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New compactly supported wavelets for which both the scaling and wavelet
functions have a high number of vanishing moments are presented. Such wavelets
are a generalization of the so-called coiflets and they are useful in applications
where interpolation and linear phase are of importance. The new approach is to
parameterize coiflets by the first moment of the scaling function. By allowing
noninteger values for this parameter, the interpolation and linear phase properties
of coiflets are optimized. Besides giving a new definition for coiflets, a new system
for the filter coefficients is introduced. This system has a minimal set of defining
equations and can be solved with algebraic or numerical methods. Examples are
given of the various types of coiflets that can be obtained from such systems. The
corresponding filter coefficients are listed and their properties are illustratechos
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1. INTRODUCTION

Among compactly supported wavelets fof(R) a family known ascoiflets has a
number of properties that make it particularly useful in numerical analysis and signal
processing, 8, 9]. Coiflets allow for both the scaling and the wavelet functions to have
a high number of vanishing moments and, as we show here, the associated low-pass filters
are almost interpolating and nearly linear phase within the passband. In 1989, R. Coifman
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suggested the design of orthonormal wavelet systems with vanishing moments for both
scaling and the wavelet functions. They were first constructed by Daube8haesd she
named thentoiflets

In [1] shifted vanishing moments for the scaling functiprwere used to obtaione
point quadratures

Fo)~ Y fanet =k, (1.1)
keZ
where f is a sufficiently smooth function on the multiresolution sp&gend{ f (x;)} are
good approximations of the coefficients fin the expansion.
Since in [l] both matrices and operators were considered, the ppipjsvere chosen
to bex; =k + o, wherew is an integer. This “shifte corresponds to the first moment of
the scaling functiom,

a:/xgo(x)dx. (1.2)
R

Note thatw is not the center of mass becauyse) is not a positive functionl2], except
for the Haar case.

The coiflets constructed by Daubechies correspond to particular integer choices of
shift . Several other examples of coiflets, still for integer shifts, can be found in th
literature @, 11]. In this paper we use the fact thatdoes not have to be an integer. As
a matter of factw may be chosen to be noninteger to optimize the construction of coiflet:
An example of an approach similar to ours can be foundLB). [Furthermore, we show
that the shifix cannot take arbitrary real values. In fact, we show that its value lies withit
the support of the scaling function. Therefore, the shifts for the known coiflets necessar
correspond to some integer values within this support.

Relation (.1) is useful in pseudo-wavelet approaches to adaptively solving PDE:
Without going into details here (seg]], let us state that iboth f and £2 belong toVo,
then

FR0 = Y e k) (1.3)
keZ
is a quantifiable approximation. Notice that approximations lik&)(or (1.3) are not valid
for Fourier or Fourier-like bases.

On the other hand, equality ii.() cannot be achieved for all functions ¥y by using
any compactly supported wavelets. However, using infinite impulse response (lIR) filtel
it is possible to have an exact version df%) or (1.3) and this choice corresponds to
interpolatingdfilters.

A similar situation occurs if we require linear phase response, which is another desir
property for the associated quadrature mirror filter (QMFY the wavelet bases. Except
for the Haar system, finite impulse response (FIR) QMFs cannot have a linear phe
response. To obtain that property one has to use IIR filters or give up orthogonality a
replace it by biorthogonality.

In this paper we show that FIgbifletscan nearly achieve both properties, interpolation
and linear phase, while keeping a reasonable number of vanishing moments for

3 Originally, these kind of filters leading to perfect reconstruction were named conjugate quadraturel@ters [
while the denomination QMF fromlp] would only apply to some aliasing cancelling filters. We use the term
QMF asin B, pp. 162, 163], where one can find a history of both terms.
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wavelety,. The key to our approach is to insist on a reasonable approximation to linear
phase only in the passband of the associated low-passiiijter

It is well known that the properties defining coiflets can be easily described in terms of
the coefficientgh} of mg. The conditions ot} turn out to be dependert4], and one
of the goals of this article is to derive a system that is free of redundant equations. To obtain
such a system, we perform a change of variable§ghvia a linear transformation that
has the shiftx as a parameter. This defining system is partly linear and partly quadratic.
For filter lengths up to 20 the system can be explicitly solved via algebraic methods like
Grdbner bases. Its particularly simple structure allows one to find all possible solutions.
For longer filters we apply Newton’s method to numerically compute some solutions.
Nevertheless, for arbitrary filter lengths, we were unable to solve the open problem of
the consistency of the defining system, i.e., we could not yet prove the existence of coiflets
for an arbitrary number of vanishing moments.

We modify the original definition of coiflets inl[ 9] to allow for noninteger shifts
in (1.2) and to make more specific the relationship between the length of the low-pass filter
and the number of vanishing moments of both the wavelet and scaling functions.

This paper is organized as follows. In Section 2 we give some preliminaries about
wavelets in general. The moment conditions for both the scaling and wavelet functions
are discussed in Section 3. In Section 4 we give a new definition of coiflets and motivate
it. In Sections 5 and 6 we address two properties of coiflets: the interpolation property and
nearly linear phase. We introduce the polyphase equation in Section 7 and use it in the
construction of coiflets in the next section. Furthermore, in Section 8 we give details about
the linear and quadratic equations of the defining system for coiflets. We also discuss the
various types of coiflets that can be obtained from such systems and show explicit examples
in Section 9. For clarity, we gathered auxiliary material in the Appendix.

2. PRELIMINARIES

e Unless otherwise indicated,andé are real variables whileis a complex variable.
e A QMF is a 2r-periodic functiormo,

mo(§) =Y hre %, (2.1)
keZ
such that
Imo(§)12 + Imo(& + )| =1. (2.2)

The numbergh,} are thecoefficientof the filtermo. We assume that all; are real and
only a finite number of them is nonzero. The QMF conditigr?)is then equivalent to

23 hihiron =8, forneZz. (2.3)
k

The Kronecker symbdl,,, is defined as,,,,, = 1 if m = n andé,,,, = 0 otherwise.
We denote byH the symbol of{h;}, i.e., thetransfer functionof mg. We have
H(e™') =mo(§) or

H(z)=Y hz". (2.4)
k
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We also refer to sucli/ as a QMF. As a consequence &f3), H satisfies the following
functional equation:

HQHGEH+H(-2)H(-zH=1 (2.5)

We refer to this equation as the QMF equation.

In order to generate a regular multiresolution analysis ($¢€5]), we need two
additional properties fof .

