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Abstract. We review the methods in [4] and [24] for constructing quadratures
for bandlimited exponentials and introduce a new algorithm for the same pur-

pose. As in [4], our approach also yields generalized Gaussian quadratures for
exponentials integrated against a non-sign-definite weight function. In addi-
tion, we compute quadrature weights via ℓ

2 and ℓ
∞ minimization and compare

the corresponding quadrature errors.

1. Introduction

We revisit the construction of quadratures for bandlimited exponentials
{
eibx

}
|b|≤c

integrated against a real-valued weight function w on the interval |x| ≤ 1. These
functions are not necessarily periodic in [−1, 1]. Unlike the classical Gaussian
quadratures for polynomials which integrate exactly a subspace of polynomials up
to a fixed degree, Gaussian type quadratures for exponentials use a finite set of
nodes in order to integrate the infinite set of functions

{
eibx

}
|b|≤c

. While it is not

possible to construct exact quadratures in this case, those introduced in [4] inte-
grate with (user-selected) accuracy ǫ all exponentials with |b| ≤ c. We note that,
for a given bandlimit c and accuracy ǫ, quadratures of this type are not unique.

For a given accuracy ǫ, bandlimit c, and weight function w, the Gaussian-type
quadratures in [4] are designed to integrate functions in the linear space

Ec =
{
f ∈ L∞[−1, 1] | f(x) =

∑

k∈Z

ake
ibkx with {ak} ∈ l1 and |bk| ≤ c

}
,

so that ∣∣∣∣∣

∫ 1

−1

f(x)w (x) dx−
M∑

m=1

f(xm)wm

∣∣∣∣∣ < ǫ, f ∈ Ec.

Note that functions in Ec may be approximated by a linear combination of ex-

ponentials
{
eicxmx

}M
m=1

with accuracy ǫ, if the quadrature nodes {xm}Mm=1 and

corresponding weights are constructed for accuracy ǫ2 and bandlimit 2c [4].
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An alternative approach in [24] yields quadratures to integrate bandlimited func-
tions in

Bc =
{
f ∈ L2(R) | f̂(ω) = 0 for |ω| ≥ c

}
,

with the weight function w(x) = 1. The approach is based on explicitly constructing
and using the Prolate Spheroidal Wave Functions (PSWFs), a basis of Bc. The
PSWFs form a Chebyshev system, leading to a classical recipe to find quadrature
nodes as the zeros of an appropriately selected PSWF. To improve the accuracy
of the quadrature, the positions of the nodes and the values of the weights are
optimized via a Newton-type procedure.

Since the space Ec is dense in Bc and vice versa, the quadratures in [4] for w = 1
and [24] may be used interchangeably (we discuss this further in this paper). We
note that the method in [4] allows us to construct quadratures for a weight function
that does not have to be positive (see e.g. [3, Section 5]).

We present a new approach for designing quadratures in Ec using a setup similar
to [4] but computing nodes as eigenvalues of matrices rather than zeros of an eigen-
polynomial. This establishes a connection between the computation of quadratures
and the so-called HSVD and Matrix Pencil methods in signal processing.

We also introduce an alternative approach for computing weights that yields
an essentially uniform error within the bandwidth of validity of these quadratures.
These quadrature weights are obtained by minimizing the ℓ∞ error over the ban-
dlimit of interest. Formulating the problem of finding weights as that of convex
nonlinear optimization, we solve it using the software package CVX [13] and check
the results using our own implementation of the primal-dual potential reduction
algorithm [20]. Additionally, for the weight w(x) = 1, we compare the accuracies
and behavior of the error of our new quadratures and those obtained using [4] and
[24]. We also discuss the computational cost for obtaining the quadratures on all
three approaches.

One of the reasons for our study is to facilitate applications of these quadratures.
Since their introduction, quadratures for bandlimited exponentials found applica-
tions in solving partial differential equations (see e.g. [5, 8, 21]). In particular, they
allow us to discretize operators using their spectral representation while avoiding
the spurious eigenvalues appearing in other spectral discretizations. It is a signifi-
cant improvement since, otherwise, these spurious eigenvalues increase the norm of
the matrices (representing differential operators) by an order of magnitude (see e.g.
[21]). Another application of quadratures for integration of bandlimited exponen-
tials (with a weight) yields a fast Discrete Fourier transform in polar and spherical
coordinates in the Fourier space [2] (see also [1] for integration on the sphere).

Another important property of these quadratures is that, for a fixed number of
nodes, we can trade accuracy for bandwidth. This trade-off is not available for
standard polynomial quadratures and is a significant advantage in applications.
This is especially useful in signal processing, where the measured data may be of
low precision. We note that, in practice, the accuracy of any quadrature is limited
either by the accuracy of the projection onto functions for which the quadrature is
exact or by the floating point arithmetic (e.g., double precision). Thus, approximate
quadratures may be viewed as setting the accuracy of integration upfront.

In Section 2 we briefly describe the two methods for finding Gaussian-type
quadratures for bandlimited functions. In Section 3 we consider a method for
finding quadrature nodes for bandlimited functions as the eigenvalues of a matrix.
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In Section 4 we develop approaches to finding quadrature weights by minimizing
either ℓ2 or ℓ∞ error over the bandlimit of interest. We present examples of com-
puting these new quadratures in Section 5. Finally, in Section 6 we compare the
new quadratures with those obtained in [4] and [24].

