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New compactly supported wavelets for which both the scaling and wavelet
functions have a high number of vanishing moments are presented. Such wavelets
are a generalization of the so-called coiflets and they are useful in applications
where interpolation and linear phase are of importance. The new approach is to
parameterize coiflets by the first moment of the scaling function. By allowing
noninteger values for this parameter, the interpolation and linear phase properties
of coiflets are optimized. Besides giving a new definition for coiflets, a new system
for the filter coefficients is introduced. This system has a minimal set of defining
equations and can be solved with algebraic or numerical methods. Examples are
given of the various types of coiflets that can be obtained from such systems. The
corresponding filter coefficients are listed and their properties are illustrated. 1999

Academic Press

1. INTRODUCTION

Among compactly supported wavelets forL2(R) a family known ascoiflets has a
number of properties that make it particularly useful in numerical analysis and signal
processing [1, 8, 9]. Coiflets allow for both the scaling and the wavelet functions to have
a high number of vanishing moments and, as we show here, the associated low-pass filters
are almost interpolating and nearly linear phase within the passband. In 1989, R. Coifman
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suggested the design of orthonormal wavelet systems with vanishing moments for both the
scaling and the wavelet functions. They were first constructed by Daubechies [9] and she
named themcoiflets.

In [1] shifted vanishing moments for the scaling functionϕ were used to obtainone
point quadratures

f (x)≈
∑
k∈Z

f (xk)ϕ(x − k), (1.1)

wheref is a sufficiently smooth function on the multiresolution spaceV0 and{f (xk)} are
good approximations of the coefficients off in the expansion.

Since in [1] both matrices and operators were considered, the points{xk} were chosen
to bexk = k + α, whereα is an integer. This “shift”α corresponds to the first moment of
the scaling functionϕ,

α =
∫

R
xϕ(x) dx. (1.2)

Note thatα is not the center of mass becauseϕ(x) is not a positive function [12], except
for the Haar case.

The coiflets constructed by Daubechies correspond to particular integer choices of the
shift α. Several other examples of coiflets, still for integer shifts, can be found in the
literature [4, 11]. In this paper we use the fact thatα does not have to be an integer. As
a matter of fact,α may be chosen to be noninteger to optimize the construction of coiflets.
An example of an approach similar to ours can be found in [15]. Furthermore, we show
that the shiftα cannot take arbitrary real values. In fact, we show that its value lies within
the support of the scaling function. Therefore, the shifts for the known coiflets necessarily
correspond to some integer values within this support.

Relation (1.1) is useful in pseudo-wavelet approaches to adaptively solving PDEs.
Without going into details here (see [2]), let us state that ifbothf andf 2 belong toV0,
then

f 2(x)≈
∑
k∈Z

f 2(xk)ϕ(x − k) (1.3)

is a quantifiable approximation. Notice that approximations like (1.1) or (1.3) are not valid
for Fourier or Fourier-like bases.

On the other hand, equality in (1.1) cannot be achieved for all functions inV0 by using
any compactly supported wavelets. However, using infinite impulse response (IIR) filters,
it is possible to have an exact version of (1.1) or (1.3) and this choice corresponds to
interpolatingfilters.

A similar situation occurs if we require linear phase response, which is another desired
property for the associated quadrature mirror filter (QMF)3 of the wavelet bases. Except
for the Haar system, finite impulse response (FIR) QMFs cannot have a linear phase
response. To obtain that property one has to use IIR filters or give up orthogonality and
replace it by biorthogonality.

In this paper we show that FIRcoifletscan nearly achieve both properties, interpolation
and linear phase, while keeping a reasonable number of vanishing moments for the

3 Originally, these kind of filters leading to perfect reconstruction were named conjugate quadrature filters [16]
while the denomination QMF from [10] would only apply to some aliasing cancelling filters. We use the term
QMF as in [8, pp. 162, 163], where one can find a history of both terms.
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waveletψ . The key to our approach is to insist on a reasonable approximation to linear
phase only in the passband of the associated low-pass filterm0.

It is well known that the properties defining coiflets can be easily described in terms of
the coefficients{hk} of m0. The conditions on{hk} turn out to be dependent [14], and one
of the goals of this article is to derive a system that is free of redundant equations. To obtain
such a system, we perform a change of variables on{hk} via a linear transformation that
has the shiftα as a parameter. This defining system is partly linear and partly quadratic.
For filter lengths up to 20 the system can be explicitly solved via algebraic methods like
Gröbner bases. Its particularly simple structure allows one to find all possible solutions.
For longer filters we apply Newton’s method to numerically compute some solutions.
Nevertheless, for arbitrary filter lengths, we were unable to solve the open problem of
the consistency of the defining system, i.e., we could not yet prove the existence of coiflets
for an arbitrary number of vanishing moments.

We modify the original definition of coiflets in [1, 9] to allow for noninteger shiftsα
in (1.2) and to make more specific the relationship between the length of the low-pass filter
and the number of vanishing moments of both the wavelet and scaling functions.

This paper is organized as follows. In Section 2 we give some preliminaries about
wavelets in general. The moment conditions for both the scaling and wavelet functions
are discussed in Section 3. In Section 4 we give a new definition of coiflets and motivate
it. In Sections 5 and 6 we address two properties of coiflets: the interpolation property and
nearly linear phase. We introduce the polyphase equation in Section 7 and use it in the
construction of coiflets in the next section. Furthermore, in Section 8 we give details about
the linear and quadratic equations of the defining system for coiflets. We also discuss the
various types of coiflets that can be obtained from such systems and show explicit examples
in Section 9. For clarity, we gathered auxiliary material in the Appendix.

2. PRELIMINARIES

• Unless otherwise indicated,x andξ are real variables whilez is a complex variable.
• A QMF is a 2π -periodic functionm0,

m0(ξ)=
∑
k∈Z

hke
−ikξ , (2.1)

such that

|m0(ξ)|2+ |m0(ξ + π)|2= 1. (2.2)

The numbers{hk} are thecoefficientsof the filterm0. We assume that allhk are real and
only a finite number of them is nonzero. The QMF condition (2.2) is then equivalent to

2
∑
k

hkhk+2n = δno for n ∈ Z. (2.3)

The Kronecker symbolδnm is defined asδnm = 1 if m= n andδnm = 0 otherwise.
We denote byH the symbol of {hk}, i.e., the transfer functionof m0. We have

H(e−iξ )=m0(ξ) or

H(z)=
∑
k

hkz
k. (2.4)
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We also refer to suchH as a QMF. As a consequence of (2.3), H satisfies the following
functional equation:

H(z)H(z−1)+H(−z)H(−z−1)= 1. (2.5)

We refer to this equation as the QMF equation.
In order to generate a regular multiresolution analysis (see [5, 6]), we need two

additional properties forH .
The first one is thenormalizationor low-passcondition. It forces

m0(0)= 1 or H(1)= 1. (2.6)

The second one, which we refer to as Cohen’s condition, ensures thatH is nonzero in
certain locations on the unit circle [7].