The first one is th@ormalizationor low-passcondition. It forces

mo()=1 or H@)=1 (2.6)

The second one, which we refer to as Cohen’s condition, ensuregftligmnonzero in
certain locations on the unit circl@][

In practice, we first find a normalizedl satisfying the QMF equation and then verify
Cohen’s condition.

e A solutiong of

w(%) = 2;hk¢<x —k) (2.7)
is called a “scaling function.” Equivalently, on the Fourier side we have
P(28) =mo(§)@(&), (2.8)
whereg(é) = [T p(x)e~ ¥ dx, and
¢(0) =1, (2.9)

as a consequence &.6).

3. MOMENT CONDITIONS

One of the key properties of interest for wavelet bades3] is the property of vanishing
moments of the wavelet:

/xklﬂ(x)dxzo forO<k <M. (3.1)
R

In [8, Theorem 5.5.1], it is shown that if the wavelet hasounded derivatives then we
have at least: vanishing moments, i.e., we hat¢ > m in (3.1).

Also, (3.2) implies that all polynomialg of degree less tham can be expressed as
linear combinations of integer translatesof

P =Y ( /R POPG — k) dy)go(x 0. (32)

k

See [L3, Section 2.6] or17] for detalils.
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In terms of the symboH, (3.1) requires that

> (=/j*hj=0  for0o<k <M, (3.3)

or equivalently, the factorization

1 M
H(z)=< JZFZ> 0(2), (3.4)

whereQ(—1) #0.
As pointed out in the Introduction, we are interested in vanishing (shifted) moments of
the scaling function

ak—/(x—oz)kw(x)dx—ﬁko forO<k <N, (3.5)

whereax is a real number.
If «is 0, we write/\/lf for thekth moment ofp. We have

MG, =S (Z) (—)" M. (3.6)
k=0
From @.8) it follows that
A8 H(28) = ' H(e ™)™ §(8), 3.7)

and then, by taking derivatives &= 0,

n—1

@ -HME, =Y (Z) Ml MY (3.8)
k=0
In addition, from 2.9
Ml =1 (3.9)

HereM!.  are the shifted moments of the sequeficg:

M}, = Z(] —a)n; (3.10)

Again, fora = 0 we drop the index and denote theth moment byM”.

Because of the recurrencd.g), (3.9), the moments ofp can be computed using the
moments of{ i, }. Nevertheless, if some of the momentswoére zero, we also obtain the
following explicit relation.

LEMMA 3.1. AssumeM? , =& forallk, 0<k < N.Then

M, = M, (3.11)

n—1
forO<n < 2N.



COMPACTLY SUPPORTED COIFLETS 189

Equations 8.6) and @.8) imply that the following four conditions, valid for akl, 0 <
k < N, are equivalent:

M = / x*o(x)dx = oF, (3.12)
R

MG = /R(X — a)*p(x) dx = 8. (3.13)

M =" = )by =6, (3.14)
j

Mp=Y"j hj=a. (3.15)

J

Therefore, imposing moment conditions for either the wavelet or the scaling functic
amounts to finding a QMM with moment conditions for its sequence of coefficients.
In particular, the first moment a@f, as defined in1.2), equals the derivative aff at one,

a=H'(1).

On the other hand2(1) forces|H (z)| < 1 for z on the unit circle. These last two properties
allow us to show that the valueshould be within the support gf. Observe that this result
is not evident since is not a positive function.

PROPOSITION 3.2. Let H(z) = Y} _o/xz* be any nonconstant polynomial with real
coefficients andoh,, # 0.

If H1)=1 and SUp|H (z)] <1,
|z|=1

thenH'(1) belongs to the intervalo, n).

Proof. We need the following version of the classical Bernstein inequality for
trigonometric polynomials (see2], Theorem 7.24] or3, Corollary 5.1.6]):Let p be
any polynomial with complex coefficients and at most degréEhenmax;|=1 |p’(z)| <
nmax; =1|p(z)|. Equality holds iff there exists a constansuch thatp(z) = cz".

We apply Bernstein’s inequality to the polynomiagz) andz” H (z~1). In both cases
equality cannot hold and we obtdil’(1)| < n and|n — H'(1)| < n, respectively. Sincél
has real coefficientd/’(1) is a real number and the proposition follovil.

4. COIFLETS

As argued above, it suffices to define coiflets in terms of the filterSince for any
integern the filter z" H (z) generates the same multiresolution analysi¢g/asve always
assume the coefficients;} of H to be zero fok < 0.

DEFINITION 4.1 (coiflets). Lel{hj}]L.:‘(} be the coefficients of a real QMH. We say
that H is a coiflet of shift « and moments\, N if the following three conditions are
satisfied:
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L-1
S~/ ;=0  for0<k <M, (4.1)
j=0
> j*hj=d*  for0<k <N, (4.2)
3M>L-1 and3v>L -1 (4.3)

Using the equations of the previous section, icaiflet H# also satisfies Cohen’s
condition, its associated wavelet and scaling functions will WeyeespectivelyN — 1,
vanishing moments. The normalizatiéh(1) = 1 corresponds tc4(2) with k = 0.

The caseL = 2 corresponds to the Haar basis. Ho= 4, (4.3) forcesM > 1 and
therefore coiflets of length four are the same as Daubechies’ maximally flat filters of that
length. In Sectior® we discuss the casés= 8 andL = 18.

Our definition of coiflets is restrictive in that we require not just some but nearly
all possible vanishing moments for both the scaling and the wavelet functions (see
Remarkst.3 below).

It follows from Proposition3.2 that the value of the shifi belongs to(0, L — 1).
Furthermore, in all cases computed, there were region®,ih — 1) where« did not
occur. We refer to Tablé to illustrate this fact for integer shifts. For example foe= 14,
the valuese = 1,2, and 6 are missing in the interved, %(L — 1)) = (0,6.5). Due to
symmetry about the center 6.5 (see SecBad]), the valuesx = 7, 11, and 12 do not
occur either.

It is important to realize that the condition& 1) and @.2) are dependent. In fact, using
the notationa] for the integer part ofi, we have the following lemma fronif].

LEMMA 4.2. Let H be a QMF with coefficient$h;} that satisfy)"; j*h; = o
for0<k < N, then

> =/j*hj=0 foro<k< E(zw 1)].