2. Preliminaries

2.1. Quadratures for bandlimited functions via trigonometric moments.

Let us briefly summarize a method in [4] for generating quadratures to integrate
the family of exponentials

{
eibx

}
|b|≤c

with a real-valued weight function w. First,

we compute the trigonometric moments

(2.1) un =

∫ 1

−1

eicxn/Nw (x) dx, −N ≤ n ≤ N,

where c > 0 is the bandlimit. The number of moments, 2N+1, is chosen sufficiently
large so that the function

u(y) =

∫ 1

−1

eicxyw (x) dx, y ∈ [−1, 1] ,

is oversampled. We then arrange the trigonometric moments {un}Nn=−N as the
entries of a self-adjoint Toeplitz matrix T = {un−n′}0≤n,n′≤N . If the weight
function w is non-negative, then this matrix coincides with the Gram matrix G,

Gn−n′ =

∫ 1

−1

eic
n
N

xe−icn′

N
x w(x)dx,

for a collection of linearly independent functions
{
eic

n
N

x
}
n=0,...,N

. We exploit this

connection later in the paper. However, we also note that if no assumption on
the sign of w is made, we still can use the matrix T of trigonometric moments for
computing quadratures (see [3, Section 5]).

Computing the eigenvector q(s) = [q0, . . . qN ]
t
of the matrix T corresponding to

a small eigenvalue λ(s) > 0, we form the eigenpolynomial q(s)(z) =
∑N

n=0 qnz
n.

Assuming that this polynomial has only simple roots {γj}Nj=1, γj 6= 0, it is shown

in [4, Theorem 4.1] that there exist weights {wj}Nj=1 such that for all Laurent

polynomials P (z) of degree at most N ,

∫ 1

−1

P (eiπt)w(t)dt =

N∑

j=1

wjP (γj) +
1

2
λ(s)

∫ 1

−1

P (eiπt)dt.

This implies
∣∣∣∣∣∣

∫ 1

−1

P (eiπt)w(t)dt −
N∑

j=1

wjP (γj)

∣∣∣∣∣∣
≤ 1

2
λ(s)

∣∣∣∣
∫ 1

−1

P (eiπt)dt

∣∣∣∣ =
1

2
λ(s) |p0| ,

where p0 is the constant coefficient of P . In this approximate quadrature the error
is controlled by the eigenvalue λ(s) and the quadrature nodes, γj , j = 1, . . . , N
depend on the bandlimit c and the selected accuracy ǫ.
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A numerical algorithm for computing quadratures via this method is formally

O
(
N (log N)

2
)
. However, in its current implementation, the step that solves equa-

tion Tx0 = e0, where e0 = [1, 0, . . .0]
t
, uses the Wiener-Levinson algorithm of

complexity O
(
N2
)
with a small constant which is sufficiently fast for N ≈ 104.

We also note that the number of nodes with a significant weight is controlled
by the index of the eigenvalue. Among the N roots of the eigenpolynomial q(s)(z),
typically only s of them correspond to nodes with significant weights. Indeed, in
most cases, solving the Vandermonde system for the weights wj , j = 1, . . . , N gives

only s weights with absolute value greater than the eigenvalue λ(s). In practice,
it is not difficult to identify the nodes corresponding to the significant weights
since they are located inside the interval of integration. Computing high accuracy
quadratures (ǫ < 10−12, for example) involves small eigenvalues, so we must use
extended precision arithmetic. Importantly, when these quadratures are used, no
extra precision is required.

If the weight function w = 1, then the eigenpolynomial q(s)(z) is a Discrete Pro-
late Spheroidal Wave Function (DPSWF) (see [22, Sections 2.1-2.3]) and the nodes
are zeros of the DPSWF corresponding to the eigenvalue λ(s). The quadratures
obtained for w = 1 may be compared with those in [24] obtained by a different
approach that uses the PSWFs.

2.2. Quadratures for bandlimited functions via PSWFs. In [24] quadratures
are constructed using the PSWFs, which form a basis for bandlimited functions.
The approach closely follows the classical method of obtaining Gaussian quadra-
tures for polynomials. The PSWFs satisfy

∫ 1

−1

eicxyψj (x) dx = λjψj (y) , j = 0, 1, . . .

where c > 0 is the bandlimit. They are the eigenfunctions of the operator

Fcφ (y) =

∫ 1

−1

φ (x) e−icxydx,

as well as the eigenfunctions of the operator Qc =
c
2πF

∗
c Fc,

1

π

∫ 1

−1

sin(c(y − x))

y − x
ψj(x) dx = µjψj(y),

where
µj =

c

2π
|λj |2, j = 0, 1, 2, . . . .

Slepian and Pollak [23] observed that ψj are also the eigenfunctions of the differ-
ential operator

(2.2)

(
−(1− x2)

d2

dx2
+ 2x

d

dx
+ c2x2

)
ψj(x) = ηjψj(x),

i.e., they coincide with the classical Prolate Spheroidal Wave functions of math-
ematical physics. In (2.2), the eigenvalues ηj form a strictly increasing, positive
sequence.

Since the PSWFs form a Chebyshev system, the approach for computing quadra-
tures in [24] first finds ψj by solving (2.2) and then computes the M nodes as zeros
of ψM , ψM (xj) = 0, j = 1, . . .M . It is observed in [24] that the accuracy of
quadratures may be improved by optimizing the positions of nodes and the values
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of weights further. A Newton-type optimization (using ℓ2 norm) is shown to gain
an extra 1− 2 digits in the accuracy of the quadratures.

