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Abstract

We have implemented a Fast Fourier Summation algorithm for tomographic reconstruction of three-dimensional biological data

sets obtained via transmission electron microscopy. We designed the fast algorithm to reproduce results obtained by the direct

summation algorithm (also known as filtered or R-weighted backprojection). For two-dimensional images, the new algorithm scales

as OðNhM logMÞ þOðMN logNÞ operations, where Nh is the number of projection angles and M � N is the size of the reconstructed

image. Three-dimensional reconstructions are constructed from sequences of two-dimensional reconstructions. We demonstrate the

algorithm on real data sets. For typical sizes of data sets, the new algorithm is 1.5–2.5 times faster than using direct summation in

the space domain. The speed advantage is even greater as the size of the data sets grows. The new algorithm allows us to use higher

order spline interpolation of the data without additional computational cost. The algorithm has been incorporated into a commonly

used package for tomographic reconstruction.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we describe a fast Fourier summation

(FFS) algorithm for tomographic reconstruction of data

obtained with a transmission electron microscope. For

two-dimensional reconstructions, the algorithm scales as

OðNhM logMÞ þOðMN logNÞ operations, where Nh is
the number of projection angles and M � N is the size of

the reconstructed image. This should be compared to the

direct summation in the space domain (also known as the

filtered or R-weighted backprojection algorithm) which

scales as OðNhMNÞ. Our algorithm has been applied to

data of (current) typical sizes and is shown to be 1.5–2.5

times faster than the direct summation. Naturally, for

larger data sets the improvement is even greater.
The problem of reconstructing an object from

measured projections has a rich history and many ap-

plications. For example, X-ray tomography, radio as-

tronomy, and seismic processing use results from the

basic inversion technique first considered by Radon
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(1917). The Radon inversion formula was rediscovered

by Cormack (1964) for X-ray tomography, and by

Bracewell (1956) for radio astronomy. For an intro-

ductory overview of the subject, see Deans (1993). Re-

construction algorithms of computerized tomography

can be found in books by Natterer (1986) and by Nat-

terer and W€uubbeling (2001). Reconstruction algorithms
for transmission electron microscopy (TEM) imaging of

biological specimens have been described by DeRosier

and Klug (1968) via a Fourier based method, and by

Gilbert (1972) via direct summation (for a review, see

Frank, 1992).

The well-known Fourier slice theorem relates pro-

jection data to the Fourier transform of the image. The

one-dimensional Fourier transform of the collected
projection data corresponds to samples on a polar grid

in the Fourier domain where, in our case, the polar

angles are not necessarily equally spaced. Since the

standard two-dimensional fast Fourier transform (FFT)

requires sampling on an equally spaced rectangular grid,

the inverse two-dimensional FFT cannot be used di-

rectly to reconstruct the image. Hence, fast Fourier re-

construction methods require some interpolation
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scheme in the Fourier domain. A number of recon-
struction algorithms based on interpolation in the

Fourier domain are available in the literature, see for

example, O�Sullivan (1985), Edholm and Herman

(1987), Schomberg and Timmer (1995), Lanzavecchia

and Bellon (1998), Wald�een (2000), and Potts and Steidl

(2001), and references therein.

Alternatively, fast hierarchical algorithms in the space

domain have been proposed by Brandt et al. (2000) and
by Basu and Bresler (2000). In these algorithms spatial

interpolation is used at each level of subdivision which

makes it difficult to control the resulting accuracy rela-

tive to the direct summation algorithm.

The interpolation techniques in the Fourier domain

in O�Sullivan (1985), Schomberg and Timmer (1995),

and Wald�een (2000) use an approximation that also

yields fast algorithms known as either non-equispaced
fast Fourier transform (NFFT) (see Dutt and Rokhlin,

1993) or unequally spaced fast Fourier transform (US-

FFT) (see Beylkin, 1995). Compared to the interpola-

tion techniques in the Fourier domain, the NFFT and

USFFT algorithms use a (rigorously derived) nearly

optimal relationship between the desired accuracy of the

transform and the speed of the algorithm. In general,

applications of NFFT or USFFT to problems of non-
destructive evaluation are well understood (see e.g.

Beylkin, 1995, p. 378), and can be found in Potts and

Steidl (2001) and Natterer and W€uubbeling (2001).

The specific difficulties of TEM that we address in

this paper include unequal spacing and limited range of

projection angles and, as far as the speed is concerned, a

relatively small number of projections in typical mea-

surements. Also, since the plane of the specimen may
not be parallel to the tilt axis, additional corrections

must be easily accommodated by the reconstruction al-

gorithm. Due to the small number of projections, some

of the fast algorithms mentioned above may not be

faster than the direct summation algorithm, as correctly

noted by Basu and Bresler (2000).

In this paper, we propose a technique that uses the

one-dimensional USFFT for performing summation in
the Fourier domain. The algorithm is designed for a

limited angle reconstruction and permits unequally

spaced sampling in the angular variable. Since the direct

summation algorithm has been the standard tool in

TEM for several decades, we match the result of FFS

with that of the direct summation within any desired

accuracy.