TABLE 1
Coiflets with Integer Shifts

LengthL Shifts in (0, (L — 1)) M N
6 1,2 2 3
8 (1,23} 3 3
10 (1,2,3,4 4 3
12 (3, 4,5 4 5
14 (3, 4,5} 5 5
16 {3,4,5,6,7} 6 5
18 (5,6, 7} 6 7
20 {5,6,7,8 7 7
22 {5,6,7,8,9,10} 8 7
24 {6,7,8,9,10} 8 9
26 {7.8,9,10} 9 9
28 {8,9,10,11,12 10 9
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Proof. Applying the operatotx D)" (defined in the Appendix) at = 1 to the QMF
equation 2.5), or taking derivatives & = 0 in (2.2), we have for alk,

> (Z) (=D ap—rar + l;) (Z) (—=D*byu—kbx = 8,0, (4.4)

k=0

wherea; = (x D)*H (1) andby = (x D)*H (- 1).

The assumption or{ implies thatbg = 0 and that the first sum in4(4) is zero
for n < N. Choosingn even and < n < N in the second sum, it follows tha = 0
forO<k <[3(N+1)]. m

Remarks 4.3 1. The lemma shows why the conditieh) is consistent with the theory
of polynomial QMF. For a QMF of degreke — 1 it is well known that there are onl%
degrees of freedom for the filter coefficients (s&ég for example).

By askingN ~ % we already have/ > £. The £ extra conditions in4.3) bring the
total number of conditions té + % = % Viewed this waygoifletsare meant to maximize
both numbers of vanishing moments, while their values remain close to each other.

2.1f N is even and¥ > 4 in the definition of coiflets, we obtaip; j¥h; ="
(replacen by N in (4.4)). For this reasony is always odd in our examples (see Talles
2, and6).

In particular, if M > 1in (4.1) and [g x¢(x) dx = « then

/ x2<p(x) dx = a?.
R

This result has been noted by other authors. See, for exameTheorem 2.3] or
[11, Theorem 1].

3. We can give a geometric interpretation of Lem#a Condition @.2) forces
Imol|? to be flat at zero. Because of the QMF condition, the same is truearid therefore
mg is also flat atr, but only “half as flat."

5. ALMOST INTERPOLATING PROPERTY

Consider the scaling functignassociated with aoifletof shift « and momentd/, N.
Recall that each multiresolution spaég is generated by the basis functiogs (x) =
22p(2"x — k)}x. With (4.2), or equivalently 8.12), for any polynomialp of degree less

thanh,
k
/p(X)wnk(x)dx=2_"/2/p<y;: )w(y)dy=2_"/zp<a2—tk>'

If the degree op is also less thav, then @.2) implies that

p)=y_ (/Rp(y)wnk(y)dy)wnk(x)- (5.1)

k

Now, assume thap(x) is a polynomial of degree less thah and N. Combining both
equations above, the coefficients in the expansion of such a polynomial (at any scale)
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its values on a shifted dyadic grid:
a+k
px) = Xk: p ( >

Since at some scale any smooth function can be well approximated by polynomials, we
have the almost interpolating property discussed in the Introduction.

Here we see the advantage of having htland N as large as possible for a given filter
length, but also of having their values close to each other.

)(p(Z”x —k).

6. NEARLY LINEAR PHASE PROPERTY

In this section, for a filte (¢!), we relate the condition of having vanishing moments
with its phase being close to linear in the passband.

LEMMA 6.1. Let f (&) be a function that takes complex values and such fliats) =
f(&). Assume thaf (0) = 1 and consider the polar decomposition of

fE) =a)e’®, (6.1)

in a neighborhood of = 0. Because of the condition ofy, a is an even ang an odd
function. If fory e Rand foralln, O<n < N,

D" (™7 f(£))(0) =0, (6.2)
then forO <n < N, the derivatives op at 0 can be computed as
D p(0) = y 8,0 — i D¥ (™7 £(£))(0). (6.3)

Consequentlyp(w) = yw + o(w?N/?) asw — 0.

Proof. From 6.1

In(e™7% £(£)) =In@()) + (p(§) — y&)i. (6.4)

Note that if a functiorg satisfiesD* g(a) = 6xo for 0 < k < N, then the derivatives of
the compositiork o g are given by

D" (hog)(a)= Dh(g(a)) D"g(a) forO<n <2N. (6.5)
Thus for O0< n < 2N, the nth derivative of the left-hand side in6{) equals

D" (e~'V8 £ (£)). The result then follows becaused(¥) is an even functionll

Since bothH (¢/6) andg (&) (use B.13 and B.14) satisfy the conditions of the previous
lemma fory =« or —«, using Lemma.1we arrive at the following proposition.

PROPOSITION 6.2. Let H be a polynomial with real coefficien{&;} and moment
conditions/\/lg,k =30 for 0<k < N. If ¢ is the scaling function solution ¢2.7) and in
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a neighborhood of =0
HE®)=an&e™ S and  §) =ay)e®,

whereay andag; are real even functions angly and p; are real odd functions, then
forO<n <N,

D* 1 py(0) =ad0+ (-1)" M, 4. and
h

M
D py(0) = —abyo + (~1)" T

Consequentlyp i (w) = aw + o(w?N/2), andpg(w) = —aw + 0(?N/2y asw — 0.

As stated in the Introduction, a high numb€rof shifted vanishing moments for the
scaling function implies that the phase of the associated filter is close to linear within tl
passband. The larger the valueMdthe better the approximation. The same consideration:
hold for the phase af but they do not necessarily apply to the phasé of

Recall that

V(26) =m1(6)¢(E),  where  mi(§) = —€ mo(E + ).

This dependence qfv; onpy andp; can be seen by comparing the top parts of Figs.
and2. In the latter casep,, is flatter at zero because of the better behavior aff the
corresponding g .

In Figs.5-6, 9-10, and13-14 one can see the effect &f on the phase and group delay
for several filters and wavelets. In these examples, the valugdsare 35, and 9. Note
that, asN increases, the filter group delay becomes flatter about zero.

Figuresl and2 compare the group delay of some coiflets of length 18 with Daubechie:
maximally flat filters of the same length.