A drawback of this approach is that it is not clear how to apply it for a general
weight function since no differential operator is available (see [14]). On the other
hand, given that a differential operator is available for the weight function w = 1,
positions of nodes may be found rapidly in O(M) operations using the algorithm
in [10]. This fact that the PSWFs satisfy the second order differential equation in
(2.2) implies that their zeros may be found without ever explicitly computing the
functions themselves. We note that the DPSWFs (see previous section) also satisfy
a second order differential equation and, hence, the algorithm in [10] is applicable
in that case as well.

3. Computing quadrature nodes as eigenvalues

3.1. Classical quadratures for polynomials. Let us illustrate finding nodes as
eigenvalues of a matrix by constructing the classical Gaussian quadrature with M

nodes {xm}Mm=1. Let us consider a basis {φl(x)}M−1
l=0 in the subspace of real-valued

polynomials of degree up to M − 1 equipped with the inner product

〈p, q〉 =
∫ 1

−1

p(x)q(x)w(x)dx.

We form the square matrix A ∈ RM×M of entries

All′ =

∫ 1

−1

φl(x)φl′ (x)w(x)dx =

M∑

m=1

φl(xm)wmφl′ (xm),

where xm are the desired quadrature nodes and wm the corresponding quadrature
weights. Since the product of two polynomials in this subspace has degree of at
most 2M − 2, the exact quadrature should also compute the integral

Bll′ =

∫ 1

−1

φl(x)xφl′ (x)w(x)dx =

M∑

m=1

φl(xm)wmxmφl′(xm).

Denoting the non-singular matrix Φ = {φl(xm)} l=0,...,M−1

m=1,...,M

, we obtain A = ΦWΦt

and B = ΦXWΦt, where W = diag (w1 . . . wM ) and X = diag (x1 . . . xM ) are
diagonal matrices and Mt denotes the transpose of the matrix M. Computing

C = BA−1 = ΦXWΦt
(
Φt
)−1

W−1Φ−1 = ΦXΦ−1,

implies that the nodes of the quadrature are the eigenvalues of the matrix C. We
obtain the same quadrature nodes by considering A−1B.

We note that if {φl(x)}M−1
l=0 are orthogonal polynomials, then the matrix A is

diagonal and the matrix B is tridiagonal. Thus, as we show in Appendix 8.1, we
recover the Golub-Welsch algorithm [11].

3.2. Quadratures for inner products of bandlimited exponentials. Let us
now apply the approach illustrated in Section 3.1 to finding quadratures for expo-
nentials with bandlimit c. Since the collection of exponentials

{
eibx

}
|b|≤c

is infi-

nite, exact quadratures are not available and, instead, we construct approximate
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quadratures for an arbitrary user-selected accuracy ǫ. These quadratures integrate
exponentials of bandlimit c against a real-valued weight function w(x), so that

(3.1)

∣∣∣∣∣

∫ 1

−1

eibxw (x) dx−
M∑

m=1

eibxmwm

∣∣∣∣∣ < ǫ, |b| ≤ c,

where xm ∈ [−1, 1] and wm ∈ R \ {0}.
To solve this problem, we consider

(3.2) G(b, b′) =

∫ 1

−1

ei
b
2
xe−i b

′

2
xw(x)dx, |b| , |b′| ≤ c,

which we discretize as

(3.3)

∫ 1

−1

ei
c
2

n
N

xe−i c
2

n′

N
x w(x)dx, n, n′ = −N, . . . , N,

where N > M by an (oversampling) factor. However, it is more convenient to
consider instead the Hermitian (N + 1)× (N + 1) matrix

(3.4) Gnn′ =

∫ 1

−1

eic
n
N

xe−icn′

N
x w(x)dx, n, n′ = 0, . . . , N,

which oversamples the interval [−c, c] in the same fashion with an appropriate
N . Note that if w ≥ 0, G is a Gram matrix of inner products. As discussed in
Section 2.1, the resulting quadratures also depend weakly on the choice of N .

Let us seek {xm}Mm=1 and {wm}Mm=1, with M < N , so that

(3.5) |Gnn′ −Qnn′ | < ǫ, n, n′ = 0, . . . , N,

where the quadrature matrix Q has entries

(3.6) Qnn′ =
M∑

m=1

eicxm
n
N wme

−icxm
n′

N , n, n′ = 0, . . . , N.

First, we show that it is possible to obtain the quadrature nodes by finding
eigenvalues of an appropriate matrix. We consider two submatrices of Q, A and
B,

A = {Qnn′}n=0,...,N−1

n′=0,...,N

, B = {Qnn′} n=1,...,N

n′=0,...,N

.

These submatrices may be written as

(3.7) A = X̃WY, B = X̂WY,

where

Y =
{
e−icxm

n′

N

}
m=1,...M

n′=0,...,N

, W = diag (w1, . . . , wM ) ,

and

X̃ =
{
eicxm

ñ
N

}
ñ=0,...,N−1

m=1,...M

, X̂ =
{
eicxm

n̂
N

}
n̂=1,...,N

m=1,...,M

.