In practice, we first find a normalizedH satisfying the QMF equation and then verify
Cohen’s condition.

• A solutionϕ of

ϕ

(
x

2

)
= 2

∑
k

hkϕ(x − k) (2.7)

is called a “scaling function.” Equivalently, on the Fourier side we have

ϕ̂(2ξ)=m0(ξ)ϕ̂(ξ), (2.8)

whereϕ̂(ξ)= ∫ +∞−∞ ϕ(x)e−iξx dx, and

ϕ̂(0)= 1, (2.9)

as a consequence of (2.6).

3. MOMENT CONDITIONS

One of the key properties of interest for wavelet bases [1, 13] is the property of vanishing
moments of the waveletψ :∫

R
xkψ(x) dx = 0 for 0≤ k <M. (3.1)

In [8, Theorem 5.5.1], it is shown that if the wavelet hasm bounded derivatives then we
have at leastm vanishing moments, i.e., we haveM >m in (3.1).

Also, (3.1) implies that all polynomialsp of degree less thanM can be expressed as
linear combinations of integer translates ofϕ,

p(x)=
∑
k

(∫
R
p(y)ϕ(y − k) dy

)
ϕ(x − k). (3.2)

See [13, Section 2.6] or [17] for details.



188 MONZÓN, BEYLKIN, AND HEREMAN

In terms of the symbolH , (3.1) requires that∑
j

(−1)j j khj = 0 for 0≤ k <M, (3.3)

or equivalently, the factorization

H(z)=
(

1+ z
2

)M
Q(z), (3.4)

whereQ(−1) 6= 0.
As pointed out in the Introduction, we are interested in vanishing (shifted) moments of

the scaling function

Mϕ
α,k =

∫
R
(x − α)kϕ(x) dx = δk0 for 0≤ k < N, (3.5)

whereα is a real number.
If α is 0, we writeMϕ

k for thekth moment ofϕ. We have

Mϕ
α,n =

n∑
k=0

(
n

k

)
(−α)n−kMϕ

k . (3.6)

From (2.8) it follows that

e2iαξ ϕ̂(2ξ)= eiαξH(e−iξ )eiαξ ϕ̂(ξ), (3.7)

and then, by taking derivatives atξ = 0,

(2n − 1)Mϕ
α,n =

n−1∑
k=0

(
n

k

)
Mh

α,n−kM
ϕ
α,k. (3.8)

In addition, from (2.9)

Mϕ
α,0= 1. (3.9)

HereMh
α,k are the shifted moments of the sequence{hj }:

Mh
α,k =

∑
j

(j − α)khj . (3.10)

Again, forα = 0 we drop the indexα and denote thenth moment byMh
n.

Because of the recurrence (3.8), (3.9), the moments ofϕ can be computed using the
moments of{hk}. Nevertheless, if some of the moments ofϕ are zero, we also obtain the
following explicit relation.

LEMMA 3.1. AssumeMϕ
α,k = δk0 for all k, 0≤ k < N . Then

Mϕ
α,n =

1

2n − 1
Mh

α,n (3.11)

for 0< n< 2N .
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Equations (3.6) and (3.8) imply that the following four conditions, valid for allk, 0≤
k < N , are equivalent:

Mϕ
k =

∫
R
xkϕ(x) dx = αk, (3.12)

Mϕ
α,k =

∫
R
(x − α)kϕ(x) dx = δk0, (3.13)

Mh
α,k =

∑
j

(j − α)khj = δk0, (3.14)

Mh
k =

∑
j

j khj = αk. (3.15)

Therefore, imposing moment conditions for either the wavelet or the scaling function
amounts to finding a QMFH with moment conditions for its sequence of coefficients.
In particular, the first moment ofϕ, as defined in (1.2), equals the derivative ofH at one,

α =H ′(1).

On the other hand, (2.1) forces|H(z)| ≤ 1 for z on the unit circle. These last two properties
allow us to show that the valueα should be within the support ofϕ. Observe that this result
is not evident sinceϕ is not a positive function.

PROPOSITION 3.2. LetH(z)=∑n
k=0hkz

k be any nonconstant polynomial with real
coefficients andh0hn 6= 0.

If H(1)= 1 and sup
|z|=1
|H(z)| ≤ 1,

thenH ′(1) belongs to the interval(0, n).

Proof. We need the following version of the classical Bernstein inequality for
trigonometric polynomials (see [21, Theorem 7.24] or [3, Corollary 5.1.6]):Let p be
any polynomial with complex coefficients and at most degreen. Thenmax|z|=1 |p′(z)| ≤
nmax|z|=1 |p(z)|. Equality holds iff there exists a constantc such thatp(z)= czn.

We apply Bernstein’s inequality to the polynomialsH(z) andznH(z−1). In both cases
equality cannot hold and we obtain|H ′(1)|< n and|n−H ′(1)|< n, respectively. SinceH
has real coefficients,H ′(1) is a real number and the proposition follows.

4. COIFLETS

As argued above, it suffices to define coiflets in terms of the filterH . Since for any
integern the filter znH(z) generates the same multiresolution analysis asH , we always
assume the coefficients{hk} of H to be zero fork < 0.

DEFINITION 4.1 (coiflets). Let{hj }L−1
j=0 be the coefficients of a real QMFH . We say

thatH is a coiflet of shift α and momentsM,N if the following three conditions are
satisfied:
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L−1∑
j=0

(−1)j j khj = 0 for 0≤ k <M, (4.1)

L−1∑
j=0

jkhj = αk for 0≤ k < N, (4.2)

3M >L− 1 and 3N ≥ L− 1. (4.3)

Using the equations of the previous section, if acoiflet H also satisfies Cohen’s
condition, its associated wavelet and scaling functions will haveM, respectivelyN − 1,
vanishing moments. The normalizationH(1)= 1 corresponds to (4.2) with k = 0.

The caseL = 2 corresponds to the Haar basis. ForL = 4, (4.3) forcesM > 1 and
therefore coiflets of length four are the same as Daubechies’ maximally flat filters of that
length. In Section9 we discuss the casesL= 8 andL= 18.

Our definition of coiflets is restrictive in that we require not just some but nearly
all possible vanishing moments for both the scaling and the wavelet functions (see
Remarks4.3below).