Since for Daubechies’ filter& = 3 independent of their length, those filters cannot
have group delays that are flat at zero. Still, some choices are better than others and

Filter group delay Wavelet group delay
,6 _7
-6.5
—7 -7.5
-7.5 -8
-8
_5.5 -8.5
! i
- 0 T -4m -2 0 21 47x
Filter group delay Wavelet group delay
-2
-6.5
_3 -7
-4 -7.5
s -8
-8.5

—Lt’/ 0 \a —9.5417: %x 0 2% 4n

FIG. 1. Comparison between the group delaysmef andv. Maximal coiflet for wavelet: length 18, case a
(top) and Daubechies’ extremal phase filter of the same length (bottom).
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Filter group delay
—4

Wavelet group delay

—4.5 -7.5
_5 _
-5.5 8
-6 -8.5
-6.5
- 0 T —9 SJTC -27% 0 2T 47
Filter group delay Wavelet group delay
-7.75
_3 _g 34" -27 0 2T 4w
-8.25
8.5 -8.4
-8.75 -8.6
—o.25h 0 x =88

FIG.2. Comparison between the group delaysrmef andv,. Maximal coiflet for wavelet: length 18, case b
(top) and Daubechies’ least asymmetric filter of the same length (bottom).

least asymmetric filter in FigR is defined as the maximally flat filter whose phase is as
linear as possible within the whole bapdr, 7]. See B, Section 8.1.1].

On the other hand, Propositiéri2implies that for coiflets only the phase in the passband
is forced to be linear. Fortunately, the value of the phase in the stopband can be ignored in
practice because the absolute value of the filter is close to zero in that region. Theédarger
is in (4.1, the more precise the last statement is, and we can again see the interplay of the
conditions in the definition of coiflets.

7. THE POLYPHASE EQUATION

In order to find solutions of the QMF equation, we use an equivalent functional equation.
Using the standard notation for tpelyphase componenif and H; of H(z),

Ho(z) =) hxad* and  Hi()=) hauiiz*,
k k

these functions satisfy

HO(ZZ) = w’ (7.1)
Hl(Zz) = w’ (7.2)
2z
H(z) = Ho(z*) + zH1(z?). (7.3)
Using the notatiory (z) = f(z~1) and (7.1), we have thatZ.5) is equivalent to
~ 1
(HH)o(z) = > (7.4)

and since

HH = (HoHo + H1H1)(z%) + z(HoH1 + 2 *HoH1)(z?), (7.5)
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we obtain thepolyphaseequation

1
Ho(z)Ho(z™Y) + Hi(2) Hi(z 1) = > (7.6)

The problem of finding a solutioff of the QMF equationZ.5) is thus replaced by finding
the solutionsHy and H; of the polyphasesquation. Instead of performing two operations
on the variable in (2.5), namely—z andz ™1, in (7.6) we only haver 1.

8. THE CONSTRUCTION OF COIFLETS

Recall that we can write any polynomial QMF a3 (z) = Z,f;olhkzk, where
hohp—1#0.
We describe a system for coiflets not in termg/gf} but in terms of the new variables

1 Coa)F 1 a—1\F
ak:EZG_E) h2;j and bk=az<1— > )h2j+l,

J J

where O<k <1, andl = %(L — 2). The transformation fronfyz; } to {ax, by} is linear and
parameterized by. As beforep = Zj Jjhj is the first moment op.

For what follows, it is more convenient to descrigeandby, for arbitraryk > 0, using
the operatox D. We then have

1 1
ax==GD T PH)(D)  and b= = (D) (" TV 2Hy(D).

We denote by the set of variablega} _, and{b}; _,. In LemmaA.1 in the Appendix
we show thatHp and H1, and thereforéd, are completely determined By

Note thata;, andby are not necessarily zero fér> [ but each of them can be expressed
as a linear combination of the variables)inTo verify that, apply part D of Lemma.1 to
the polynomialsHy and H1, which are both of degrde

8.1. Quadratic Conditions

In order to impose the nonlinear (quadratic) conditions2rg)( we use the equivalent
formulation given by the polyphase equation.
Regarding 7.6),

S(z) =1/2U-2 (HO(Z)HO(Z_l) + Hi(2)Hi(z™Y) — %)

is a polynomial of degree at moskt— 2. Therefore, for the polyphase equation to hold, it
suffices to show that

D*S(1)=0  forO<k<L -2
Using (A.1) and @A.4) from the Appendix, the last equation is equivalent to

1 1 - -
§5n0 = ;(xD)"(HoHo + H1H1) (1)
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= %(w)" (x ™2 Ho(x)x*?Ho(x ™) + x @ V2 Hy(0)x @ V21 (x 1) (1)
= Z(_l)k(an—kak + bn—ibi) (8.1)
k=0

forO<n<L-2.
If n is odd, the previous equation is always satisfied and then, as we remarked éarlier,
equations are enough to characterize a QMF of lefAgth

8.2. Linear Conditions

We now discuss how to rewrite the (linear) conditiofhd) and @.2) for coiflets in terms
of the variables in.
First, for 0<k < M, Eq. @.1) is equivalent to
(xD)'H(-1) =04 (xD)'(x*H(-x))(1) =0
and, for 0<k < N, Eq. @.2) is equivalent to
DY H(D) =a" & (xD)* (x “H(x)(1) = 0.

From (7.3), for x in a neighborhood of 1,

XTH(—x) = (x *?Ho(x) — x = D/2H (x)) (x?)

and
X H(x) = (x"2Ho(x) +x V2 H (1)) (x?).
Then,
%(xD)"(x_“H(—x))(l) = 2"(an — bn) (8.2)
and
%(xD)”(x_“H(x))(l) =2"(an + by). (8.3)

Therefore, the moment conditions for coiflets imply
1
{“OZbOZ 2 (8.4)

wherem = min{M, N}. Fork > m, Eq. @.1) implies thatay = by, whereas4.2) implies
thatay = —by.

Thus, we can rewrite the vanishing moment conditions on the seqyépgceas very
simple conditions on the variablesin

Substituting 8.4) into the system§.1) we automatically verify the firsin equations.
That is, when < n < m in (8.1) we obtain the dependence between linear and nonlinear
equations described in Lemmnda2
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8.3. A System for Coiflets

Combining 8.1) and 8.4), the system for coiflets can be written in terms of the
unknowns{a, an, ..., a;, by, ..., b},

1 n—1
5010 = an + by + > (—D*an-rar+baibr), nevenm<n<L-2 (85)

k=m

Again,m =min{M, N}, whereM, N, L satisfy 4.3, and/ = %(L —2). Recall thatz; and
by for k > [ can be expressed in terms of the variable¥ ia {ao, ..., a;, bo, ..., b;}.
Depending on whethei is even or odd, we are left Wit%(Zl +1-m—-1) =
3(L—m—2)or 3(2/+1—m) = (L —m — 1) equations in§.5). Remarkably, because of
(8.4), the first half of these equations is linear. The other half is quadratic in the unknow
(as in the original QMF system). See the examples in Seétion
Because 0f4.3), we can check that the difference between the number of unknowr
{o, am, ..., a1, by, ..., b} and the number of equations i8.9) is one.
Adhering to our definition, we are led to a one-parameter family of coiflets with
parameterr. However, as can be seen in the examples in Se&idhe values ofx are
not completely arbitrary. As a matter of fact, they are restricted to certain regions.