The method we propose guarantees accuracy relative
to the direct summation while controlling the compu-

tational cost. As it is true for all Fourier methods, we

gain flexibility in choosing interpolation schemes and

applying corresponding filters in the Fourier domain at

no extra cost. The FFS algorithm has been incorporated

into the IMOD package (version 2.50 and higher; see

http://www.bio3d.colorado.edu/imod) in 2001.
This paper is organized as follows. In Section 2, we
introduce and formulate the inversion problem. We then

give a brief review of the direct summation algorithm in

the space domain. In Section 3, we derive an inversion

formula for limited angle reconstruction in the Fourier

domain. In Section 4, we discretize the inversion for-

mula using the USFFT, select sampling, and show how

to apply higher order interpolation. Finally, in Section 5

we demonstrate the algorithm on data sets collected at
the Boulder Laboratory for 3-D Electron Microscopy of

Cells at the University of Colorado at Boulder and

compare the results with those obtained by using the

direct summation algorithm. We do this for three-di-

mensional tomographic reconstructions as a part of the

IMOD package (http://www.bio3d.colorado.edu/imod;

Kremer et al., 1996).
2. Preliminaries

2.1. Formulation of the problem

We consider the problem of estimating the density of

a biological specimen. We restrict ourselves to recon-

structing densities in the plane and build the three-di-
mensional volume as a collection of two-dimensional

slices. We consider a specimen illuminated by an elec-

tron beam and the intensity of the beam is measured

after it passes through the specimen. This procedure is

repeated for different tilt angles of the electron beam

relative to the specimen as schematically shown in Fig. 1

below. In practice, the tilt angles h are limited to some

interval and typically range between ’ �70� with an
angular separation of 1�–2�. The intensity is measured at

M points for each angle hl, l ¼ 1; 2; . . . ;Nh. The problem

is then formulated as that of finding a discrete approx-

imation to the density of the specimen, gðx; zÞ, on a

rectangular (equally spaced) grid with M points in the x-
direction and N points in the z-direction. The number of

points in the x-direction is typically 500–2000. The

number of points in the z-direction is usually less than
the number of points in the x-direction.

As is customary, we assume that the intensity of the

electron beam decays along straight lines through the

specimen. For a comprehensive treatment of the physics

of electron microscopy, see Reimer (1997). We consider

a family of straight lines through the specimen,

Ct;h ¼ fðx; zÞ 2 R2jt ¼ x cos hþ z sin hg (see Fig. 1). For

a given projection angle h, we define t as

tðx; zÞ ¼ x cos hþ z sin h; ð1Þ
and the function RhðtÞ as the line integral of the density
gðx; zÞ along the line Ct;h

RhðtÞ ¼
Z
Ct;h

gðx; zÞds; ð2Þ

http://www.bio3d.colorado.edu/imod
http://www.bio3d.colorado.edu/imod


Fig. 1. Experimental setup. A specimen with density distribution gðx; zÞ is illuminated by an electron beam through different angles h. The variables
DM and Mext are discussed in Section 4.3.
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where ds denotes the standard Euclidean measure on the

line. We note that evaluating RhðtÞ for all lines is
equivalent to computing the Radon transform of gðx; zÞ.

Assuming that the measured intensity is described by

IhðtÞ ¼ e�RhðtÞ, our goal is to approximate gðx; zÞ by

measuring IhðtÞ. Sampling RhðtÞ ¼ � ln IhðtÞ at a set of

projection angles h1 < � � � < hl < � � � < hNh and at a set

of distances t0 < � � � < tk < � � � < tM�1, yields the matrix

rkl ¼ RhlðtkÞ; ð3Þ
where k ¼ 0; 1; . . . ;M � 1 and l ¼ 1; 2; . . . ;Nh. Each

column l of the matrix in (3) contains all measurements

for the angle hl.
The problem can now be formulated as follows: given

the measurement data rkl, find an approximation to
gðxm; znÞ, where the points xm; zn form a grid with

m ¼ 1; 2; . . . ;M and n ¼ 1; 2; . . . ;N . In TEM the total

amount of input data is quite significant since such data

are generated from measurements of a large number of

two-dimensional slices of a specimen. Therefore, we not

only need to find an accurate approximation of the den-

sity, but we also need to compute it in an efficient manner.

