫR, in order to emphasize these as
separate steps. In practice, we choose these accuracies to be the same, and set
ǫK = ǫQ = ǫR = ǫ/3 to achieve the final accuracy ǫ.

Remark 6. It is not necessary for the aperture and output window to be square.
Indeed, the USFFT allows us to place the output coordinates at arbitrary locations.
We have used a tensor product grid here for simplicity—with minor modifications,
our algorithm may be used to compute the field anywhere in the output window
with the same computational cost. The input aperture may also have any shape,
provided that accurate quadrature rules are used to discretize the integrals in (3.8).
We note that near optimal quadratures for circular apertures are described in [4].

Remark 7. Simplifications for separable boundary data. As with the Fresnel approx-
imation, our approach simplifies in the case of boundary data that are separable in
Cartesian or polar coordinates. For example, suppose the function f is separable
in Cartesian coordinates, viz.,

(3.19) f (x) = f (x1, x2) =

S∑

s=1

f
(s)
1 (x1) f

(s)
2 (x2)

for some functions f
(s)
1 and f

(s)
2 , s = 1, . . . , S. In such cases the application of

the approximate kernel (3.5) simplifies to the evaluation of several one-dimensional
USFFTs. Substitute (3.19) into (3.8) and rearrange to obtain an approximation
for the field u in a separated form,

ũ (x1, x2, z) =
ei2πz

iz

L∑

ℓ=1

wℓ

S∑

s=1

u
(ℓ,s)
1 (x1)u

(ℓ,s)
2 (x2) ,

where the functions u
(ℓ,s)
1 and u

(ℓ,s)
2 , ℓ = 1, . . . , L, s = 1, . . . , S, can be evaluated

by one-dimensional integrals. We obtain similar formulae if the boundary data are
concentrated in a disk and separable in polar coordinates.

3.4. Computational Cost. The number of terms in (3.4) may be estimated as
L = O

(
γ4 log ǫ−1

)
, where

(3.20) γ =
a+ w√
2z

3
4

(see §C.3.1 of the online supplement). In order to control the number of terms L,
we restrict the parameter γ by the empirically-determined constant

(3.21) γ ≤ 2.62.
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This, in turn, limits the domain where our approximation is valid, although this
domain is significantly larger than that of the Fresnel approximation. We discuss
this further in §4. This bound also implies that the ratio |αℓ| / (aw) is small, leading
to a low numerical rank of the matrices S(ℓ) in (3.11).

The cost of evaluating (3.15) depends on the number of USFFTs, R = R(1)+· · ·+
R(L), which is estimated as R = O

(
log2 ǫ−1

)
. Hence, the overall computational

cost of our algorithm is O
(
N2 logN log2 ǫ−1 +M2 log4 ǫ−1

)
. For actual computing

times see §5.4.

4. Size of the Output Region

In §3.4 we ensured that our algorithm is efficient by requiring γ from (3.20) to
satisfy (3.21). The practical impact of this requirement is to establish a relationship
between the input aperture side-length a, propagation distance z, and output win-
dow side-length w. In particular, for a fixed aperture size and propagation distance,
the largest output window that our algorithm can accommodate is

(4.1) wmax = 3.71× z
3
4 − a,

provided that this number is positive. If it is negative, then the propagation distance
is small with respect to the aperture size—in such cases, the propagation problem
under consideration should be treated in the Fourier domain or using near-field
methods (see §A of the online supplement).

Using the same reasoning, we also define the quantity zmin as

(4.2) zmin = 0.174× a
4
3 ,

which, for a fixed aperture size a, gives the minimum propagation distance before
our algorithm can be used.

For comparison, let us find analogues of (4.1) and (4.2) for the Fresnel approx-
imation (2.12). Recall that the only mechanism to control the error when using
the Fresnel approximation is to restrict the size of the output region. We first
determine the analogue of (4.1), that is, for a given accuracy ǫ, let us find w′

max,
the largest possible output window where the Fresnel approximation is guaranteed
to achieve accuracy ǫ. Since the Fresnel approximation replaces the phase of the

Rayleigh-Sommerfeld kernel (2.3) with ei2πzei
π
z
r2 , we find the maximum value of

r′max such that
∣∣∣ei2πz

√
1+(r/z)2 − ei(2πz+

π
z
r2)

∣∣∣ ≤ ǫ, r ∈ [0, r′max] .