8.3.1. Symmetry aboé(L —1). LetH bethe QMF that defines a coiflet of length
shift «, and momentd/, N. From @.5) it is clear that the reciprocal polynomial &f,

He(z) =L tH (Y,

is also a QMF of lengthL. The coefficients ofd, are{h;_1, ..., ho} and the associated
scaling function isp, (x) = ¢(L — 1—x). Note thatH, is also a coiflet with moment¥, N
but shift L — 1 — «. Indeed, sinced and H, have the same multiplicity of zeros atl,
(4.1) follows. With respect to4.2),

(xD)"H,(1) = Z <Z> (L-1D"*~D*xD)H®)
k=0
=(L-1-a) if0<k<N.

Finally, H, cannot have more vanishing moments {gr becauseH = (H,),, and a
computation similar to the one above would force extra vanishing moments on

Due to this symmetry, we can consider coifléfswhose shifts belong to the interval
(0, %(L — 1)]. All other coiflets correspond to the reciprocéis.

8.3.2. The non-maximal caseGiven a QMFH of lengthZ, we want to simultaneously
satisfy @.1)—(4.3 with the smallest possibl® andN. A filter of that type will be called
anonmaximatoiflet or simplycoiflet This condition does not uniquely determife but
as pointed out above, we have a one-parameter family of nonmaximal coiflets. We sel
the shifta as the parameter to characterize that family.

Within coiflets of a certain degree, we distinguish two cases: coiflets with integer shif
and maximal coiflets.
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8.3.3. Coiflets with integer shifts.Coiflets for integer choices of the shifix were
first computed by Daubechie8][ In all cases that we computed, coiflets with integer
shifts were always nonmaximal. In Tablewe list, for different lengths., the range
of possible integer shifts ir0, %(L — 1)) together with the corresponding number of
vanishing momentsM for the wavelet function and/ for the scaling function. Note that
M and N remain the same for all the shifts, but the number of solutions may vary. For
example, for length. = 8, there are three possible shifts= 1, 2, and 3, and each has
two possible solutions. Fat = 16 the possible shifts ake= 3, 4, 5, 6, and 7, with 2, 4,
2, 6, and 4 solutions, respectively. In other words, even if we.fi4, N, anda there is
no unique solution.

8.3.4. The maximal case.n contrast with the nonmaximal case, we could fix the shift
a by asking for an extra vanishing moment for either the scaling or the wavelet function.
(Because of the second remark in Remak!d an extra condition for the scaling function
will actually add two vanishing moments.) In either case, there is at most a finite number
of solutions or there are no solutions. If solutions exist they will be caflagimalcoiflets.

9. EXAMPLES

9.1. Coiflets of Length 8

We show how to construct all coiflets of length= 8. In this case
V = {ao, a1, az, az, bo, b1, bz, b3}.

The nonmaximal case.ln order to obtain nonmaximal filters we chooke= N = 3
for our initial moments. Fromg.4),

1
{“Ozbozi’ 9.1)
ai1=ax=b1=by=0.

So, we only need to determiag, b3, anda subject to 8.5). In this case there are only two
equations:

as+bs=0 and ag + bg — az® — b3®> =0.

As explained at the beginning of SectiBnusing Part D of Lemma&.1 and ©.1) one can
write aq, ba, ag, andbg as linear combinations of, b3, andw.
The previous system then becomes

—105+ 224y — 13Qw? + 2802 — 20* + 115213 — 384uas3
+ 15363 — 384xb3 =0,

—1785+ 4312y — 3703% 4 15683 — 357a* + 420° — 2u° (9.2)
+ 691213 — 576Qvaz + 1728v%a3 — 192x3a3 — 9216132
+ 145923 — 9792rb3 + 2304x2b3 — 19203b3 — 9216»32 = 0.



COMPACTLY SUPPORTED COIFLETS 199

An equivalent system, obtained via Grobner bases wiésdreated as parameter is

212625 599424 + 70486@2 — 45836@3 + 181152/ — 44624x°

+6696x° — 56007 + 2008 4 (790272— 558336 + 107522 + 752643

— 19968 + 1536x°)a3 + (3686400 2064384 + 2949122%)az2 =0, (9.3)
—105+ 224y — 132 + 280° — 2a* + (1152— 384x)as3

+ (1536— 384x)b3 =0.

The latter system helps in determining the range of values.for
The left-hand side of the first equation i8.9) is a polynomial of degree two ims. To
have real solutiongs we require

—29561+ 99568y — 12810@> + 87416:° — 35448* + 8848&°
—1336:° + 112" — 4B > 0. (9.4)

That is,a should belong to one of the following two intervals (approximate end points):
[0.6818713.0943] or [3.90568 6.318172. (9.5)

Note that the intervals are symmetric abcthas discussed in Sectidh3.1 Also, in
agreement with Propositidh2, both intervals are included i®, 7).

Only for « in these intervals can we solv@.8) and therefore there is at least one coiflet
with that particular shifte and three vanishing moments for both the wavelet and the
scaling functions.

Coiflets with integer shifts. In this example, we can choose the shift to be any intege
in the interval(0, L — 1). This is not possible in general as shown in Table
Due to symmetry, we only consider= 1, 2, or 3. For instance, it = 3 in (9.3) then

V7
and
3

The two solutions for this case then have the following filter coeffici@mis. . ., h7}

1 3 9 L3 73 9 9 1 n 3
32 T 12832 PP 1232 P 128 32 P28

The choice of positive sign ir9(6) leads to the filter 3a, while the negative sign leads to

filter 3b. Their numerical values are listed in TaBleNote that because 0®(1) and 0.7),

the polyphase componefl has rational coefficients.

The maximal case. From Section8.2and8.3.4 it follows that we can choose an extra
moment for the wavelet function (by setting = b3) or two extra moments for the scaling
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function (by settingiz = —b3). In the latter case 9(3) becomes

8505— 36876y + 66224¢2 — 585763 + 2848&* — 8008x°
+1296x% — 112¢7 + 408 =0, (9.8)
105— 224y + 1302 — 283 + 2a* + 38413 = 0.