It follows from Proposition3.2 that the value of the shiftα belongs to(0,L − 1).
Furthermore, in all cases computed, there were regions in(0,L − 1) whereα did not
occur. We refer to Table1 to illustrate this fact for integer shifts. For example forL= 14,
the valuesα = 1,2, and 6 are missing in the interval(0, 1

2(L − 1)) = (0,6.5). Due to
symmetry about the center 6.5 (see Section8.3.1), the valuesα = 7, 11, and 12 do not
occur either.

It is important to realize that the conditions (4.1) and (4.2) are dependent. In fact, using
the notation[a] for the integer part ofa, we have the following lemma from [14].

LEMMA 4.2. Let H be a QMF with coefficients{hj } that satisfy
∑
j j

khj = αk
for 0≤ k < N , then

∑
j

(−1)j j khj = 0 for 0≤ k <
[

1

2
(N + 1)

]
.

TABLE 1
Coiflets with Integer Shifts

LengthL Shifts in(0, 1
2(L− 1)) M N

6 {1,2} 2 3
8 {1,2,3} 3 3

10 {1,2,3,4} 4 3
12 {3,4,5} 4 5
14 {3,4,5} 5 5
16 {3,4,5,6,7} 6 5
18 {5,6,7} 6 7
20 {5,6,7,8} 7 7
22 {5,6,7,8,9,10} 8 7
24 {6,7,8,9,10} 8 9
26 {7,8,9,10} 9 9
28 {8,9,10,11,12} 10 9
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Proof. Applying the operator(xD)n (defined in the Appendix) atz = 1 to the QMF
equation (2.5), or taking derivatives atξ = 0 in (2.2), we have for alln,

n∑
k=0

(
n

k

)
(−1)kan−kak +

n∑
k=0

(
n

k

)
(−1)kbn−kbk = δn0, (4.4)

whereak = (xD)kH(1) andbk = (xD)kH(−1).
The assumption onH implies thatb0 = 0 and that the first sum in (4.4) is zero

for n < N . Choosingn even and 0≤ n < N in the second sum, it follows thatbk = 0
for 0≤ k < [12(N + 1)].

Remarks 4.3. 1. The lemma shows why the condition (4.3) is consistent with the theory
of polynomial QMF. For a QMF of degreeL− 1 it is well known that there are onlyL2
degrees of freedom for the filter coefficients (see [19] for example).

By askingN ≈ L
3 we already haveM > L

6 . The L
6 extra conditions in (4.3) bring the

total number of conditions toL3 + L
6 = L

2 . Viewed this way,coifletsare meant to maximize
both numbers of vanishing moments, while their values remain close to each other.

2. If N is even andM > N
2 in the definition of coiflets, we obtain

∑
j j

Nhj = αN
(replacen byN in (4.4)). For this reason,N is always odd in our examples (see Tables1,
2, and6).

In particular, ifM > 1 in (4.1) and
∫

R xϕ(x) dx = α then∫
R
x2ϕ(x) dx = α2.

This result has been noted by other authors. See, for example, [18, Theorem 2.3] or
[11, Theorem 1].

3. We can give a geometric interpretation of Lemma4.2. Condition (4.2) forces
|m0|2 to be flat at zero. Because of the QMF condition, the same is true atπ , and therefore
m0 is also flat atπ , but only “half as flat."

5. ALMOST INTERPOLATING PROPERTY

Consider the scaling functionϕ associated with acoifletof shift α and momentsM,N .
Recall that each multiresolution spaceVn is generated by the basis functions{ϕnk(x)=

2n/2ϕ(2nx − k)}k. With (4.2), or equivalently (3.12), for any polynomialp of degree less
thanN , ∫

p(x)ϕnk(x) dx = 2−n/2
∫
p

(
y + k

2n

)
ϕ(y) dy = 2−n/2p

(
α + k

2n

)
.

If the degree ofp is also less thanM, then (3.2) implies that

p(x)=
∑
k

(∫
R
p(y)ϕnk(y) dy

)
ϕnk(x). (5.1)

Now, assume thatp(x) is a polynomial of degree less thanM andN . Combining both
equations above, the coefficients in the expansion of such a polynomial (at any scale) are
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its values on a shifted dyadic grid:

p(x)=
∑
k

p

(
α + k

2n

)
ϕ(2nx − k).

Since at some scale any smooth function can be well approximated by polynomials, we
have the almost interpolating property discussed in the Introduction.

Here we see the advantage of having bothM andN as large as possible for a given filter
length, but also of having their values close to each other.

6. NEARLY LINEAR PHASE PROPERTY

In this section, for a filterH(eiω), we relate the condition of having vanishing moments
with its phase being close to linear in the passband.

LEMMA 6.1. Letf (ξ) be a function that takes complex values and such thatf (−ξ)=
f (ξ). Assume thatf (0)= 1 and consider the polar decomposition off ,

f (ξ)= a(ξ)eip(ξ), (6.1)

in a neighborhood ofξ = 0. Because of the condition onf , a is an even andp an odd
function. If forγ ∈R and for alln, 0< n<N ,

Dn(e−iγ ξ f (ξ))(0)= 0, (6.2)

then for0≤ n <N , the derivatives ofp at 0 can be computed as

D2n+1p(0)= γ δn0− iD2n+1(e−iγ ξf (ξ))(0). (6.3)

Consequently,p(ω)= γω+ o(ω2[N/2]) asω→ 0.

Proof. From (6.1)

ln(e−iγ ξ f (ξ))= ln(a(ξ))+ (p(ξ)− γ ξ)i. (6.4)

Note that if a functiong satisfiesDkg(a)= δk0 for 0≤ k < N , then the derivatives of
the compositionh ◦ g are given by

Dn(h ◦ g)(a)=Dh(g(a))Dng(a) for 0< n< 2N. (6.5)

Thus for 0< n < 2N , the nth derivative of the left-hand side in (6.4) equals
Dn(e−iγ ξ f (ξ)). The result then follows because lna(ξ) is an even function.

Since bothH(eiξ ) andϕ̂(ξ) (use (3.13) and (3.14)) satisfy the conditions of the previous
lemma forγ = α or−α, using Lemma3.1we arrive at the following proposition.

PROPOSITION 6.2. Let H be a polynomial with real coefficients{hk} and moment
conditionsMh

α,k = δk0 for 0≤ k < N . If ϕ is the scaling function solution of(2.7) and in
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a neighborhood ofξ = 0

H(eiξ )= aH (ξ)eipH (ξ) and ϕ̂(ξ)= aϕ̂(ξ)eipϕ̂(ξ),

whereaH and aϕ̂ are real even functions andpH and pϕ̂ are real odd functions, then
for 0≤ n <N ,

D2n+1pH(0)= αδn0+ (−1)nMh
α,2n+1, and

D2n+1pϕ̂(0)=−αδn0+ (−1)n
Mh

α,2n+1

22n+1− 1
.