Using r′max ≈
√
2
(
ǫ
π

) 1
4 z

3
4 , we obtain an analogue of (4.1) for the Fresnel approxi-

mation,

w′
max ≈ 2

( ǫ
π

) 1
4

z
3
4 − a,

giving the largest possible square output window for a square aperture with side-
length a. The analogue of (4.2) for the Fresnel approximation is

z′min ≈
( π

16ǫ

) 1
3

a
4
3 ,

which gives the minimum propagation distance.
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To illustrate the difference between wmax and zmin for our method and w′
max and

z′min for the Fresnel approximation, let us choose ǫ = 10−3. If a = 5000 wavelengths,
then after propagating z = 5× 106 wavelengths, we find that

wmax

w′
max

≈ 16.7,

so the largest side-length of our output window is approximately 17 times larger
than that of the Fresnel approximation. If the propagation distance is only z =
250, 000 wavelengths, then wmax ≈ 36, 480 wavelengths while w′

max is negative, im-
plying that 3-digit accuracy of the Fresnel approximation cannot be guaranteed
in any output window. In fact, for this accuracy, the minimum propagation dis-
tance for the Fresnel approximation is z′max ≈ 497, 000 wavelengths, compared with
zmin ≈ 14, 880 for our method.

If we choose the accuracy threshold to be ǫ = 10−6, then the minimum propaga-
tion distance for the Fresnel approximation increases to z′min ≈ 5×106 wavelengths,
whereas the minimum distance for our method does not depend on the desired ac-
curacy, and therefore remains unchanged at zmin ≈ 14, 880.

5. Numerical Examples

5.1. A Gaussian Beam. To demonstrate the accuracy of our algorithm, we choose
boundary data that allows the field to be accurately computed by an alternative
approach. We select the boundary data with a Gaussian profile given by

(5.1) f (x) = e−
‖x‖2

σ2 ,

where σ determines the width of the beam measured in the units of wavelengths.
It can be shown that the propagating (i.e., non-evanescent) portion of the field is
given by (cf. (2.4))

up (x, z) =

∫

‖p‖≤1

f̂ (p) K̂z (‖p‖) ei2πx·p dp

= 4

√
π

2

∞∑

k=0

ikfk jk

(
2πz

√
1 + (‖x‖ /z)2

)
P k

((
1 + (‖x‖ /z)2

)− 1
2

)
,(5.2)

where jk is the k-th order spherical Bessel function of the first kind, P k (s) =√
(2k + 1) /2Pk (s) is the normalized k-th degree Legendre polynomial, and the

coefficients fk are defined as

(5.3) fk = π
√
2πσ2

∫ 1

0

se−π2σ2(1−s2)P k (s) ds.

These coefficients decay rapidly once k is sufficiently large, so that we may trun-
cate the sum in (5.2) to obtain a simple formula to compute the non-evanescent
portion of the field to any desired accuracy. The error committed by neglecting the
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Figure 5.1. Propagation of boundary data with a Gaussian pro-
file. The field magnitude, |u (x, 0)|, (solid line) and its real part,
Re u (x, 0) (dashed line) evaluated along the positive x-axis (a) and
the attained accuracy log10 |u (x, 0)− ũ (x, 0)| (b).

evanescent waves may be bounded by

|ue (x, z)| =

∣∣∣∣∣∣∣

∫

‖p‖>1

f̂ (p) e−2πz
√

‖p‖2−1ei2πx·p dp

∣∣∣∣∣∣∣

≤ 2 (πσ)
2
e−(πσ)2

∫ ∞

1

ρe−2πz
√

ρ2−1 dρ =
σ2

2z2
e−(πσ)2 .(5.4)

Provided that (5.4) is less than the accuracy sought, we may disregard the evanes-
cent portion of the field entirely and regard (5.2) as a formula to compute the field
generated by the boundary data (5.1) for the desired accuracy.

In our example, we choose σ = 5 wavelengths, a square aperture of size a = 50
wavelengths, a propagation distance of z = 1000 wavelengths, a square output
window of size w = 450 wavelengths, and a desired accuracy of ǫ = 10−6. We then
use our algorithm to evaluate the (axially-symmetric) field at N = 256 points along
the x-axis using M×M = 512×512 input samples. With this choice of parameters,
the number of terms needed to approximate the kernel is L = 8, and the number
of USFFTs required to evaluate the field is R(1) + · · ·+R(8) = 52.

To determine the accuracy of the result, we first compute (5.4) and find that the
evanescent part of the solution is undetectable, viz., |ue (x, 1000)| ≤ 8.7×10−113 for
all x. We also find that the coefficients (5.3) decay to |fk| ≤ 10−15 once k ≥ 200,
so we truncate the sum (5.2) after 200 terms and use it to determine the accuracy
of our algorithm. We display the results in Figure 5.1 and note that the obtained
accuracy is better than the accuracy goal 10−6 (the bound in Lemma 4 is not tight).