Solving for realr in the first equation we obtain only two possible valueS);r%), namely,
a1 =2.97727 and «2=2.23954 (9.9)

Note that these values are in the first interval giverdil)( The corresponding coefficients
{hy} are listed in Tabl@. Both filters haved = 3 andN =5.

The extra moment for the wavelet will also lead to two solutions but with= 4
and N = 3. They correspond to Daubechies’ maximally flat filters of length 8. Their
coefficients can be found ir8]. For coiflets of lengthl. > 10, the number of vanishing
moments of the scaling function is greater than three (this follows frérg (ince
N > %(L —1)). Therefore, these filters cannot coincide with Daubechies’ family of filters.

Summary for filters of length 8.Within the region of possible shifts, we found,
up to symmetry, a total of six coiflets with integer shifts and four maximal coiflets. For
these ten filters;-1 is the only root on the unit circle and therefore Cohen’s condition is
automatically satisfied. Nevertheless, their frequency responses are far from being uniform.
A first distinction is related to the factorizatio8.4).

In contrast with Daubechies’ maximally flat filters, whe@|| = sup,,_, |Q(2)| is the
same for all of them| Q|| of different coiflets does indeed change.

When || Q| is larger than ¥~1, we can expecbad behavior for the filter and poor
regularity for the associated scaling and wavelet functions. 8eegmma 7.1.1]. In
Table3, we listed the Sobolev exponentof the wavelet functions. They were computed
using Theorem 9.5 in20].

We have labeled our different solutions according to the siZgddf. Thus, in Table3,
the filters Na and Nb correspond to the maximal case for the scaling function, but with
Q] =2.8764 and| Q|| = 2.94511, respectively.

We have labeled UGLY and BAD the cases for whipB|| is increasingly larger than
2M-1 Figures3 and4 shown this phenomena for the coiflet filters 2b and 1b (with integer
shift @ = 2). Even for thegood cases, wher¢ Q| < 2”~1, the filters exhibit a different
behavior with respect to their phases.

Compare Figs5 and6 for the filter 2a with Figs7 and8 for the filter 3a. In the latter
case, the phase of the filter has a sharp transition mesard therefore its group delay is
much wider than for the case 2a. Nevertheless, since the module of the filter is zero at
that transition does not affect the overall response of the filter.

On the other hand, in agreement with Proposith2 and because of the different
numberN of vanishing moments of the filters, the group delay for the case Na is flatter
near zero than for the case with integer shifts. See Bigg.and9.

In Table 2 we listed the coefficients of filters of length 8 corresponding to maximal
coiflets and coiflets with integer shifts. Becausez), these coefficients of the low-pass
filter mg sumto 1.
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TABLE 2
Coiflet Filters of Length 8

k hy k hy
M=3 0 —0.00899863735774892 M=3 0 —0.03952785122359428
N=5 1 —0.02054552466216258 N=5 1 01271031281675352
a=owq 2 0.2202099211463259 a=ay 2 0.5323389066059403
Case Na 3 $701914465849665 Case Nb 3 .4080002251136967
MAXIMAL 4 0.3422577968313942 MAXIMAL 4 —0.005981694132267174

5 —0.07306459213264614 5 —0.07120132136770919

6 —0.05346908061997128 6 .@M317063874992116

7 0.02341867020984207 7 .@4095942063206933
M=3 0 01646660519380485 M=3 0 03040839480619514
N=3 1 05074101320413008 N=3 1 0414464867958699
a=1 2 04435018441858542 a=1 2 002524815581414562
Case la 3 —0.02223039612390291 Case 1b 3 .2%66053961239029

4 —0.1310018441858543 BAD 4 .P872518441858542

5 0.02223039612390291 5 —0.2566053961239029

6 0.02283394806195145 6 —0.1165839480619514

7 —0.007410132041300974 7 .0B5535132041301
M=3 0 —0.01938529090153145 M=3 0 00850102909015314
N=3 1 01854738954507657 N=3 1 01332761045492342
a=2 2 05581558727045942 a=2 2 02449691272954056
Case 2a 3 (3810783136477028 Case 2b 3 .5876716863522972

4 —0.05815587270459436 UGLY 4 .2550308727045943

5 —0.06857831364770281 5 —0.2251716863522971

6 0.01938529090153145 6  —0.0850102909015314

7 0.002026104549234272 7 .05422389545076572
M=3 0 —0.05191993211769211 M=3 —0.01058006788230788
N=3 1 —0.0234375 N=3 1 —0.0234375
a=3 2 03432597963530763 a=3 2 02192402036469236
Case 3a 3 5703125 Case 3b 3 703125

4 0.2192402036469236 4 .B132597963530763

5 —0.0703125 5 —0.0703125

6 —0.01058006788230788 6 —0.05191993211769211

7 0.0234375 7 1234375

Note oq =2.977273091796802y, = 2.239549738364678.

9.2. Coiflets of Length 18

A similar analysis can be done for filters of length 18. In Tahleve present a summary
of our findings by listing the filter coefficients for two cases: coiflets with integers shift:
and maximal coiflets. Filter coefficients are listed in Tahle

Even at higher numbers of vanishing moments and different lengths, we still four
UGLY and BAD filters. They always correspond to coiflets with integer shifts, but it is
not a peculiarity of that case. Varying we found regions of nonmaximal coiflets with a
similar behavior.
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TABLE 3
Summary of All Maximal Coiflets and Coiflets with Integer Shifts for Length 8
Filter o M N o ol oM-1 Remarks
Na 2.97727 3 5 1.45584 2.8764 4
Nb 2.23955 3 5 1.44599 2.94511 4
Ma 1.00539 4 3 1.77557 5.91608 8 Daubechies’ Extremal Phase
Mb 2.98547 4 3 1.77557 5.91608 8 Daubechies’ Least Asymmetric
la 1 3 3 1.77528 2.16403 4
1b 1 3 3 0.14666 14.9356 4 BAD
2a 2 3 3 1.42232 3.11099 4
2b 2 3 3 0.93596 6.91099 4 UGLY
3a 3 3 3 1.77341 2.16473 4
3b 3 3 3 1.46353 2.82288 4

Note Coefficients are listed in Table 2. The maximal case for wavelets coincides with Daubechies’ maximally

flat filters.

In Figs.11and12, we plotted|mo| and¢ for the cases 6¢ (UGLY) and 5b (BAD) with
length 18. The cases 7d and 6d, as listed in TApdxhibit a similar behavior. Even though
their filter moduli do not oscillate as much as their counterparts of length 8, their behavior
is clearly different than those for whichQ| remains below #-1. As an example of
the latter situation, consider the filter 7c. The associated wavelet has only six vanishing
moments, but its Sobolev exponent is higher than the exponent for Daubechies’ wavelets
which have nine vanishing moments.