Consequently,pH(ω)= αω+ o(ω2[N/2]), andpϕ̂(ω)=−αω+ o(ω2[N/2]) asω→ 0.

As stated in the Introduction, a high numberN of shifted vanishing moments for the
scaling function implies that the phase of the associated filter is close to linear within the
passband. The larger the value ofN the better the approximation. The same considerations
hold for the phase of̂ϕ but they do not necessarily apply to the phase ofψ̂ .

Recall that

ψ̂(2ξ)=m1(ξ)ϕ̂(ξ), where m1(ξ)=−e−iξm0(ξ + π).

This dependence ofp
ψ̂

onpH andpϕ̂ can be seen by comparing the top parts of Figs.1
and2. In the latter case,p

ψ̂
is flatter at zero because of the better behavior atπ of the

correspondingpH .
In Figs.5–6, 9–10, and13–14one can see the effect ofN on the phase and group delay

for several filters and wavelets. In these examples, the values ofN are 3,5, and 9. Note
that, asN increases, the filter group delay becomes flatter about zero.

Figures1 and2 compare the group delay of some coiflets of length 18 with Daubechies’
maximally flat filters of the same length.

Since for Daubechies’ filtersN = 3 independent of their length, those filters cannot
have group delays that are flat at zero. Still, some choices are better than others and the

FIG. 1. Comparison between the group delays ofm0 andψ̂ . Maximal coiflet for wavelet: length 18, case a
(top) and Daubechies’ extremal phase filter of the same length (bottom).
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FIG. 2. Comparison between the group delays ofm0 andψ̂ . Maximal coiflet for wavelet: length 18, case b
(top) and Daubechies’ least asymmetric filter of the same length (bottom).

least asymmetric filter in Fig.2 is defined as the maximally flat filter whose phase is as
linear as possible within the whole band[−π,π]. See [8, Section 8.1.1].

On the other hand, Proposition6.2implies that for coiflets only the phase in the passband
is forced to be linear. Fortunately, the value of the phase in the stopband can be ignored in
practice because the absolute value of the filter is close to zero in that region. The largerM

is in (4.1), the more precise the last statement is, and we can again see the interplay of the
conditions in the definition of coiflets.

7. THE POLYPHASE EQUATION

In order to find solutions of the QMF equation, we use an equivalent functional equation.
Using the standard notation for thepolyphase componentsH0 andH1 of H(z),

H0(z)=
∑
k

h2kz
k and H1(z)=

∑
k

h2k+1z
k,

these functions satisfy

H0(z
2)= H(z)+H(−z)

2
, (7.1)

H1(z
2)= H(z)−H(−z)

2z
, (7.2)

H(z)=H0(z
2)+ zH1(z

2). (7.3)

Using the notationf̃ (z)= f (z−1) and (7.1), we have that (2.5) is equivalent to

(HH̃)0(z)= 1

2
, (7.4)

and since

HH̃ = (H0H̃0+H1H̃1)(z
2)+ z(H̃0H1+ z−1H0H̃1)(z

2), (7.5)
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we obtain thepolyphaseequation

H0(z)H0(z
−1)+H1(z)H1(z

−1)= 1

2
. (7.6)

The problem of finding a solutionH of the QMF equation (2.5) is thus replaced by finding
the solutionsH0 andH1 of thepolyphaseequation. Instead of performing two operations
on the variablez in (2.5), namely−z andz−1, in (7.6) we only havez−1.

8. THE CONSTRUCTION OF COIFLETS

Recall that we can write any polynomial QMF asH(z) = ∑L−1
k=0 hkz

k , where
h0hL−1 6= 0.

We describe a system for coiflets not in terms of{hk} but in terms of the new variables

ak = 1

k!
∑
j

(
j − α

2

)k
h2j and bk = 1

k!
∑
j

(
j − α − 1

2

)k
h2j+1,

where 0≤ k ≤ l, andl = 1
2(L− 2). The transformation from{hk} to {ak, bk} is linear and

parameterized byα. As before,α =∑j jhj is the first moment ofϕ.
For what follows, it is more convenient to describeak andbk for arbitraryk ≥ 0, using

the operatorxD. We then have

ak = 1

k!(xD)
k(x−α/2H0)(1) and bk = 1

k! (xD)
k(x−(α−1)/2H1)(1).

We denote byV the set of variables{ak}lk=0 and{bk}lk=0. In LemmaA.1 in the Appendix
we show thatH0 andH1, and thereforeH , are completely determined byV .

Note thatak andbk are not necessarily zero fork > l but each of them can be expressed
as a linear combination of the variables inV . To verify that, apply part D of LemmaA.1 to
the polynomialsH0 andH1, which are both of degreel.

8.1. Quadratic Conditions

In order to impose the nonlinear (quadratic) conditions in (2.3), we use the equivalent
formulation given by the polyphase equation.

Regarding (7.6),

S(z)= z(1/2)(L−2)
(
H0(z)H0(z

−1)+H1(z)H1(z
−1)− 1

2

)
is a polynomial of degree at mostL− 2. Therefore, for the polyphase equation to hold, it
suffices to show that

DkS(1)= 0 for 0≤ k ≤L− 2.

Using (A.1) and (A.4) from the Appendix, the last equation is equivalent to

1

2
δn0= 1

n! (xD)
n(H0H̃0+H1H̃1)(1)



196 MONZÓN, BEYLKIN, AND HEREMAN

= 1

n! (xD)
n
(
x−α/2H0(x)x

α/2H0(x
−1)+ x−(α−1/2)H1(x)x

(α−1)/2H1(x
−1)
)
(1)

=
n∑
k=0

(−1)k(an−kak + bn−kbk) (8.1)

for 0≤ n≤ L− 2.
If n is odd, the previous equation is always satisfied and then, as we remarked earlier,L

2
equations are enough to characterize a QMF of lengthL.

8.2. Linear Conditions

We now discuss how to rewrite the (linear) conditions (4.1) and (4.2) for coiflets in terms
of the variables inV .

First, for 0≤ k <M, Eq. (4.1) is equivalent to

(xD)kH(−1)= 0⇔ (xD)k(x−αH(−x))(1)= 0

and, for 0≤ k < N , Eq. (4.2) is equivalent to

(xD)kH(1)= αk⇔ (xD)k(x−αH(x))(1)= δk0.

From (7.3), for x in a neighborhood of 1,

x−αH(−x)= (x−α/2H0(x)− x−(α−1)/2H1(x)
)
(x2)

and

x−αH(x)= (x−α/2H0(x)+ x−(α−1)/2H1(x)
)
(x2).