2.2. Inversion of the Radon transform

As is well known (see e.g. Deans, 1993) the two-di-

mensional density gðx; zÞ can be recovered from the line

integrals RhðtÞ in (2) as
gðx; zÞ ¼
Z p

2

�p
2

ðq � RhÞðtðx; zÞÞdh; ð4Þ

where ‘‘*’’ denotes convolution and q is a filter with the

Fourier transform given by

q̂qðxÞ ¼ jxj: ð5Þ

In practice, this filter is often modified by a bandlimiting

window. For example, if we use

q̂qðxÞ ¼

jxj; jxj6xc;
a smooth transition such that

q̂qð�xcÞ ¼ xc andq̂q � 1
2

� �
¼ 0; xc < jxj6 1

2
;

0; jxj> 1
2
;

8>><
>>:

ð6Þ
where 0 < xc <

1
2
is a user specified parameter, then the

density is approximated by

gðx; zÞ �
Z p

2

�p
2

Z 1
2

�1
2

q̂qðxÞ
Z 1

�1
RhðsÞe2pisx ds

� �
e�2pixt dxdh:

Here, t depends on h, x, and z as in (1), but in what fol-

lows we may suppress this dependence in our notation.

2.3. Direct summation

If we assume that the electron beam is modeled
by line integrals then reconstructing the density of a
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specimen from its projections can be viewed as the in-
version of the Radon transform. Many reconstruction

algorithms rely on this fact and solve the inversion

problem by discretizing the inverse Radon transform

(Deans, 1993; Gilbert, 1972). In this section, we describe

the widely used direct summation algorithm (also

known as the filtered or R-weighted back projection).

We discretize (4) and obtain

gðxm; znÞ ¼
XNh

l¼1

wlðq � RhlÞðtðxm; znÞÞ; ð7Þ

where tðxm; znÞ is given by (1) and wl are weights to com-

pensate for unequally spaced angles. For measurements

performed over equally spaced angles, the weights wl are
usually set to one. Since we have measurements only for a

discrete set of values of t, the elements ðq � RhlÞðtðxm; znÞÞ
are estimated from fðq � RhlÞ ðtkÞgM�1

k¼0 by some inter-

polation scheme, usually piecewise linear interpolation.

Let us summarize the steps for estimating the density

gðx; zÞ from the measurements of projections.

1. Filter the data to obtain ðq � RhlÞðtkÞ, k ¼ 0; 1; . . . ;
M � 1 by:
1.1. applying the FFT along the columns of the ma-

trix rkl defined by (3),

1.2. multiplying each element of the transformed ma-

trix by the (pre-computed) filter coefficients and

the weights wl if necessary, and

1.3. applying the inverse FFT column-wise.

2. Sum the result of the previous step to obtain the den-

sity by:
2.1. computing tðxm; znÞ for each given ðxm; znÞ,
2.2. finding ðq � RhlÞðtðxm; znÞÞ by linearly interpolat-

ing ðq � RhlÞðtkÞ, and
2.3. summing the result according to (7).

Step 2 dominates the computational cost since we have

to sum over Nh terms N �M times, for the total com-

putational cost of OðNhMNÞ. Usually Nh, M , and N are

of the same order of magnitude so the above algorithm
has the computational cost OðN 3Þ.
3. Inversion formula in the Fourier domain

In this section, we derive an inversion formula in the

Fourier domain that is equivalent to the direct sum-

mation formula in (7). We will show that if

xm ¼ �xs þ m; m ¼ 1; 2; . . . ;Mf ;

where xs is a shift parameter that depends on the selec-

tion of the coordinate system in the x-variable, then

gðxm; znÞ can be written as

XNh

l¼1

wlðq � RhlÞðtðxm; znÞÞ

¼
Z 1

2

�1
2

XNh

l¼1

vlðxÞe�2pixzn tan hl

 !
e�2pixxm dx;
where

vlðxÞ ¼
wl

cos hl
e
�2pixs x

cos hl q̂q
x

cos hl

� �
sin px

cos hl
px

cos hl

 !2

�
XM�1

k¼0

RhlðtkÞe
2pik x

cos hl : ð8Þ

In Section 4.2, we will describe a numerical implemen-

tation of this formula that results in a fast OðNhM
logMÞ þOðMN logNÞ algorithm. We note that shifting

the coordinate system in x by a constant xs
may be necessary to account for the deformation of a

specimen during the data collection.

In order to obtain (8), we will discretize the z-variable
but keep x as a continuous variable until the very end of

our derivation. Let fzngNn¼1 be an equally spaced grid in

the z-variable. If we fix z ¼ zn while treating x as a

continuous variable, then we write gnðxÞ ¼ gðx; znÞ and

tnðxÞ ¼ tðx; znÞ, where t is defined in (1). In the following
derivation f̂f ðxÞ ¼

R1
�1 f ðtÞe2pitx dt denotes the Fourier

transform of a function f ðtÞ.
By introducing the notation flðtnðxÞÞ ¼ wlðq � RhlÞ