Note that in all the plots for wavelets in the Fourier domain, the support of the functions

is actually wider than shown.

Filter module Scaling function

1 1

0.8 0.75

0.6 0.5

0.4 0.25
0.2

| -0.25

-% 0 T -0.5

FIG. 3. Integer shift coiflet: length 8, shift 2, case b (UGLY). Plots of absolute value of filieand scaling
function.

Filter module Scaling function
1
0.8
0.6
0.4
0.2
- 0 i3

FIG. 4. Integer shift coiflet: length 8, shift 1, case b (BAD). Plots of absolute value of filipand scaling
function.
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Filter module Scaling function
1 1.2
0.8 1
0'6 0.8
0.6
0.4 0.4
0.2 0.2
- 0 T -0 2}) 1 2 4 5 6 7
Filter phase Filter group delay
7.5 1.8
5 -2
2.5 -2.2
-2.4
-2.6
-2. 0 T _2.8
-7.5 -7 0 T

FIG.5. Integer shift coiflet: length 8, shift 2, case a. Plots of scaling function and #ilger

Fourier module Wavelet
1
o AN
e 14
~0.5 1 2 3§44 5 6 7
-1
-4 -27 0 27 4% -1.5
Fourier phase Fourier group delay
40
20 _3.74n -2=x 0 2 4m
-3.4
20 T -2 0 T 47 3.6
—_4p -3.8

FIG. 6. Integer shift coiflet: length 8, shift 2, case a. Plots of wavelet function in both time and Fourie
domain (absolute value, phase, and group delay).

Filter module Scaling function
1 1.2
0.8 1
0.6 82
0.4 0.4
0.2 0.2
- 0 n -0.20 1 2 3 4 5 & 7
Filter phase Filter group delay
lOe -2.5
5 —7.5—L 0 2{
-10 ¢
-12.5
n 0 T - H
-5 15 :
-17.5
-10 -20 :

FIG. 7. Integer shift coiflet: length 8, shift 3, case a. Plots of scaling function and #ilger
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Fourier module Wavelet
1.5
0.8
1
0.6
0.4 0.5
0.2
| ~0.5 1 2 5 6 7
-4 -27 O 2T 4TW -1
Fourier phase Fourier group delay
40 | H
20

4T -2% 0 T 47
—-20 —
—40

FIG. 8. Integer shift coiflet: length 8, shift 3, case a. Plots of wavelet function in both time and Fourier
domain (absolute value, phase, and group delay).

Filter module Scaling function
1.25
1
0.75
0.5
0.25

—‘Tt 0 T —0.2541 1 2 3 V5 6 7

Filter phase Filter group delay

o o o o
N o o @

-5
«‘n 0 b
-10 -4.5

FIG. 9. Maximal coiflet for scaling function: length 8, shift@773. Plots of the scaling function and filteg.

Fourier module Wavelet

/\/\ 1)

_ 1 2 5 6 7
—-47 -2 W 0'5}} \% V

o o o o
N s o @
a = o;

Fourier phase Fourier group delay
40 —2.8
20 5
-3.4
_opt® AR 0 TooAr 33 :g
—40 -4 -2 R

FIG. 10. Maximal coiflet for scaling function: length 8, shift@773. Plots of the wavelet function in both
time and Fourier domain (absolute value, phase, and group delay).
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TABLE 4
Summary of All Maximal Coiflets, Coiflets with Integer Shifts, and Two Daubechies’ Maximally
Flat Filters for Length 18

Filter o M N o loll oM-1 Remarks
Na 7.81041 6 9 2.5149 16.5942 32 Listed in Table
Nb 7.1771 6 9 2.49853 17.2438 32 Listed in Table
Ma 5.94301 7 7 2.74543 33.9874 64 Listed in Teble
Mb 4.5681 7 7 2.71944 36.2534 64 Listed in Table
5a 5 6 7 2.52726 15.3633 32 Listed in TaBle
5b 5 6 7 0.749459 99.1807 32 BAD
6a 6 6 7 2.73586 9.74416 32
6b 6 6 7 2.48495 18.3793 32 Listed 8 [Table 8.1]
6C 6 6 7 1.89308 37.7778 32 UGLY
6d 6 6 7 0.697053 101.213 32 BAD
7a 7 6 7 2.59288 17.1479 32
7b 7 6 7 2.46831 18.1119 32 Listed in Table
7c 7 6 7 3.29159 18.8021 32
7d 7 6 7 1.77575 41.5161 32 UGLY
Dep 1.94435 9 3 3.16167 155.917 256 Daubechies’ extremal phase
Dla 8.14657 9 3 3.16167 155.917 256 Daubechies’ least asymmetric
Filter module Scaling function
1 1
0.8 0.8
0.6 0.6 ]
o =
’ -0.2 t 1 5 9 13 17
- 0 k4 -0.4

FIG. 11. Integer shift coiflet: length 18, shift 6, case ¢ (UGLY). Plots of absolute value of filipand
scaling function.

Filter module Scaling function

1 0.75
0.8 0.5
0.6 0.25 \ ’ﬂ
0.4 : 1?2
0.2 -0.25}1 5 13 17

* -0.5 ]

-7 0 bid -0.75

FIG. 12. Integer shift coiflet: length 18, shift 5, case b (BAD). Plots of absolute value of filggand scaling
function.
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Filter module Scaling function
! 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
i 0 T -0.211 5 9 13 17
Filter phase Filter group delay
-6.5
20 7
10 -7.5
-8
-8.5
19 0 T
-20 —9.5—Lt 0 T

FIG. 13. Maximal coiflet for scaling function: length 18, shift 7.1771. Plots of filigy and scaling function.

10. CONCLUSION

The approach taken in this paper allows one to construct and classify coiflets, which
are wavelets with a high number of vanishing moments for both the scaling and wavelet
functions. Coiflet filters are useful in applications where interpolation and linear phase are
of particular importance.

We introduced a new system for FIR coiflets. In all cases investigated, the system had a
minimal set of defining equations. For filters of length up to 20, the system can be solved
explicitly, and the filter coefficients can thus be accurately determined. For longer filters
we applied numerical methods to compute some solutions. For a few specific examples we
studied the properties of coiflets corresponding to both integer and noninteger values of the
first moment of the scaling function. Nevertheless, the problem of the existence of coiflet
filters of arbitrary length and their full classification remains open.