We note that the matrices X̂ and X̃ are related,

X̂ = X̃E,

where E ∈ CM×M is the diagonal matrix,

(3.8) E = diag
(
eicx1/N , . . . , eicxM/N

)
.
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To obtain the set
{
eicxm/N

}M
m=1

as eigenvalues of a matrix, we apply the pseudo-

inverse of A, A†, to derive the relation

A†B = (WY)† X̃†X̂WY = (WY)†
(
X̃†X̃

)
EWY

= (WY)
†
E (WY) ,(3.9)

using that WY has full rank and X̃†X̃ = IM×M . Thus, since the non-zero eigen-

values of (WY)
†
E (WY) coincide with those of E, we have shown that the nodes

may be obtained by finding the non-zero eigenvalues of A†B.
To obtain the approximation (3.5), we need to form A†B from the matrix G in

(3.4). However, since the matrix G is extremely ill-conditioned (due to oversam-
pling), we use instead its rank M approximation computed via the SVD,

(3.10) G = UΣV∗.

Given ǫ > 0, we find the (smallest) indexM such that σM/σ0 < ǫ and denote by ΣM

the diagonal matrix with the first M singular values, ΣM = diag (σ0, σ2, . . . σM−1).
We then truncate (3.10) as

(3.11) GM = UMΣMV∗
M ,

whereUM andVM are the submatrices of the unitary matricesU andV containing
the first M singular vectors of G. We have

min
rank(G′)=M

‖G−G′‖2 = ‖G−GM‖2 = σM .

Following (3.7), we write the corresponding matrices AM and BM as

AM = ŨMΣMV∗
M , BM = ÛMΣMV∗

M ,

where ŨM and ÛM are the submatrices of UM ,

(3.12) ŨM = {Uñm} ñ=0,...,N−1

m=0,...,M−1

, ÛM = {Un̂m} n̂=1,...,N

m=0,...,M−1

.

We note that the truncated version of A† B, A†
M BM , has the same eigenvalues as

Ũ
†
MÛM ,

A
†
M BM = (V∗

M )
†
Σ

†
MŨ

†
MÛMΣMV∗

M

= (ΣMV∗
M )† Ũ†

MÛMΣMV∗
M .

Hence, we define the M ×M matrix CM = Ũ
†
MÛM and calculate the eigenvalues{

eicxm/N
}M
m=1

and, hence, the nodes {xm}Mm=1.
The fact that the quadrature nodes for bandlimited exponentials may be found

as eigenvalues was also observed by Yu Chen [9].

3.3. Algorithm for computing quadrature nodes. We describe the algorithm,
derived above, for computing quadrature nodes for bandlimited functions given a
weight function w (x), bandlimit c, and accuracy ǫ. We address the computation
of quadrature weights later in Section 4.

Algorithm 1.

(1) Form the (N + 1) × (N + 1) Toeplitz matrix Gkl = u ((k − l) /N), where

we choose N such that the function u (t) =
∫ 1

−1
eictxw (x) dx is sufficiently

oversampled.
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(2) Take the SVD of G, G = UΣV∗, and select the index M corresponding to
the singular value σM such that σM/σ0 is close to the desired accuracy ǫ.

(3) Truncate the matrix U (such that it contains the singular vectors corre-

sponding to the singular values σ0, . . . , σM−1) and form the matrices ŨM

and ÛM from equation (3.12).

(4) Using the pseudo-inverse, form the matrix CM = Ũ
†
MÛM and find its

eigenvalues,
{
eicxm/N

}M
m=1

, from which we extract the nodes xm, m =
1, . . . ,M .

Remark 1. Similar to the algorithms for finding quadratures in [4] and [24], if we
compute high accuracy quadratures (e.g., ǫ < 10−12), we need to use extended
precision arithmetic in our computations. Once the quadrature nodes and weights
are obtained, no extra precision is needed for their use.

Remark 2. Algorithm 1 requires O
(
M3
)
operations and is applicable to general

weight functions (see examples below).

Remark 3. The explicit introduction of inner products (if applied to the case of
decaying exponentials) provides an interpretation of the so-called HSVD [19] or the
matrix-pencil method [15, 16, 17] algorithms (that are essentially the same). In
our view, our approach simplifies the understanding of these algorithms originally
introduced in electrical engineering literature as a sequence of steps similar to those
in Algorithm 1.

4. Calculating quadrature weights

We calculate quadrature weights using two different approaches: standard least
squares and ℓ∞ residual minimization. The most straightforward approach is to
use least squares. However, we may achieve a better maximum error if we use ℓ∞

residual minimization. This approach leads us to set up the problem as a second
order cone program (since our matrices are complex), and then apply an appropriate
solver (see Section 8.2).

4.1. Finding weights via least squares. To find the weights wm, m = 1, . . . ,M
that satisfy (3.1), we solve a rectangular Vandermonde system using least squares.
The Vandermonde matrix V ∈ C(2N+1)×M is defined as Vnm = eicxmn/N , where
xm, m = 1 . . .M , are the quadrature nodes, c is the bandlimit parameter and n =

−N, . . . , N . We solve the overdetermined system Vw = u, where w = {wm}Mm=1

is the vector of weights and u = {un}Nn=−N is the vector of trigonometric moments

un = u
( n
N

)
=

∫ 1

−1

eicx
n
N w (x) dx.

The performance of our quadrature nodes using least squares weights is illustrated
in Table 2 and Figure 6.3(a).