ðtðx; znÞÞ, we write the sum for the direct summation (7) as

gnðxÞ ¼
XNh

l¼1

flðtnðxÞÞ; ð9Þ

where x is a continuous variable. To derive (8), we apply

the Fourier transform with respect to x to both sides

of (9) and perform the summation over angles in

the Fourier domain. The Fourier transform of (9) with

respect to x gives

ĝgnðxÞ ¼
XNh

l¼1

Z 1

�1
flðx cos hl þ zn sin hlÞe2pixx dx

¼
XNh

l¼1

e�2pixzn tan hl

cos hl

Z 1

�1
flðsÞe2pis

x
cos hl ds

¼
XNh

l¼1

vlðxÞe�2pinlðxÞzn ; ð10Þ

where nlðxÞ ¼ x tan hl and

vlðxÞ ¼
1

cos hl

Z 1

�1
flðsÞe2pis

x
cos hl ds: ð11Þ

By definition, we have

flðtnðxÞÞ ¼ wlðq � RhlÞðtðx; znÞÞ

¼ wl

Z 1

�1
q̂qðxÞR̂RhlðxÞe�2pixt dx; ð12Þ

which combined with (11) gives us

vlðxÞ ¼
wl

cos hl
q̂q

x
cos hl

� �
R̂Rhl

x
cos hl

� �
: ð13Þ

Recall that RhlðtkÞ corresponds to a discrete set of
measurements. In the direct summation algorithm, we
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use interpolation to define RhlðtÞ for any t. To incorpo-
rate the linear interpolation, let us introduce the ‘‘hat’’

function, or the linear spline

bðtÞ ¼ 1� jtj; �1 < t < 1;
0; otherwise;

�
ð14Þ

with its Fourier transform given by

b̂bðxÞ ¼ sinðpxÞ
px

� �2

:

We express the piecewise linear interpolation of the

discrete data using bðtÞ by defining

RhlðtÞ ¼
XM�1

k¼0

bðt � k þ xsÞrkl: ð15Þ

It is easily verified that the function RhlðtÞ is continuous
with respect to t. Using (15) we have

R̂RhlðxÞ ¼
XM�1

k¼0

rkl

Z 1

�1
bðt � k þ xsÞe2pitx dt

¼
XM�1

k¼0

rkl e2piðk�xsÞx
Z 1

�1
bðsÞe2pisx ds

¼ e�2pixsxb̂bðxÞ
XM�1

k¼0

rkl e2pikx: ð16Þ

Combining (13) and (16) yields

vlðxÞ ¼
wl

cos hl
e
�2pixs x

cos hl q̂q
x

cos hl

� �
b̂b

x
cos hl

� �

�
XM�1

k¼0

rkl e
2pik x

cos hl

¼ FlðxÞr̂rl
x

cos hl

� �
; ð17Þ

where

FlðxÞ ¼
wl

cos hl
e
�2pixs x

cos hl q̂q
x

cos hl

� �
b̂b

x
cos hl

� �
; ð18Þ

and

r̂rl
x

cos hl

� �
¼
XM�1

k¼0

rkl e
2pik x

cos hl : ð19Þ

We note that the factor FlðxÞ is independent of the

measured data once the angles hl are known.

The final step is computing gnðxÞ from ĝgnðxÞ. By

taking the inverse Fourier transform of (10) we arrive at

gnðxÞ ¼
Z 1

�1

XNh

l¼1

vlðxÞe�2pinlðxÞzn

 !
e�2pixx dx; ð20Þ

where nlðxÞ ¼ x tan hl and vlðxÞ are defined in (17).

Let us consider a smooth bandlimited filter q with its

Fourier transform q̂q defined by (6). Since q̂q is zero for

jxj > 1
2

we observe that from (17) it follows that

vlðxÞ ¼ 0 for jxj > 1
2
. Hence (20) reduces to
gnðxÞ ¼
Z 1

2

�1
2

XNh

l¼1

vlðxÞe�2pinlðxÞzn e�2pixx dx: ð21Þ

The equation (21) is equivalent to the sum (9) used in the

direct summation algorithm. We can obtain a fast re-

construction algorithm by computing the sums in (19)
and (21) using the USFFT described in the Appendix A.
4. Implementation

4.1. Discretization

Let us evaluate (21) at pixel locations in the final
image gnðxmÞ where xm is given by

xm ¼ �xs þ m; m ¼ 1; 2; . . . ;Mf ;

and xs is a shift parameter due to possible deformations

of the specimen. In order to avoid aliasing artifacts in

the FFS algorithm, we construct an Mf � N -image

where Mf > M . The number of pixels Mf needed to

avoid aliasing will be selected in Section 4.3. By dis-

cretizing x as

xk ¼ � 1

2
þ k
Mf

; k ¼ 1; 2; . . . ;Mf ;

we approximate (21) by using the trapezoidal rule

gnðxmÞ’
1

Mf

XMf
2

k¼�Mf
2
þ1

XNh

l¼1

vl
k
Mf

� �
e
�2pinlð k

Mf
Þzn

 !
e
�2pi kMf

xm

¼ 1

Mf

XMf
2

k¼�Mf
2
þ1

XNh

l¼1

vl
k
Mf

� �
e
�2pinlð k

Mf
Þzn

 !
e
2pi k

Mf
xs e

�2pi kMf
m

¼ 1

Mf

XMf
2

k¼�Mf
2
þ1

ĝgnke
�2pik m

Mf ; ð22Þ

where

ĝgnk ¼ e
2pi kMf

xs
XNh

l¼1

vl
k
Mf

� �
e
�2pinlð k

Mf
Þzn : ð23Þ

Due to the construction of the filter q in (6), the inte-
grand in (21) can be considered to be smooth and pe-