5.2. An Aperture in the Near Field of a Source. We consider an aperture
in the near field of a source and thereby demonstrate that our method maintains
accuracy even when evanescent waves are present in the aperture field. We arrange
Helmholtz point sources in the plane z = −1 so that the resulting field is given by
(cf. (2.6))

u (x, z) = −
J∑

j=1

̺j
ei2π

√
(z+1)2+‖x−rj‖

2

2π
√
(z + 1)

2
+ ‖x− rj‖2

,
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Figure 5.2. Comparison of the error of our method and that of
the Fresnel approximation for an aperture in the near field of a
source after propagating z = 1000 wavelengths. We display the
magnitude of the input data |f | (a), the magnitude of the true
solution |u| (b), the error of the Fresnel approximation |u− ũf |
(c), and the error of our method |u− ũ| (d).

where rj and ̺j , j = 1, . . . , J , give the position and intensity, respectively, of each
point source. The function specifying the boundary data is given by f (x) = u (x, 0);
as shown in Figure 5.2(a), to high accuracy, it is confined to a square aperture
of side-length a = 550 wavelengths. We select propagation distance z = 1000
wavelengths, desired accuracy ǫ = 10−3, and apply our algorithm to compute the
field ũ (x, 1000) in a square output window of side-length w = 100 wavelengths.
Because the aperture plane is only one wavelength from a collection of point sources,
evanescent waves are present in the boundary data. In this case, we sample the
boundary data on a grid of sizeM×M = 1486×1486. In Figure 5.2 we compare our
approximate solution ũ (x, 1000) to the true solution u (x, 1000) and, as requested,
it is correct to slightly over 3 digits. For comparison, we also show the error of the
Fresnel approximation ũf (x, 1000), which has only about 1.5 digits of accuracy.
Observe that the conditions of this numerical experiment are favorable for the
Fresnel approximation, since the maximum angle that any point in the output
window makes with the optical axis is only approximately 4 degrees.
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Figure 5.3. Propagation of a spherical wave restricted to a square
aperture and converging to a point on the optical axis. As ex-
pected, the diffraction pattern is approximately a scaled version
of the function |sinc (x1) sinc (x2)|. We display the magnitude of
the field, |u (x1, x2)|, (a), and the real and the imaginary parts,
Re u (x, 0) (solid line) and Im u (x, 0) (dashed line) of the field on
the x1-axis (b).

5.3. Focusing Waves and the Fresnel Approximation. Next we compare the
field computed by our algorithm to that obtained via the Fresnel approximation by
considering the boundary data

f (x) =

{
e−i2π

√
z2
0+‖x−r0‖

2

, if x ∈
[
−a

2 ,
a
2

]2
,

0, otherwise,

representing a spherical wave restricted to a square aperture and converging to the
point (r0, z0). In Figure 5.3 we show the magnitude of the resulting field, |u (x, z0)|,
in the plane z = z0 transverse to the optical axis and containing the focal point,
for the choice of parameters r0 = (0, 0), z0 = 100, 000 wavelengths, and a = 2500
wavelengths—as expected, the field magnitude is approximately a scaled version of
the function |sinc (x1) sinc (x2)|.

Now let us move the focal point away from the optical axis. We fix the propa-
gation distance to z0 = 100, 000 wavelengths and set the focal point to

r0 = (z0 sin θ, 0) ,

where θ is the angle between the optical axis and the ray from the origin to the
focal point (r0, z0). We select accuracy ǫ = 10−3 and compare, for several values
of θ in the range 0 to 5 degrees, the field computed by our algorithm, ũ (x, z0),
and the field computed by the Fresnel approximation, ũf (x, z0), near the focal
point x = r0. Results displayed in Figure 5.4 demonstrate that the accuracy of the
Fresnel approximation deteriorates rapidly as the focal point moves away from the
optical axis. We also display the diffraction pattern computed by our algorithm
and the pattern computed by the Fresnel approximation for θ = 5◦ in Figure 5.5.
The diffraction pattern obtained by the Fresnel approximation is both shifted and
blurred when compared to the correct one.
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Figure 5.4. Comparison of the magnitude of the field evaluated
near the focal point on the x1-axis. We display the magnitude
|u (x, 0, z0)|, computed by our algorithm (solid line, correct to 3
digits) and by the Fresnel approximation (dashed line), as the focal
point of a converging spherical wave moves away from the optical
axis. The Fresnel approximation incorrectly computes both the
position and the shape of the focal spot, e.g., compare the nulls
between the main lobe and first side lobes in the bottom-right plot.

In Figure 5.6 we compare the error of each method at the focal point, i.e.,
|u (r0, z0)− ũ (r0, z0)| and |u (r0, z0)− ũf (r0, z0)|, as a function of the angle θ (we
determined the true value u (r0, z0) by direct numerical integration). Our method
maintains its accuracy for all θ ∈ [0◦, 5◦], while the Fresnel approximation is accu-
rate to approximately 3 digits for θ = 0◦ but has essentially no accurate digits for
θ > 4◦. This example demonstrates that a belief that the Fresnel approximation
produces accurate results at angles up to 18 degrees off the optical axis (see, e.g.,
[31, 32]) is not true in general.