This approach to finding weights is related to the method used in [4] since we also
solve a Vandermonde system. However, in [4] the Vandermonde system size may
vary betweenM×M and (N + 1)×(N + 1). The different sizes of the Vandermonde
system are due to the knowledge, or lack thereof, of the general location of the
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nodes. If the nodes are known to belong to a particular subset of the unit circle,
all nodes outside of this region are discarded, and the problem may be reduced to
solving a smaller (e.g., M ×M) Vandermonde system. Since we find only the nodes
corresponding to significant weights, we simply seek the least squares solution to
the system Vw = u. Since V∗V may be evaluated explicitly yielding a matrix of
size M ×M , we solve V∗Vw = V∗u.

Remark 4. There is an alternative formulation for computing weights once the

nodes {xm}Mm=1 are computed. In this approach, we first evaluate

Skk′ =

∫ 1

−1

ei
c
2
xkxe−i c

2
xk′xw(x)dx, k, k′ = 1, . . . ,M,

and then compute weights {wm}Mm=1 minimizing

M∑

k,k′=1

∣∣∣∣∣Skk′ −
M∑

m=1

wme
i c
2
xkxme−i c

2
xk′xm

∣∣∣∣∣

2

via least squares. This formulation avoids using the original oversampled trigono-
metric moments, which may be useful in some situations.

4.2. Finding weights via ℓ∞residual minimization. In order to minimize the
maximum absolute error of the quadrature on the interval of interest, we calculate
weights via ℓ∞ minimization of the residual, minw ‖Vw − u‖∞ using CVX [13].
Ideally, we would like to obtain the equioscillation property expected of optimal ℓ∞

minimization. Since we are not optimizing the nodes and weights simultaneously,
the error is not perfectly equioscillatory but the maximum error is smaller than
that obtained via least squares. Nevertheless, we would like to identify a reason
for not achieving the equioscillation property, namely, we would like to rule out a
possible collapse of the algorithm for solving the second-order cone program due
to ill conditioning of the matrices involved in our computations. For this reason,
we implemented a version of the second cone program in Mathematica TM , so that
we may use arbitrarily high precision to compare results with those obtained via
CVX. In spite of changing the internal precision to up to 64 digits, the error did
not change in a significant manner.

We illustrate the performance of a quadrature with weights computed via ℓ∞

minimization in Figure 6.3(b). We note that, as expected, within the effective ban-
dlimit the quadrature with weights computed via ℓ∞ minimization of the residual
yield a smaller maximum error compared to the quadrature with weights found
using least squares (see Figure 6.3(a)). The nodes and weights computed by both,
least squares and ℓ∞ minimization, are displayed in Table 1.

Our results point to the possibility of further improvement by a method that
would accommodate a change in the position of the nodes. In [24] that is exactly
what is done using an ℓ2 type minimization. However, developing an approach
involving both nodes and weights to obtain the equioscillation property of the error
remains an open problem.
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5. Examples

5.1. An example of linear array antenna. Let us find quadrature nodes for
the integral

(5.1) u(c) (B, l, cos θ) =
1

2

∫ 1

−1

I0

(
πB

√
1−

(x
l

)2
)
eicx cos(θ)dx,

where c is the bandlimit and I0 is the modified Bessel function of order zero. This
integral arises in antenna design and, for parameters l = 1 and B = 1, a quadrature
for (5.1) is computed in [7, Eq. 6.7] by a different approach. However, our approach
is simpler and yields similar results. Given the weight function

(5.2) w (x) = I0

(
π
√
1− x2

)
,

we obtain its trigonometric moments as

(5.3) u(c)n =
1

2

∫ 1

−1

eicxn/Nw (x) dx = sinc

(√
(c
n

N
)2 − π2

)
, n = −N, . . . N,

corresponding (up to a factor) to the samples of the radiation pattern. Identity
(5.3) may be obtained extending formula 6.616.5 in [12, p. 698]. We also note that
the weight function (5.2) is a scaled version of the so-called Kaiser window (see e.g.
[18]).

We form

Gnn′ = u
(c)
n−n′ , n, n

′ = 0, . . .N,

with N = 252 and c = 10π, and use Algorithm 1 in Section 3.3. We truncate the
SVD of the matrix G at the (normalized) singular value σ22, σ22/σ0 ≈ 1.2 · 10−15,
yielding 22 quadrature nodes. Using the ℓ∞ residual minimization (see Section 4.2),
we compute the weights resulting in a quadrature with maximum absolute error
ǫ = 1.21 · 10−14. We verify the accuracy of this quadrature numerically and il-
lustrate the result in Figure 5.1. This quadrature should be compared with that
corresponding to the bandlimit 20π in [7, Table 6.3] since we integrate on [−1, 1]
instead of [−1/2, 1/2] as in [7].

5.2. Non-sign-definite example. We demonstrate that our method yields quadra-
tures for weight functions w that are not sign-definite. For the weight function

(5.4) w(x) = (x− 1/10) · e−(3πx/5−1/5)2 + 1/(5e),

we calculate the nodes and weights for the bandlimit c = 5π, choosing N = 127 and
the singular value σ14/σ0 = 5.0 ·10−14. Figure 5.2(a) illustrates the weight function
w(x), x ∈ [−1, 1], and Figure 5.2(b) shows that the weights of the quadrature follow
the shape of the weight function w(x). The error of the quadrature with 14 nodes
and weights is illustrated in Figure 5.2(c), where the maximum error is 6.68 ·10−14.