Then,

1

n! (xD)
n(x−αH(−x))(1)= 2n(an − bn) (8.2)

and

1

n! (xD)
n(x−αH(x))(1)= 2n(an + bn). (8.3)

Therefore, the moment conditions for coiflets imply{
a0= b0= 1

2,

a1= · · · = am−1= b1= · · · = bm−1= 0,
(8.4)

wherem=min{M,N}. For k ≥m, Eq. (4.1) implies thatak = bk , whereas (4.2) implies
thatak =−bk.

Thus, we can rewrite the vanishing moment conditions on the sequence{hk} as very
simple conditions on the variables inV .

Substituting (8.4) into the system (8.1) we automatically verify the firstm equations.
That is, when 0≤ n < m in (8.1) we obtain the dependence between linear and nonlinear
equations described in Lemma4.2.
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8.3. A System for Coiflets

Combining (8.1) and (8.4), the system for coiflets can be written in terms of the
unknowns{α,am, . . . , al, bm, . . . , bl},

1

2
δn0= an + bn +

n−1∑
k=m

(−1)k(an−kak + bn−kbk), n even, m≤ n≤ L− 2. (8.5)

Again,m=min{M,N}, whereM,N,L satisfy (4.3), andl = 1
2(L−2). Recall thatak and

bk for k > l can be expressed in terms of the variables inV = {a0, . . . , al, b0, . . . , bl}.
Depending on whetherm is even or odd, we are left with12(2l + 1 − m − 1) =

1
2(L−m−2) or 1

2(2l+1−m)= 1
2(L−m−1) equations in (8.5). Remarkably, because of

(8.4), the first half of these equations is linear. The other half is quadratic in the unknowns
(as in the original QMF system). See the examples in Section9.

Because of (4.3), we can check that the difference between the number of unknowns
{α,am, . . . , al, bm, . . . , bl} and the number of equations in (8.5) is one.

Adhering to our definition, we are led to a one-parameter family of coiflets with
parameterα. However, as can be seen in the examples in Section9, the values ofα are
not completely arbitrary. As a matter of fact, they are restricted to certain regions.

8.3.1. Symmetry about1
2(L−1). LetH be the QMF that defines a coiflet of lengthL,

shift α, and momentsM,N . From (2.5) it is clear that the reciprocal polynomial ofH ,

Hr(z)= zL−1H(z−1),

is also a QMF of lengthL. The coefficients ofHr are{hL−1, . . . , h0} and the associated
scaling function isϕr(x)= ϕ(L−1−x). Note thatHr is also a coiflet with momentsM,N
but shiftL − 1− α. Indeed, sinceH andHr have the same multiplicity of zeros at−1,
(4.1) follows. With respect to (4.2),

(xD)nHr(1)=
n∑
k=0

(
n

k

)
(L− 1)n−k(−1)k(xD)kH(1)

= (L− 1− α)n if 0 ≤ k < N.
Finally, Hr cannot have more vanishing moments forϕr becauseH = (Hr)r , and a
computation similar to the one above would force extra vanishing moments onϕ.

Due to this symmetry, we can consider coifletsH whose shifts belong to the interval
(0, 1

2(L− 1)]. All other coiflets correspond to the reciprocalsHr .

8.3.2. The non-maximal case.Given a QMFH of lengthL, we want to simultaneously
satisfy (4.1)–(4.3) with the smallest possibleM andN . A filter of that type will be called
a nonmaximalcoiflet or simplycoiflet. This condition does not uniquely determineH , but
as pointed out above, we have a one-parameter family of nonmaximal coiflets. We select
the shiftα as the parameter to characterize that family.

Within coiflets of a certain degree, we distinguish two cases: coiflets with integer shifts
and maximal coiflets.
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8.3.3. Coiflets with integer shifts.Coiflets for integer choices of the shiftα were
first computed by Daubechies [9]. In all cases that we computed, coiflets with integer
shifts were always nonmaximal. In Table1 we list, for different lengthsL, the range
of possible integer shifts in(0, 1

2(L − 1)) together with the corresponding number of
vanishing moments:M for the wavelet function andN for the scaling function. Note that
M andN remain the same for all the shifts, but the number of solutions may vary. For
example, for lengthL = 8, there are three possible shifts,α = 1, 2, and 3, and each has
two possible solutions. ForL= 16 the possible shifts areα = 3, 4, 5, 6, and 7, with 2, 4,
2, 6, and 4 solutions, respectively. In other words, even if we fixL,M,N , andα there is
no unique solution.

8.3.4. The maximal case.In contrast with the nonmaximal case, we could fix the shift
α by asking for an extra vanishing moment for either the scaling or the wavelet function.
(Because of the second remark in Remarks4.3, an extra condition for the scaling function
will actually add two vanishing moments.) In either case, there is at most a finite number
of solutions or there are no solutions. If solutions exist they will be calledmaximalcoiflets.

9. EXAMPLES

9.1. Coiflets of Length 8

We show how to construct all coiflets of lengthL= 8. In this case

V = {a0, a1, a2, a3, b0, b1, b2, b3}.

The nonmaximal case.In order to obtain nonmaximal filters we chooseM = N = 3
for our initial moments. From (8.4),{

a0= b0= 1
2,

a1= a2= b1= b2= 0.
(9.1)

So, we only need to determinea3, b3, andα subject to (8.5). In this case there are only two
equations:

a4+ b4= 0 and a6+ b6− a3
2− b3

2= 0.

As explained at the beginning of Section8, using Part D of LemmaA.1 and (9.1) one can
write a4, b4, a6, andb6 as linear combinations ofa3, b3, andα.

The previous system then becomes

−105+ 224α− 130α2+ 28α3− 2α4+ 1152a3− 384αa3

+ 1536b3− 384αb3= 0,

−1785+ 4312α− 3703α2+ 1568α3− 357α4+ 42α5− 2α6

+ 6912a3− 5760αa3+ 1728α2a3− 192α3a3− 9216a3
2

+ 14592b3− 9792αb3+ 2304α2b3− 192α3b3− 9216b3
2= 0.

(9.2)
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An equivalent system, obtained via Gröbner bases whereα is treated as parameter is

212625− 599424α+ 704860α2− 458360α3+ 181152α4− 44624α5

+ 6696α6− 560α7+ 20α8+ (790272− 558336α+ 10752α2+ 75264α3

− 19968α4+ 1536α5)a3+ (3686400− 2064384α+ 294912α2)a3
2= 0,

−105+ 224α− 130α2+ 28α3− 2α4+ (1152− 384α)a3

+ (1536− 384α)b3= 0.