riodic in x with period 1. Under this condition, the

trapezoidal rule is rapidly convergent and we can

achieve any desired accuracy by choosing Mf large en-

ough. We have found that for our applications setting

Mf to 1:5� 2 times the number of projections M usually

suffices. We will demonstrate the accuracy of (22) in

Section 5.2.1.
We note that the reconstruction formula (22) allows

the grid in the z-variable to be shifted by a constant zs by
scaling vl. Such shifts are essential in some cases when

reconstructing three-dimensional volumes as discussed

in Section 5.1.
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4.2. Numerical algorithm

Our first goal in designing the FFS algorithm is to

match the results with those of the direct summation

algorithm. We do it for two reasons. First, since the

direct summation algorithm has been used for a long

time in TEM and significant experience has been accu-

mulated for interpretation of the images, we avoid the

issue of acceptance. Second, we demonstrate the flexi-
bility of the FFS algorithm. As it turns out by changing

parameters we can achieve a higher order interpolation

in the input data in comparison with the linear inter-

polation used within the direct summation.

In order to match the direct summation algorithm,

we consider linear interpolation and use a bandlimited

version of the filter q̂qðxÞ ¼ jxj. The discretization of the

radial weighting filter is given by

q̂qðxkÞ ¼
jxkj; jxkj6xc;

xc e
�ðxk�xcÞ2

2x2s ; xc < jxkj6 1=2;
0; jxkj > 1=2;

8><
>:

where xc is a user specified cutoff frequency and xs is a

user specified parameter for the Gaussian roundoff. This

filter matches the filtering routinely used for direct sum-
mation, but other choices of filters are also possible. By an

appropriate choice of the Gaussian roundoff, the filter is

(approximately) continuous with respect to x. The dis-

cretization of the linear interpolation filter is given by

b̂bðxkÞ ¼
sinðpxkÞ
pxk

� �2

:

We discuss other choices of this filter in Section 4.4

below.

Next we summarize the main steps of the FFS algo-

rithm. To estimate the number of operations, let us
consider Nh projection angles with M samples each to

reconstruct an image with M � N pixels. We consider a

three-dimensional volume consisting of Ny slices. In what

follows Mf (to be estimated in Section 4.3 below) is the

number of spatial frequency modes in the x-direction.
Algorithm

1. Precomputation: For each angle hl and each
frequency xm, compute FlðxmÞ defined by (18).

2. For each image, evaluate (22):

2.1. For each angle hl and each frequency xm, com-

pute the sum (19) using the USFFT and multiply

the result by FlðxmÞ to obtain vlðxmÞ in (17). See

the Appendix A for details. Computational cost:

OðNhMfÞ þOðNhM logMÞ.
2.2. For each frequency xm, compute the sum in (23)

using the USFFT. See the Appendix A for details.

Computational cost: OðMfNhÞ þOðMfN logNÞ.
2.3. Compute the sum in (22) using the FFT. Compu-

tational cost: OðNMf logMfÞ.
The steps are illustrated in Fig. 2. Using the symmetry of
the Fourier transform f̂f ðxÞ of the real data f ðtÞ, we
double the speed of the algorithm by using f̂f ð�xÞ ¼
f̂f ðxÞ.

The algorithm assumes a limited range of projection

angles. For the applications in this paper the angles are

typically between �70�. We note that the algorithm

can be modified for the full angular range by first

computing the density gðx; zÞ based on the projection
angles satisfying jhlj6 45�, then interchanging the role

of x and z, and computing g based on the projection

angles satisfying jhlj > 45�. Finally, we add the two

reconstructions. A similar procedure was used by Potts

and Steidl (2001).

In most applications, the angles hl and filters are the

same for all slices, which means that the precomputation

step in the algorithm only needs to be done once while
steps 2.1–2.3 are repeated for each slice.

4.3. Oversampling

Applying the backprojection operator, we note that

the collected data will produce non-zero intensity not

only within but also outside the shaded portion of the

specimen in Fig. 1. We refer to the shaded portion in
Fig. 1 as ‘‘the region of interest.’’ The extension of the

support outside the region of interest does not cause any

problems in the direct summation algorithm. However,

by using (22) we see that since gðxþMf ; zÞ ¼ gðx; zÞ, we
reconstruct a periodic image. If Mf is not large enough,

the reconstructed area outside the region of interest will

wrap around and overlap with the region of interest

causing undesirable artifacts. By knowing the full extent
of the reconstruction, Mext in Fig. 1, we can choose the

number of frequencies Mf large enough. Since the size of

Mf affects the computational speed of the algorithm, it is

important to choose Mf as small as possible.