We note that the approach in [4] also allows us to obtain quadratures for weight
functions w(x) that are not sign-definite as is shown in [2].
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Figure 5.1. The logarithm of the error of the quadrature with
22 nodes (c = 10π) for the weight function (5.2). The quadrature
weights were generated via ℓ∞ minimization. The horizontal line at
2.32·10−14 indicates the maximum ℓ∞ error within the bandwidth.

6. Comparison with quadratures in [4] and [24]

Let us illustrate the impact of using weights obtained via ℓ∞ minimization for
the nodes computed in [24] and [4]. For this comparison we choose the weight
function w = 1. In Table 2 we display the errors of these quadratures and compare
them to the quadratures of this paper. Our quadratures yield a slightly better error
than those of both [24] and [4]. In Table (3) we compare the maximum errors using
different approaches to computing weights.

Next, Figure 6.1 compares the error of quadratures using nodes and weights from
[24] and the same nodes but with weights found via ℓ∞ minimization. A similar
comparison for the quadratures from [4] is provided in Figure 6.2. As expected, in
all cases the ℓ∞ minimization produces a better maximum error.

Remark 5. We observe that it is possible to obtain equioscillatory behavior of the
error by minimizing the ℓ2 norm of the weights constrained by an error bound on
the ℓ∞ residual. The result of solving the optimization problem

min ‖w‖2 subject to ‖Vw − u‖∞ < ǫ

is illustrated in Figure 6.4. However, the attained maximum error is significantly
worse than using all other approaches to compute weights.
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Figure 5.2. (a) The weight function w in (5.4) and (b) the corre-
sponding quadrature weights computed via ℓ∞-minimization. We
note that the quadrature weights follow the shape of the weight
function w. In (c) we display the logarithm of the error of the quad-
rature with 14 nodes (c = 5π). The horizontal line at 6.68 · 10−14

indicates the maximum ℓ∞-error within the bandwidth.

7. Conclusions

In this paper we introduced a new algorithm for finding quadrature nodes for
bandlimited exponentials and considered two different approaches to compute the
corresponding quadrature weights. As in [4], the accuracy of these quadratures
is parametrized by the singular values of the Toeplitz matrix formed from the
trigonometric moments of the weight function.

The two methods of finding weights used in this paper solve a rectangular Van-
dermonde system by minimizing a residual, either in the ℓ2 or ℓ∞ sense. This differs
from [4], where such Vandermonde systems are square.

The new quadratures are slightly more accurate than those in [4] and [24], but
their computation is currently more expensive. The new algorithm always produces
a number of nodes that coincides with the index of the chosen singular value and,
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Quadrature nodes and weights for c = 50
Nodes ℓ2 min weights ℓ∞ min weights

0.05098496373726 1.0194136874164 · 10−1 1.0194136790749 · 10−1

0.15278216715085 1.0159361655411 · 10−1 1.0159361762279 · 10−1

0.25404711706787 1.0086951579866 · 10−1 1.0086951557538 · 10−1

0.35437535428814 9.9706360031823 · 10−2 9.9706360549662 · 10−2

0.45327769114752 9.7994451679077 · 10−2 9.7994451352478 · 10−2

0.55012209105782 9.5552252896549 · 10−2 9.5552251399310 · 10−2

0.64404102192821 9.2079974254652 · 10−2 9.2079975898033 · 10−2

0.73377426101324 8.7072622729206 · 10−2 8.7072622960480 · 10−2

0.81739106203437 7.9658787303857 · 10−2 7.9658787375413 · 10−2

0.89179797135367 6.8331342878393 · 10−2 6.8331340338988 · 10−2

0.95196091437069 5.0710205180187 · 10−2 5.0710208528588 · 10−2

0.99030088410242 2.4489489924317 · 10−2 2.4489489733714 · 10−2

Table 1. Quadrature nodes and weights for w(x) = 1 and c = 50.
The weights are found either via ℓ2 or ℓ∞ minimization. Since the
weight is symmetric about the origin, we only display the nodes in
[0, 1] and their corresponding weights.

Maximum error from: Maximum error using:
c # of nodes [4] [24] ℓ2min weights ℓ∞min weights

20 13 1.2 · 10−7 9.4 · 10−8 3.8 · 10−8 3.5 · 10−8

50 24 1.2 · 10−7 8.3 · 10−8 3.0 · 10−8 2.3 · 10−8

100 41 1.6 · 10−7 9.1 · 10−8 2.7 · 10−8 2.3 · 10−8

200 74 1.8 · 10−7 8.6 · 10−8 2.7 · 10−8 2.1 · 10−8

500 171 1.4 · 10−7 8.8 · 10−8 2.7 · 10−8 2.0 · 10−8

1000 331 2.4 · 10−7 1.4 · 10−7 4.0 · 10−8 3.1 · 10−8

2000 651 1.2 · 10−7 6.4 · 10−8 2.6 · 10−8 *
4000 1288 3.7 · 10−7 1.7 · 10−7 3.2 · 10−8 *

Table 2. Performance of quadratures for various bandlimits. (*)
The ℓ∞ minimization algorithm could not calculate weights in
these cases due to the size of the Vandermonde systems.

in our experience, the nodes are always located inside the support of the weight
function.