(9.3)

The latter system helps in determining the range of values forα.
The left-hand side of the first equation in (9.3) is a polynomial of degree two ina3. To

have real solutionsa3 we require

−29561+ 99568α− 128100α2+ 87416α3− 35448α4+ 8848α5

− 1336α6+ 112α7− 4α8≥ 0. (9.4)

That is,α should belong to one of the following two intervals (approximate end points):

[0.681871,3.09431] or [3.90568,6.31812]. (9.5)

Note that the intervals are symmetric about7
2, as discussed in Section8.3.1. Also, in

agreement with Proposition3.2, both intervals are included in(0,7).
Only for α in these intervals can we solve (9.3) and therefore there is at least one coiflet

with that particular shiftα and three vanishing moments for both the wavelet and the
scaling functions.

Coiflets with integer shifts. In this example, we can choose the shift to be any integer
in the interval(0,L− 1). This is not possible in general as shown in Table1.

Due to symmetry, we only considerα = 1,2, or 3. For instance, ifα = 3 in (9.3) then

a3=±
√

7

128
(9.6)

and

b3= 3

128
. (9.7)

The two solutions for this case then have the following filter coefficients{h0, . . . , h7}{
− 1

32
− a3,− 3

128
,

9

32
+ 3a3,

73

128
,

9

32
− 3a3,− 9

128
,− 1

32
+ a3,

3

128

}
.

The choice of positive sign in (9.6) leads to the filter 3a, while the negative sign leads to
filter 3b. Their numerical values are listed in Table2. Note that because of (9.1) and (9.7),
the polyphase componentH1 has rational coefficients.

The maximal case.From Sections8.2and8.3.4, it follows that we can choose an extra
moment for the wavelet function (by settinga3= b3) or two extra moments for the scaling
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function (by settinga3=−b3). In the latter case, (9.3) becomes
8505− 36876α+ 66224α2− 58576α3+ 28488α4− 8008α5

+ 1296α6− 112α7+ 4α8= 0,

105− 224α+ 130α2− 28α3+ 2α4+ 384a3= 0.

(9.8)

Solving for realα in the first equation we obtain only two possible values in(0, 7
2), namely,

α1= 2.97727 and α2= 2.23954. (9.9)

Note that these values are in the first interval given in (9.5). The corresponding coefficients
{hk} are listed in Table2. Both filters haveM = 3 andN = 5.

The extra moment for the wavelet will also lead to two solutions but withM = 4
andN = 3. They correspond to Daubechies’ maximally flat filters of length 8. Their
coefficients can be found in [8]. For coiflets of lengthL > 10, the number of vanishing
moments of the scaling function is greater than three (this follows from (4.3) since
N ≥ 1

3(L− 1)). Therefore, these filters cannot coincide with Daubechies’ family of filters.

Summary for filters of length 8.Within the region of possible shiftsα, we found,
up to symmetry, a total of six coiflets with integer shifts and four maximal coiflets. For
these ten filters,−1 is the only root on the unit circle and therefore Cohen’s condition is
automatically satisfied. Nevertheless, their frequency responses are far from being uniform.
A first distinction is related to the factorization (3.4).

In contrast with Daubechies’ maximally flat filters, where‖Q‖ = sup|z|=1 |Q(z)| is the
same for all of them,‖Q‖ of different coiflets does indeed change.

When ‖Q‖ is larger than 2M−1, we can expectbad behavior for the filter and poor
regularity for the associated scaling and wavelet functions. See [8, Lemma 7.1.1]. In
Table3, we listed the Sobolev exponentsσ of the wavelet functions. They were computed
using Theorem 9.5 in [20].

We have labeled our different solutions according to the size of‖Q‖. Thus, in Table3,
the filters Na and Nb correspond to the maximal case for the scaling function, but with
‖Q‖ = 2.8764 and‖Q‖ = 2.94511, respectively.

We have labeled UGLY and BAD the cases for which‖Q‖ is increasingly larger than
2M−1. Figures3 and4 shown this phenomena for the coiflet filters 2b and 1b (with integer
shift α = 2). Even for thegoodcases, where‖Q‖ < 2M−1, the filters exhibit a different
behavior with respect to their phases.

Compare Figs.5 and6 for the filter 2a with Figs.7 and8 for the filter 3a. In the latter
case, the phase of the filter has a sharp transition nearπ and therefore its group delay is
much wider than for the case 2a. Nevertheless, since the module of the filter is zero atπ

that transition does not affect the overall response of the filter.
On the other hand, in agreement with Proposition6.2 and because of the different

numberN of vanishing moments of the filters, the group delay for the case Na is flatter
near zero than for the case with integer shifts. See Figs.5, 7, and9.

In Table 2 we listed the coefficients of filters of length 8 corresponding to maximal
coiflets and coiflets with integer shifts. Because of (2.6), these coefficients of the low-pass
filter m0 sum to 1.
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TABLE 2
Coiflet Filters of Length 8

k hk k hk

M = 3 0 −0.00899863735774892 M = 3 0 −0.03952785122359428
N = 5 1 −0.02054552466216258 N = 5 1 0.1271031281675352
α = α1 2 0.2202099211463259 α = α2 2 0.5323389066059403
Case Na 3 0.5701914465849665 Case Nb 3 0.440002251136967
MAXIMAL 4 0 .3422577968313942 MAXIMAL 4 −0.005981694132267174

5 −0.07306459213264614 5 −0.07120132136770919
6 −0.05346908061997128 6 0.01317063874992116
7 0.02341867020984207 7 0.004095942063206933

M = 3 0 0.1646660519380485 M = 3 0 0.3040839480619514
N = 3 1 0.5074101320413008 N = 3 1 0.414464867958699
α = 1 2 0.4435018441858542 α = 1 2 0.02524815581414562
Case 1a 3 −0.02223039612390291 Case 1b 3 0.2566053961239029

4 −0.1310018441858543 BAD 4 0.2872518441858542
5 0.02223039612390291 5 −0.2566053961239029
6 0.02283394806195145 6 −0.1165839480619514
7 −0.007410132041300974 7 0.085535132041301

M = 3 0 −0.01938529090153145 M = 3 0 0.0850102909015314
N = 3 1 0.1854738954507657 N = 3 1 0.1332761045492342
α = 2 2 0.5581558727045942 α = 2 2 0.2449691272954056
Case 2a 3 0.3810783136477028 Case 2b 3 0.5376716863522972

4 −0.05815587270459436 UGLY 4 0.2550308727045943
5 −0.06857831364770281 5 −0.2251716863522971
6 0.01938529090153145 6 −0.0850102909015314
7 0.002026104549234272 7 0.05422389545076572

M = 3 0 −0.05191993211769211 M = 3 0 −0.01058006788230788
N = 3 1 −0.0234375 N = 3 1 −0.0234375
α = 3 2 0.3432597963530763 α = 3 2 0.2192402036469236
Case 3a 3 0.5703125 Case 3b 3 0.5703125

4 0.2192402036469236 4 0.3432597963530763
5 −0.0703125 5 −0.0703125
6 −0.01058006788230788 6 −0.05191993211769211
7 0.0234375 7 0.0234375

Note. α1= 2.977273091796802,α2 = 2.239549738364678.