From Fig. 1 we observe that

DM ¼ Mext �M
2

¼ N tan hmax;

where hmax ¼ maxfjhljgNh
l¼1. This is illustrated in Fig. 3,

where there is no wrap-around between the left and right

sides of the reconstruction.

If Mf is smaller than the spatial support Mext ¼
M þ 2DM , we will observe aliasing but as long as the

overlapping region is outside the region of interest, no

harm is done to the reconstruction. Hence, in order to

avoid aliasing artifacts, we must choose

Mf PM þ N tan hmax: ð24Þ
This is illustrated in Fig. 4, where the wrap-around does
not overlap the region of interest. For our applications,

we note that choosing Mf according to (24) also is suf-

ficient to achieve the desired accuracy in discretizing the

integral in (21).



Fig. 2. Interpretation of the FFS in the Fourier domain. The measurement given by the data acquisition is represented by the filled dots. Step 2.1 in the

algorithm amounts to interpolating the data to the positions indicated by the squares. Step 2.2 of the algorithm computes the matrix ĝgnðxkÞ column-

wise by adding data along the summation lines. The final step of the algorithm computes the image by applying the inverse FFT row-wise on ĝgnðxkÞ.

Fig. 3. For this reconstructionM ¼ 572, N ¼ 140, and hmax ¼ 73:31�. For this reconstruction, we choseMf ¼ 1512. We observe that for this choice of

Mf , the entire support of the image fits in the reconstructed image.
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Choosing Mf larger than M can be thought of as

oversampling the image. The oversampling factor is gi-

ven by the ratio Mf=M and it is desirable to make this
factor as close to one as possible. For typical data sets,

we have found that this oversampling factor ranges

between 1.5 and 2. In (24), the size of Mf depends on



z

α
y

Fig. 5. x-axis tilting. Side view of section to be reconstructed where the

section is tilted by the angle a around the x-axis (pointing out from the

paper). Dashed lines are slices computed by the algorithm and the solid

line is the output slice interpolated from vertical slices.

Fig. 4. We construct the same data set as in Fig. 3, but here we choseMf ¼ 1080 which satisfies (24). Here, we do see some wrap-around in the left and

right part of the upper image, but it does not overlap the region of interest cropped out in the lower image.
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N tan hmax. We note that for physical reasons, large hmax

requires thin specimens, which implies a small N . Hence,

the oversampling factor is bounded in most applications

and we have found it is typically sufficient to choose
Mf 6 2M . Therefore, the total computational cost of the

full three-dimensional reconstruction algorithm is given

by OðNyNhM logMÞ þOðNyNhMf logMfÞ. This should

be compared to OðNyMNNhÞ for the direct summation.

Actual speed comparisons are given in Section 5.2.2.

4.4. Interpolation

In Sections 3 and 4, we matched the FFS to repro-

duce the result of the direct summation algorithm that

uses piecewise linear interpolation of the data. In direct

summation, the interpolation is applied in step 2.2 of the

algorithm in Section 2.3. We now show that higher or-

der interpolation schemes can be easily incorporated

into the FFS without additional computational costs.

As in the case of linear interpolation, the piecewise
interpolation of higher order can be described in the space

domain by using the B-splines, (Schoenberg, 1973). For

the linear interpolation, the linear B-spline is given by the

hat function in (14). Although higher order interpolation

schemes may be cumbersome to implement in the space

domain, in Fourier based algorithms the interpolation is

implemented in the Fourier domain where it is simply a

multiplication by an appropriate filter. From the defini-
tion of the B-splines as a repeated convolution of the

characteristic function, it follows that the Fourier trans-

form of the B-spline of odd order k is given by

b̂bðkÞðxÞ ¼ sinðpxÞ
px

� �kþ1

; k ¼ 1; 3; 5; . . . ð25Þ

Thus, all we need to use higher order interpolation in

our reconstruction algorithm, is to apply (25) when

computing the factor FlðxÞ given by (18). This is done in
step 1 in the algorithm in Section 4.2.

Since the higher order interpolation filter (25) decays

faster with order k, increasing the order of interpolation

effectively low-passes the data. We leave the choice of
the order as a parameter in the algorithm. Such choice

should be guided by practical considerations and expe-

riences. Since using high-order interpolation has a

bandlimiting effect, it also implies that we need fewer
frequencies for the reconstruction which, in turn, pro-

vides a marginal speed improvement.
5. Results

5.1. Incorporation of the FFS algorithm into IMOD

The FFS algorithm was incorporated into the Tilt

program of the IMOD package (http://www.bio3d.

colorado.edu/imod; Kremer et al., 1996). The basic

framework of this program was originally written by
Mike Lawrence while at the Medical Research Council

in Cambridge. Before the speed comparisons reported

here, the direct summation procedures in Tilt were op-

timized in two ways. First, all boundary checks were

moved outside of the inner summation loops. Second,

each line of input data was stretched by the cosine of the

http://www.bio3d.colorado.edu/imod
http://www.bio3d.colorado.edu/imod
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tilt angle, with the stretched data oversampled by a
factor of two to minimize the filtering effect of interpo-

lating twice. The result is that a line of stretched input

data can be added into a line of the tomographic slice by

stepping through the input line at a fixed interval and

with fixed interpolation factors. The advantages of FFS

would have been considerably higher than described

here without these improvements to the original code.