8. Appendix

8.1. Golub-Welsch algorithm. We show how to derive the well known Golub-
Welsch algorithm [11] using the results in Section 3.1. Let us to consider a subspace

of polynomials spanned by the orthogonal basis {pn (x)}Nn=1. For such a set, there
exists a three term recursion relation of the form

(8.1) pn+1 (x) = (an+1x+ bn+1) pn (x) − cn+1pn−1 (x) ,
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Maximum error with nodes from:
Weights [4] [24] this paper

From [4] and [24] 1.2 · 10−7 8.3 · 10−8

Via ℓ∞ minimization 7.8 · 10−8 5.3 · 10−8 2.4 · 10−8

Via ℓ2 minimization 2.8 · 10−8

Table 3. Comparison of maximum absolute errors using the 24
nodes of different quadratures for fixed bandlimit c = 50. We com-
pare the maximum error from the original references [4] and [24] to
the maximum error using the same nodes but weights computed
via ℓ∞ minimization. We also compute the maximum errors of
the quadratures of this paper with weights obtained via ℓ2 and ℓ∞

minimization.
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Figure 6.1. Logarithm of the error of the 24 node quadrature for
bandlimit c = 50. In (a) we use nodes and weights from [24] and
in (b) nodes from [24] and weights generated via ℓ∞ minimization.
The horizontal lines at 8.30 · 10−8 in (a) and at 5.26 · 10−8 in (b)
indicate the maximum ℓ∞ error within the bandwidth.

where p−1 (x) ≡ 0, p0 ≡ 1, an > 0 and cn > 0 for n = 0, . . . , N − 1. Following [11],
we write the recursion as the matrix equation

(8.2) xp (x) = Tp (x) + (1/an) pN (x) en,

where p (x) = [p0 (x) , . . . , pN−1 (x)]
t
, en = [0, . . . , 1]

t
, and

T =




−b1/a1 1/a1 0 . . .
c2/a2 −b2/a2 1/a2

0
. . .

. . .
. . .

... 1/aN−1

cN/aN −bN/aN



.

Due to (8.2), pN (xj) = 0 if and only if xj is an eigenvalue of T, i.e., Tp (xj) =
xjp (xj) . Hence, we may recover the quadrature nodes xj by solving the eigenvalue
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Figure 6.2. Logarithm of the error of the 24 node quadrature for
bandlimit c = 50. In (a) we use nodes and weights from [4] and
in (b) nodes from [4] and weights generated via ℓ∞ minimization.
The horizontal lines at 1.15 · 10−7 in (a) and at 7.76 · 10−8 in (b)
indicate the maximum ℓ∞ error within the bandwidth.
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Figure 6.3. Logarithm of the error of the 24 node quadrature
for bandlimit c = 50 of this paper. In (a) we show the error
using weights obtained via ℓ2 minimization and in (b) using weights
obtained via ℓ∞ minimization. The horizontal lines at 2.80 · 10−8

in (a) and at 2.36 · 10−8 in (b) indicate the maximum ℓ∞ error
within the bandwidth.

problem for T . We note that in the Golub-Welsch algorithm the quadrature weights
are found from the eigenvectors of the matrix T .

We now show how to derive the matrix T using the approach in Section 3.1, that
is, via matrices of inner products. We define the matrices A and B by

Aij = 〈pi, pj〉 =
∫ 1

−1

pi (x) pj (x) w (x) dx, Bij =

∫ 1

−1

pi (x) x pj (x) w (x) dx,
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Figure 6.4. Logarithm of the error of the 24 node quadrature
for bandlimit c = 50 with weights generated by minimizing an ℓ2

residual with an ℓ∞ constraint. Although the error has a near
perfect behavior, the maximum absolute error 1.62 · 10−7 is worse
than in Figures (6.1), (6.2) and (6.3).

where i, j ∈ {0, . . . , N − 1} and w (x) is the weight function of the associated
inner product. The three term recursion relation (8.1) implies that the matrix B

is tridiagonal. In fact, because of (8.1), x pn(x) is a linear combination of pn−1, pn
and pn+1 which gives

Bnn+2 = 0, n = 0, . . . , N − 3,

and

Bnn+1 =

∫ 1

−1

(
pn+1 (x)

an+1

)
pn+1 (x)w (x) dx

=
‖pn+1‖2
an+1

, n = 0, . . . , N − 2,

Bnn =

∫ 1

−1

(
− bn+1

an+1
pn (x)

)
pn (x)w (x) dx

= − bn+1

an+1
‖pn‖2 , n = 0, . . . , N − 1,

Bnn−1 =

∫ 1

−1

(
cn+1

an+1
pn−1 (x)

)
pn−1 (x)w (x) dx

=
cn+1

an+1
‖pn−1‖2 , n = 1, . . . , N − 1,

where ‖·‖ is the norm associated with the weight function w (x). Furthermore, since

{pn (x)}Nn=1 are orthogonal, we obtain A = diag
(
‖p0‖2 , . . . , ‖pN−1‖2

)
. Taking the

inverse ofA, we recover the tridiagonal matrix T from the Golub-Welsch algorithm,

T = BA−1.
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Note that our approach is more general since it may be applied to any basis

{pn (x)}Nn=1 , even if it is not orthogonal (no 3-term recurrence is available); it
also generalizes to other sets of functions or non-positive weights.