Remark 8. From Figure 5.4, it may appear tempting to attempt to “correct” the
Fresnel approximation by introducing a change of variable x 7→ g (x), where the
function g : R2 → R2 would be selected with the goal of rescaling the field computed
by the Fresnel approximation, ũf (g (x) , z), to more closely match the true field,
u (x, z). In effect, the strategy would be to rescale the x-axis for the dashed lines
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Figure 5.5. Comparison of the magnitude of the field for a focal
point 5◦ off the optical axis computed by our algorithm correct to 3
digits (left), and by the Fresnel approximation (right). To enhance

contrast, we plot the square root of the magnitude, |u (x1, x2)|1/2.
The Fresnel approximation shifts the location of the focal spot,
and blurs the boundaries between the mainlobe and sidelobes. See
also the bottom-right plot in Figure 5.4.
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Figure 5.6. Comparison of the error of our method and that of
the Fresnel approximation. We display the error of our method,
log10 |u (r0, z0)− ũ (r0, z0)| (solid line), and the error of the Fresnel
approximation, log10 |u (r0, z0)− ũf (r0, z0)| (dashed line), at the
focal point (r0, z0) of a converging spherical wave. We note that as
the angle θ increases, additional terms are added to approximation
(3.5), improving accuracy by about 1.5 digits each time and giving
the solid line a “sawtooth” shape.
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in Figure 5.4 to better align the peaks of the solid and dashed lines. Unfortunately,
our example shows that the Fresnel approximation incorrectly computes the shape
of the focal spot, in addition to its position (compare the nulls between the main
lobe and side lobes in the bottom-right plot in Figure 5.4).

5.4. Representative Examples of Computational Cost. The computational
cost of our algorithm depends on the number of USFFTs required in (3.15), i.e.,
R = R(1) + · · ·+R(L), where L is the number of terms needed to approximate the
kernel in (3.5). As it turns out, R decreases with increasing z, which is expected
since the application of the Rayleigh-Sommerfeld kernel asymptotically reduces to
a single scaled Fourier transform as z → ∞, cf. (2.14). On the other hand, for
smaller values of z the field changes rapidly, and many USFFTs are required to
compute the field accurately in these computationally-challenging regions.

Let us fix the aperture size a = 2000 wavelengths, the desired accuracy ǫ = 10−3,
and set the number of input samples and output samples to M×M = N×N =
512×512. We now examine the dependence of R on the propagation distance z for
two different choices of output window size:

(1) a fixed output window of size w = 10, 000 wavelengths; and
(2) a variable output window w = wmax, where wmax is defined in (4.1) and is

the largest output window that our method can accommodate for a given
propagation distance z.

In Table 1, we provide the number of terms, L, needed to approximate the kernel
for several propagation distances, as well as the number of USFFTs, R, required to
compute the field for these two choices of output window size.

w = 10, 000 w = wmax

z L R Time [s] w L R Time [s]

50, 000 9 486 371 10, 389 10 577 439
100, 000 5 132 101 18, 836 10 440 331
250, 000 3 40 31.4 39, 426 10 306 224

1, 000, 000 2 16 13.6 115, 170 10 189 143
10, 000, 000 1 3 3.46 696, 895 10 112 85.2

Table 1. Computational cost as a function of propagation dis-
tance. We show the dependence of the number of terms, L, and of
the number of needed USFFTs, R, on the propagation distance, z,
as well as the actual computing time in seconds. The center section
corresponds to the fixed window size w = 10, 000 wavelengths and
the right section to the largest possible window, w = wmax, where
wmax is defined in (4.1).

In Table 1 we also provide timing results for a MATLAB-based implementation
of the algorithm. These timings were obtained on a laptop computer with a 2.1 GHz
AMD N950 processor and 8 GB of RAM. No effort was made made to optimize
the code, and we expect that a careful implementation of the algorithm will be
significantly faster. We also note that all USFFTs in the evaluation of (3.15)
may be computed in parallel, so that the total computational time can be reduced
substantially on a multiprocessor computer system.
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6. Conclusions

We have described a fast algorithm for the propagation of coherent light between
parallel planes separated by a linear, isotropic, and homogeneous medium. In con-
trast to current algorithms, our algorithm achieves any user-specified accuracy. As
a consequence, we can rapidly and accurately compute the field in non-paraxial
regions, i.e., regions far from the optical axis, with computational complexity pro-
portional to that of the FFT. The overall result is a fast algorithm that can achieve
any user-specified accuracy over a large computational domain.
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