Further developments in the Tilt program and in the
FFS algorithm were spurred by the desire to correct for

the plane of the specimen not being parallel to the tilt
Fig. 6. Image reconstructions. (A) A test data set computed with the FFS a

sponding slice reconstructed by direct summation with the same contrast as in

times. (D) Test data set for the Fourier ring correlation test. (E) Portion of re

(F) Portion of reconstruction using the FFS of the data set in (D) with nois
axis. When the specimen is tilted in the plane of the re-
construction, the thickness of the reconstruction must be

increased to contain the material of interest, sometimes

by as much as 50% for large data sets. To avoid this, the

Tilt program can apply a tilt around the x-axis when

computing the reconstruction by direct summation.

However, this means that one output slice is based on

multiple lines of input data, making fast backprojection

unusable for this computation. To solve this problem,
the FFS algorithm was modified to shift the output

slice vertically (in the z dimension) by a chosen amount.
lgorithm. (B) The difference between the image in (A) and the corre-

(A). (C) The same dataset as in (B), but with the contrast amplified 29

construction using the FFS of the data set in (D) without noise added.

e added.



Fig. 7. Quantitative comparison between direct summation and FFS.

The graph shows the Fourier ring correlation averaged over 190 slices

of each reconstruction.
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Tilt now uses FFS to compute slices perpendicular to the
tilt axis, (dashed vertical line in Fig. 5), each shifted ap-

propriately in z so that it covers the region needed for the

reconstructed output slice. It then interpolates between

these perpendicular slices to obtain an output slice tilted

around the x-axis (tilted solid line in Fig. 5).

5.2. Tests

5.2.1. Accuracy

The data set shown here is based on images from the

mitotic spindle of a dividing cell from the PtK cell line.

The cell was high-pressure frozen, freeze-substituted,

embedded in epon-araldite, and sectioned at 300 nm.

The section was tilted between �70 at 1.5� intervals and
images were recorded on film in a JEOL microscope

operating at 1000 keV. The grid was then rotated by 90�
around the z-axis in the specimen holder and a second,

similar tilt series was taken. Data were digitized at a

pixel size of 2.3 nm using a CCD camera. The resolution

of both the film and the CCD camera were good enough

to ensure that the images have substantial information

out to the Nyquist frequency. The overall modular

transfer function (MTF) is estimated to be 30% at the

Nyquist frequency. The single axis and combined to-
mograms were computed as described previously

(Mastronarde, 1997).

Fig. 6 shows that the FFS algorithm produces es-

sentially the same reconstruction as direct summation.

One slice from the reconstruction of the test data set

computed with FFS appears in Fig. 6A. The two densest

features, one above and one below the sectioned mate-

rial, are colloidal gold particles placed on the surface of
the support film as fiducial markers for alignment. The

difference between this image and the corresponding

slice reconstructed by direct summation appears in

Fig. 6B, at the same contrast as in Fig. 6A, and again in

Fig. 6C with the contrast amplified 29 times. Aside from

differences in the edge artifacts produced by the two

procedures, the most prominent difference is at the gold

particles, where the difference is about 1% of the density
of the particles relative to the background. The differ-

ences within the section are smaller and are less than 2%

of the range of densities found there.

For a quantitative assessment of the fidelity of re-

construction by the two methods, a sample volume was

reprojected, then tomograms were built from the re-

projections and compared with the original volume by

Fourier ring correlation (Saxton and Baumeister, 1982).
The combined dual-axis tomogram of our test data set

was used as the sample volume; Fig. 6D shows the

corresponding slice from this volume. This volume was

considered suitable because the characteristic artifacts

from single-axis tomography, namely the dark rays at

the terminal angles of the tilt series and white shadows

to the sides of densities, are much reduced there (Mas-
tronarde, 1997). The volume was reprojected at 1.5�
intervals between �66�, either with no added noise or

with added Poisson noise. The latter images were filtered

by the estimated MTF of the film and digitizing appa-

ratus. Noise levels equivalent to 1000, 3000 or 9000

electrons/pixel were explored, to represent both low dose

and standard exposure situations. Several different high

frequency cutoffs were applied in each of these situa-

tions. Figs. 6D and E show a central portion of the re-
construction from the noise-free data and the data with

3000 electrons/pixel of noise, respectively.