9.2. Coiflets of Length 18

A similar analysis can be done for filters of length 18. In Table4, we present a summary
of our findings by listing the filter coefficients for two cases: coiflets with integers shifts
and maximal coiflets. Filter coefficients are listed in Table6.

Even at higher numbers of vanishing moments and different lengths, we still found
UGLY and BAD filters. They always correspond to coiflets with integer shifts, but it is
not a peculiarity of that case. Varyingα, we found regions of nonmaximal coiflets with a
similar behavior.
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TABLE 3
Summary of All Maximal Coiflets and Coiflets with Integer Shifts for Length 8

Filter α M N σ ‖Q‖ 2M−1 Remarks

Na 2.97727 3 5 1.45584 2.8764 4
Nb 2.23955 3 5 1.44599 2.94511 4
Ma 1.00539 4 3 1.77557 5.91608 8 Daubechies’ Extremal Phase
Mb 2.98547 4 3 1.77557 5.91608 8 Daubechies’ Least Asymmetric
1a 1 3 3 1.77528 2.16403 4
1b 1 3 3 0.14666 14.9356 4 BAD
2a 2 3 3 1.42232 3.11099 4
2b 2 3 3 0.93596 6.91099 4 UGLY
3a 3 3 3 1.77341 2.16473 4
3b 3 3 3 1.46353 2.82288 4

Note. Coefficients are listed in Table 2. The maximal case for wavelets coincides with Daubechies’ maximally
flat filters.

In Figs.11 and12, we plotted|m0| andϕ for the cases 6c (UGLY) and 5b (BAD) with
length 18. The cases 7d and 6d, as listed in Table4, exhibit a similar behavior. Even though
their filter moduli do not oscillate as much as their counterparts of length 8, their behavior
is clearly different than those for which‖Q‖ remains below 2M−1. As an example of
the latter situation, consider the filter 7c. The associated wavelet has only six vanishing
moments, but its Sobolev exponent is higher than the exponent for Daubechies’ wavelets
which have nine vanishing moments.

Note that in all the plots for wavelets in the Fourier domain, the support of the functions
is actually wider than shown.

FIG. 3. Integer shift coiflet: length 8, shift 2, case b (UGLY). Plots of absolute value of filterm0 and scaling
function.

FIG. 4. Integer shift coiflet: length 8, shift 1, case b (BAD). Plots of absolute value of filterm0 and scaling
function.



COMPACTLY SUPPORTED COIFLETS 203

FIG. 5. Integer shift coiflet: length 8, shift 2, case a. Plots of scaling function and filterm0.

FIG. 6. Integer shift coiflet: length 8, shift 2, case a. Plots of wavelet function in both time and Fourier
domain (absolute value, phase, and group delay).

FIG. 7. Integer shift coiflet: length 8, shift 3, case a. Plots of scaling function and filterm0.
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FIG. 8. Integer shift coiflet: length 8, shift 3, case a. Plots of wavelet function in both time and Fourier
domain (absolute value, phase, and group delay).

FIG. 9. Maximal coiflet for scaling function: length 8, shift 2.9773. Plots of the scaling function and filterm0.

FIG. 10. Maximal coiflet for scaling function: length 8, shift 2.9773. Plots of the wavelet function in both
time and Fourier domain (absolute value, phase, and group delay).
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TABLE 4
Summary of All Maximal Coiflets, Coiflets with Integer Shifts, and Two Daubechies’ Maximally

Flat Filters for Length 18

Filter α M N σ ‖Q‖ 2M−1 Remarks

Na 7.81041 6 9 2.5149 16.5942 32 Listed in Table5
Nb 7.1771 6 9 2.49853 17.2438 32 Listed in Table5
Ma 5.94301 7 7 2.74543 33.9874 64 Listed in Table5
Mb 4.5681 7 7 2.71944 36.2534 64 Listed in Table5
5a 5 6 7 2.52726 15.3633 32 Listed in Table6
5b 5 6 7 0.749459 99.1807 32 BAD
6a 6 6 7 2.73586 9.74416 32
6b 6 6 7 2.48495 18.3793 32 Listed in [8, Table 8.1]
6c 6 6 7 1.89308 37.7778 32 UGLY
6d 6 6 7 0.697053 101.213 32 BAD
7a 7 6 7 2.59288 17.1479 32
7b 7 6 7 2.46831 18.1119 32 Listed in Table6
7c 7 6 7 3.29159 18.8021 32
7d 7 6 7 1.77575 41.5161 32 UGLY

Dep 1.94435 9 3 3.16167 155.917 256 Daubechies’ extremal phase
Dla 8.14657 9 3 3.16167 155.917 256 Daubechies’ least asymmetric

FIG. 11. Integer shift coiflet: length 18, shift 6, case c (UGLY). Plots of absolute value of filterm0 and
scaling function.

FIG. 12. Integer shift coiflet: length 18, shift 5, case b (BAD). Plots of absolute value of filterm0 and scaling
function.



206 MONZÓN, BEYLKIN, AND HEREMAN

FIG. 13. Maximal coiflet for scaling function: length 18, shift 7.1771. Plots of filterm0 and scaling function.

10. CONCLUSION

The approach taken in this paper allows one to construct and classify coiflets, which
are wavelets with a high number of vanishing moments for both the scaling and wavelet
functions. Coiflet filters are useful in applications where interpolation and linear phase are
of particular importance.

We introduced a new system for FIR coiflets. In all cases investigated, the system had a
minimal set of defining equations. For filters of length up to 20, the system can be solved
explicitly, and the filter coefficients can thus be accurately determined. For longer filters
we applied numerical methods to compute some solutions. For a few specific examples we
studied the properties of coiflets corresponding to both integer and noninteger values of the
first moment of the scaling function. Nevertheless, the problem of the existence of coiflet
filters of arbitrary length and their full classification remains open.