Fourier module Wavelet
0.8 1
0.6 0.5
0.4
0.2
. _o0.511 S w 13 17
—4m-2m O 2% 4% -1 ‘
Fourier phase Fourier group delay
100
-7.5
50
-8
—-4n -2= 0 T AT —8.5
-50
-100 —Jn -27 0 27 iR

FIG. 14. Maximal coiflet for scaling function: length 18, shift 7.1771. Plots of wavelet function in both time
and Fourier domain (absolute value, phase, and group delay).
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TABLE 5
Coiflet Filters of Length 18: Maximal Case
k hy k hi
M=6 0 —0.00006423105557385401 M =6 0 —0.0002036914946771235
N=9 1 —0.0002979447888413989 N=9 1 —0.0002488151932121008
a=ay 2 0.0004927238418624587 a=ap 2 0.00221156402899935
Case Na 3 M04159721116204626 Case Nb 3 .0@347581803838808
4 —0.001356751057023208 4 —0.02049652597342785
5 —0.03424128516618039 5 —0.03435328483085293
6 0.01286924643513836 6 .1r57589722528208
7 0.304174064910559 7 .B137703862306729
8 0.5487303262739295 8 .4B26537198943506
9 0.2920015377606661 9 .@04003841371920543
10 —0.0979310190825782 10 —0.1200187966274661
11 —0.0822374057724846 11 .0r108432415813931
12 005265614514287543 12 .aB561677266929025
13 001690326579283296 13 —0.01228600681641712
14 —0.01818476072132749 14  —0.005733199970056795
15 00001391533251141822 15 .002854859153956041
16 0002788320222696984 16 .000211185220166843
17 —0.0006011071778707536 17 —0.0001728858780453669
M=T7 0 00003232178738443985 M=7 0 0003401479882015607
N=7 1 0001666157023192355 N=7 1 —0.004130806329954543
a=a1 2 —0.001655740666688795 a=day 2 —0.03536170269249431
Case Ma 3 —0.02256218521490427 Case Mb 3 .08747767104264993
4 0.005072730487709637 4 .3B43902644404712
5 0.2365835515640513 5 .8B858632409346619
6 0.5195340737893435 6 .1908760013178301
7 0.3835397677855875 7 —0.1321131305836887
8 —0.04580954371864931 8 —0.05295999083912471
9 —0.1400028853157529 9 .06813917906468963
10 003870906867740069 10 .D975811187504831
11 005085645319997351 11  —0.01825628044991493
12 —0.02266660403703607 12 .D02608645070967113
13 —0.0106114132773682 13 .@D327048515783943
14 0007588889762655687 14  —0.0003823627249285679
15 00003179232674700494 15 —0.0002646325745805278
16 —0.00109609216857971 16 .aD0017334234085592
17 00002126309677505884 17 .00001427373829770887

Note @7 = 7.810413113222375,ap = 7.177096173069426,x7 = 5.943011907827611,ap =
4.568098992005785.

APPENDIX

Assume thatf andg are functions with enough derivativesjs a nonnegative integer,
andy is a real constant.

D denotes the derivative operator an the operatonx%. For any operatof’, 7° is
the identity operator. Theth iteration ofx D is
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TABLE 6
Coiflet Filters of Length 18: Two Integer Shifts
k hy k hi
M=6 0 0001440768926720368 M =6 0 —0.0000629311510126045
N=7 1 0002053404421631864 N=7 1 000004962145501794398
a=5 2 —0.02219838096076973 a=7 2 0001740671204645141
Case 5a 3 —0.01250987368937947 Case 7b 3 .0@981652779610451
4 0.2259647068843012 4 —0.02288745495628588
5 0.5319491906628806 5 —0.01305004769565276
6 0.3832103239740163 6 .2P73416538968731
7 —0.04397844411169963 7 .8B39067763210922
8 —0.1177139643780853 8 .8805539932682246
9 0.03476163022933876 9 —0.04661451530829168
10 003446875381675335 10 —0.1140327606217869
11 —0.01539096154107554 11 .(B625460316792878
12 —0.005371847958435806 12 .0B137758456237431
13 0003361708092256614 13  —0.01539787454248928
14 00002159461146890029 14  —0.003937649303352087
15 —0.0002580954448262954 15 .00298786428539753
16 —0.00001630641918942108 16 —0.0000931068996797331
17 000001144138087300107 17 —0.0001180804626132358
n
«D)'f(2)=) S'D f(2), (A1)
k=0

whereS; are the Stirling numbers of the second kind.
These numbers have a closed-form given by

k

1 k ;
st=g 2 (§) vt (»2)

=0 N

Thefalling factorial powersof z are

A=zz-D--m-1), =1

The change of basis relatifg’} and{z"} is given in terms of the Stirling numbers of the
first and second kind:

n n
2= Zs,’jzk, 7" =ZS,§’Z'£.
k=0 k=0

Therefores; is the inverse matrix of;’ and then, fon <r,

> S = du. (A.3)
i=k
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From A.1) and A.3)

n
D" f(2) =) st (xD)f (). (A.4)
k=0
Note that for a polynomial of degreg it is not true that(x D)" P(1) is zero forn > r.
However, these values are linear combinationsc@)” P (1) for n < r, as we show in the
next lemma.

LEMMA A.l. Foreachk, n, r non-negative integers with< r, andy any real number,
define the polynomials
r [ ) r )
Ly(z) = Z i -1 and L@ =Y ity L,(2).
it i=k
Let P be any polynomial of at most degreeWe have the following properties:

r

A GD)'La) =) S8's;,

i=k

B P@=) (D)}POL4(),

k=0

C  GD'PM)=) DFPD)Y 8.

k=0 i=k

r kio—
Po=Y (xD)"(x k}:P(X))(l)

D L) ().

k=0

Proof.  PartA follows from (x D) =1 (1) = SP. To verify that, expandz — 1)’ and
use A.2).

Whenn < r, PartA and @A.3) imply that (x D)" L, (1) = é,k. Therefore{L,};_, are
linearly independent and thus they are a basis for the polynomials of degrdess. The
representation of Pai then readily follows.

PartC is a consequence of PaAsandB.

By definition of L”, , the right-hand side of Pal equals

Z(xD) (x—VP(x»(l)Z( ) L2

k=0

_Z (Z( >(XD)' OO eD) (X_VP(X))(1)> Lyi(2)

k=0

= Z(xD)"(P)(l)L,-,-(z).
i=0
PartD then follows using Par8. W
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