Fig. 7 shows the correlation between the Fourier

transforms of the reconstruction and of the test volume,

as a function of spatial frequency, averaged over 190

slices of each reconstruction. Clearly the two methods

are equivalently good at reconstructing the test volume,

regardless of the amount of noise added. From all of the
cases tested, there was a tendency for the FFS to be

slightly worse at low frequencies and slightly better at

higher frequencies except near the Nyquist frequency;

however, in practical terms these differences are insig-

nificant.

5.2.2. Speed

The speed of the FFS algorithm was explored with a
variety of data sizes and under several computer ar-

chitectures. The width of the input data was varied

from 256 to 4096 pixels; the number of projections was

varied from 21 to 375, with an extreme angle of either

60� or 70�; and the thickness of the reconstruction was

varied from 25 to 400 pixels. For a particular data size,

CPU time was measured for the computation of one
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slice and ten slices, and the incremental time to com-
pute nine slices were used to compare FFS and direct

summation. Comparisons were done on SGI Octane

computers with R10000 and R12000 processors, on a

Sun Sparc Ultra-60, and on Intel-architecture com-

puters with Pentium 3, Pentium 4, Athlon Thunder-

bird, and Athlon MP processors. For the SGI and Sun

tests, programs were compiled with the native compil-

ers; the Intel-architecture tests were done both with
Fig. 8. Speed comparison. (Direct summation)/FFS execution time

ratio for three computer architectures. (A) Dependence on number of

projections with width 1024 and thickness 200. (B) Dependence on

reconstruction width with 80 projections and thickness 200. (C) De-

pendence on thickness with 80 projections and width 1024.
programs compiled with GNU compilers and with
Intel compilers.

The results in Fig. 8, from SGI, Pentium 4, and

Athlon processors, illustrate the range of performance

benefits found with FFS for typical data sizes. These

graphs are not intended to demonstrate the order

OðNhM logMÞ þOðMN logNÞ of the FFS algorithm

since they show the dependence on each parameter

separately with the other parameters fixed at typical
values. The main point of Fig. 8 is to show performance

gains for current typical sizes.

The strongest dependence is on the number of pro-

jections (Fig. 8A), where the speed benefit climbs 5-fold

with an increase from 20 to 320 projections. This initial

rise was most abrupt and pronounced with Athlon

processors (e.g., Fig. 8C) and it reflects predominantly a

slowing down of the direct summation per unit of
computation rather than a speedup of FFS. Our inter-

pretation is that the architecture of the Athlons is par-

ticularly favorable to the direct summation for small

data sizes, but at some point a limit in cache or pipeline

size is reached and the performance falls abruptly for

direct summation.

The FFS is actually slower than direct summation

for small data sets (Figs. 8A and B). To avoid using a
slower algorithm, the Tilt program switches to direct

summation when the width, thickness, or number of

projections falls below a specified limit for the given

computer architecture. Overall, the typical benefit

from FFS is about 1.5- to 2.5-fold, with greater

benefits available on some computers and with larger

data sets.
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Appendix A. Unequally spaced fast Fourier transform

(USFFT)

As is well known, the discrete Fourier transform

ûun ¼
XN�1

k¼0

uk e�2pik nN ; n ¼ 0; 1; . . . ;N � 1; ðA:1Þ
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can be computed in OðN logNÞ operations using the fast
Fourier transform (FFT) (Cooley and Tukey, 1965).

Since our algorithm uses the sums (23) and (19), we

need a fast algorithm to compute the sums

ûun ¼
XM
k¼1

uk e�2pinkn; n ¼ �N
2
;�N

2
þ 1; . . . ;

N
2
� 1;

ðA:2Þ

and

ûuðnkÞ ¼
XN2�1

n¼�N
2

un e�2pinnk ; k ¼ 1; 2; . . . ;M ; ðA:3Þ

for a given real set of points fnkgMk¼0, where jnkj < 1=2
for each k. We note that M may be different from N . The

requirement jnkj < 1=2 is not a constraint since by ap-

propriate scaling and shifting it is always possible to

satisfy this condition.

The sums in (A.2) and (A.3) can be computed using

either the NFFT (Dutt and Rokhlin, 1993) or the US-

FFT (Beylkin, 1995). These algorithms effectively con-
tain interpolation that guarantees the accuracy of the

result. We use the algorithm in Beylkin (1995) which

requires C1M þ C2N logN operations and produces a

prescribed accuracy. For this reason, we can match our

results with those obtained via the direct summation.

Let us rewrite the sum (19) to match the form in

(A.3). By a change of the summation index, we have

r̂r
x

cos hl

� �
¼ e

pix M
cos hl

XM2�1

k¼�M
2

rkþM
2
;l e

2pik x
cos hl :

We now rewrite the sum (23) to match the form in (A.2).
If zn ¼ zs þ n, where zs is a constant, we have

XNh

l¼1

vl e�2pinlzn ¼
XNh

l¼1

vl e�2pinlzs
� �

e�2pinln;

where we have omitted the dependence of vl and nl on
k=Mf .
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