8.2. Formulation of ℓ∞ residual minimization as a second-order cone pro-

gram. We review the primal-dual interior-point method of [20], the algorithm we
implemented in extended precision to compare with the results obtained using CVX
[13]. For further details we refer to [6].

We define a second order cone program (SOCP) as

(8.3)

minimize f tx

subject to ‖ui‖ ≤ ti, i = 1, . . . , N,

ui = Aix+ bi, i = 1, . . . , N,

ti = cTi x+ di, i = 1, . . . , N,

where x ∈ Rn is the optimization variable and f ∈ Rn, Ai ∈ Rni×n, bi ∈ Rni ,
ci ∈ Rn, and di ∈ R are the problem parameters. The primal-dual interior-point
method simultaneously solves the SOCP and a dual problem, defined as

(8.4)

maximize −
N∑

i=1

(
bt
izi + diwi

)

subject to

N∑

i=1

(
At

izi + ciwi

)
= f , i = 1, . . . , N

‖zi‖2 ≤ wi, i = 1, . . . , N

,

where zi ∈ Rni and wi ∈ R, i = 1, . . . , N , are the dual optimization variables. The
dual problem is convex, since we maximize a concave function subject to convex
constraints. Next, we demonstrate how the ℓ∞ residual minimization problem can
be recast as a SOCP.

8.2.1. Casting the ℓ∞ residual minimization problem as a SOCP. We need to find
the solution of the ℓ∞ residual minimization problem minw ‖Az− b‖∞, where A ∈
C

p×q and b ∈ C
p. We define

x =




Re (z)
Im (z)
t


 ∈ R

2q+1, f = ci =




0
...
0
1


 ∈ R

2q+1,

where we introduce the new optimization variable t > 0. We define

Ai =

[
Re (ai) −Im (ai) 0
Im (ai) Re (ai) 0

]
∈ R

(2q+1)×2, bi =

[
Re (bi)
Im (bi)

]
∈ R

2,

for i = 1, . . . , p, where ai is the i-th row of the matrix A, and bi is the i-th
entry of the vector b. Substituting these definitions into (8.3) and setting di = 0,
i = 1, . . . , p, yields the SOCP for solving the ℓ∞ residual minimization problem,

minimize t

subject to

∥∥∥∥
[

Re (ai) −Im (ai) 0
Im (ai) Re (ai) 0

]
x−

[
Re (bi)
Im (bi)

]∥∥∥∥
2

≤ t, i = 1, . . . , p.
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8.2.2. Primal-dual interior-point method. The primal-dual interior-point algorithm
solves (8.3) by minimizing the difference between the primary and the dual objective
functions, known as the duality gap,

η (x, z,w) = f tx+
N∑

i=1

(
bt
izi + diwi

)
.

This gap is non-negative for feasible x, z,w. Considering strictly feasible primal
and dual problems (i.e., the inequalities in (8.3) and (8.4) are replaced by strict
inequalities), we know that there exists solutions where the duality gap η (x, z,w) =
0. Such a solution achieves the optimum value (see e.g. [20]). While we provide an
initial guess that is strictly feasible, we also need to enforce strict feasibility of the
iterates. To this end, we define the barrier function φ (x, t),

φ (u, t) =

{
−log

(
t2 − ‖u‖22

)
, ‖u‖2 < t

∞ otherwise
,

which approaches infinity as ‖u‖22 → t2, corresponding in the limit to a feasible
(but not strictly feasible) solution of the problem.

Using the duality gap η and barrier functions for both of the primal and dual
problems, we define the potential function

ϕ (x, z,w) =
(
2N + ν

√
2N
)
log η (x, z,w) +

N∑

i=1

(φ (ui, ti) + φ (zi, wi))− 2N logN,

where ν ≥ 1 is a parameter. This potential function satisfies

η (x, z,w) ≤ exp
(
ϕ (x, z,w) /

(
ν
√
2N
))

,

for strictly feasible (x, z,w). Therefore, if ϕ → −∞ then η → 0 and the primal-
dual algorithm converges. Furthermore, the strict feasibility of the initial guess and
each of the iterates guarantees that the value of ϕ (x, z,w) decreases by some finite
amount after each update (see [20]).

To minimize ϕ (x, z,w), we find the primal and dual search directions, δx, δz
and δw by solving the linear system

(8.5)

[
H−1 A

A
t

0

][
δZ
δx

]
=

[
−H−1 (ρZ+ g)

0

]
,

where ρ = 2N + ν
√
2N ,

H =




∇2φ (u1, t1) . . . 0
...

. . .
...

0 . . . ∇2φ (uN , tN )


 , g =




∇φ (u1, t1)
...

∇φ (uN , tN )


 ,

and

A =




A1

ct1
A2

ct2
...



, Z =




z1
w1

z2
w2

...



, δZ =




δz1
δw1

δz2
δw2

...



, δx =



δx1

...
δxn


 .
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Finally, we state the algorithm. Given strictly feasible initial points (x, z,w), a
tolerance ǫ > 0, and the parameter ν ≥ 1, we

(1) Solve equation (8.5) for the primal and dual search directions.
(2) Perform a plane search to find the (p, q) that minimize ϕ (x+ pδx, z+ qδz, w + qδw).
(3) Update x = x+pδx, z = z+qδz, andw = w+qδw as long as η (x, z,w) > ǫ.

We note that as η decreases in size the system of equations (8.5) becomes ill con-
ditioned, which results in indeterminate search directions.
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