FIG. 14. Maximal coiflet for scaling function: length 18, shift 7.1771. Plots of wavelet function in both time
and Fourier domain (absolute value, phase, and group delay).
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TABLE 5
Coiflet Filters of Length 18: Maximal Case

k hk k hk

M = 6 0 −0.00006423105557385401 M = 6 0 −0.0002036914946771235
N = 9 1 −0.0002979447888413989 N = 9 1 −0.0002488151932121008
α = α1 2 0.0004927238418624587 α = α2 2 0.00221156402899935
Case Na 3 0.004159721116204626 Case Nb 3 0.005347581803838808

4 −0.001356751057023208 4 −0.02049652597342785
5 −0.03424128516618039 5 −0.03435328483085293
6 0.01286924643513836 6 0.1757589722528208
7 0.304174064910559 7 0.5137703862306729
8 0.5487303262739295 8 0.4326537198943506
9 0.2920015377606661 9 0.004003841371920543

10 −0.0979310190825782 10 −0.1200187966274661
11 −0.0822374057724846 11 0.02108432415813931
12 0.05265614514287543 12 0.03561677266929025
13 0.01690326579283296 13 −0.01228600681641712
14 −0.01818476072132749 14 −0.005733199970056795
15 0.0001391533251141822 15 0.002854859153956041
16 0.002788320222696984 16 0.000211185220166843
17 −0.0006011071778707536 17 −0.0001728858780453669

M = 7 0 0.0003232178738443985 M = 7 0 0.003401479882015607
N = 7 1 0.001666157023192355 N = 7 1 −0.004130806329954543
α = α̃1 2 −0.001655740666688795 α = α̃2 2 −0.03536170269249431
Case Ma 3 −0.02256218521490427 Case Mb 3 0.05747767104264993

4 0.005072730487709637 4 0.3843902644404712
5 0.2365835515640513 5 0.5358632409346619
6 0.5195340737893435 6 0.1908760013178301
7 0.3835397677855875 7 −0.1321131305836887
8 −0.04580954371864931 8 −0.05295999083912471
9 −0.1400028853157529 9 0.05813917906468963

10 0.03870906867740069 10 0.00975811187504831
11 0.05085645319997351 11 −0.01825628044991493
12 −0.02266660403703607 12 0.0002608645070967113
13 −0.0106114132773682 13 0.00327048515783943
14 0.007588889762655687 14 −0.0003823627249285679
15 0.0003179232674700494 15 −0.0002646325745805278
16 −0.00109609216857971 16 0.000017334234085592
17 0.0002126309677505884 17 0.00001427373829770887

Note. α1 = 7.810413113222375, α2 = 7.177096173069426, α̃1 = 5.943011907827611, α̃2 =
4.568098992005785.

APPENDIX

Assume thatf andg are functions with enough derivatives,n is a nonnegative integer,
andγ is a real constant.
D denotes the derivative operator andxD the operatorx d

dx
. For any operatorT , T 0 is

the identity operator. Thenth iteration ofxD is
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TABLE 6
Coiflet Filters of Length 18: Two Integer Shifts

k hk k hk

M = 6 0 0.001440768926720368 M = 6 0 −0.0000629311510126045
N = 7 1 0.002053404421631864 N = 7 1 0.00004962145501794398
α = 5 2 −0.02219838096076973 α = 7 2 0.001740671204645141
Case 5a 3 −0.01250987368937947 Case 7b 3 0.001981652779610451

4 0.2259647068843012 4 −0.02288745495628588
5 0.5319491906628806 5 −0.01305004769565276
6 0.3832103239740163 6 0.2273416538968731
7 −0.04397844411169963 7 0.5339067763210922
8 −0.1177139643780853 8 0.3805539932682246
9 0.03476163022933876 9 −0.04661451530829168

10 0.03446875381675335 10 −0.1140327606217869
11 −0.01539096154107554 11 0.03625460316792878
12 −0.005371847958435806 12 0.03137758456237431
13 0.003361708092256614 13 −0.01539787454248928
14 0.0002159461146890029 14 −0.003937649303352087
15 −0.0002580954448262954 15 0.00298786428539753
16 −0.00001630641918942108 16 −0.0000931068996797331
17 0.00001144138087300107 17 −0.0001180804626132358

(xD)nf (z)=
n∑
k=0

Snk zkDkf (z), (A.1)

whereSnk are the Stirling numbers of the second kind.
These numbers have a closed-form given by

Snk =
1

k!
k∑
j=0

(
k

j

)
(−1)k+j jn. (A.2)

Thefalling factorial powersof z are

zn = z(z− 1) · · · (z− (n− 1)), z0= 1.

The change of basis relating{zn} and{zn} is given in terms of the Stirling numbers of the
first and second kind:

zn =
n∑
k=0

snk z
k, zn =

n∑
k=0

Snk zk.

Therefore,snk is the inverse matrix ofSnk and then, forn≤ r,
r∑
i=k
Sni sik = δnk. (A.3)
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From (A.1) and (A.3)

znDnf (z)=
n∑
k=0

snk (xD)
kf (z). (A.4)

Note that for a polynomial of degreer, it is not true that(xD)nP (1) is zero forn > r.
However, these values are linear combinations of(xD)nP (1) for n≤ r, as we show in the
next lemma.

LEMMA A.1. For eachk,n, r non-negative integers withk ≤ r, andγ any real number,
define the polynomials

Lrk(z)=
r∑
i=k

sik

i! (z− 1)i and L
γ
rk(z)=

r∑
i=k

ikγ i−kLri(z).

LetP be any polynomial of at most degreer. We have the following properties:

A (xD)nLrk(1)=
r∑
i=k
Sni sik,

B P(z)=
r∑
k=0

(xD)kP (1)Lrk(z),

C (xD)nP (1)=
r∑
k=0

(xD)kP (1)
r∑
i=k
Sni sik,

D P(z)=
r∑
k=0

(xD)k(x−γ P (x))(1)
k! L

γ
rk(z).

Proof. PartA follows from (xD)n
(z−1)i

i! (1)= Sni . To verify that, expand(z− 1)i and
use (A.2).

Whenn ≤ r, PartA and (A.3) imply that (xD)nLrk(1)= δnk . Therefore,{Lrk}rk=0 are
linearly independent and thus they are a basis for the polynomials of degreer or less. The
representation of PartB then readily follows.

PartC is a consequence of PartsA andB.
By definition ofLγrk , the right-hand side of PartD equals

r∑
k=0

(xD)k(x−γ P (x))(1)
r∑
i=k

(
i

k

)
γ i−kLri(z)

=
r∑
i=0

(
i∑

k=0

(
i

k

)
(xD)i−k(xγ )(1)(xD)k(x−γ P (x))(1)

)
Lri(z)

=
r∑
i=0

(xD)i(P )(1)Lri(z).

PartD then follows using PartB.
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