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Full-wave-equation depth extrapolation for migration

Kristian Sandberg’ and Gregory Beylkin?

ABSTRACT

Most of the traditional approaches to migration by down-
ward extrapolation suffer from inaccuracies caused by using
one-way propagation, both in the construction of such propa-
gators in a variable background and the suppression of propa-
gating waves generated by, e.g., steep reflectors. We present a
new mathematical formulation and an algorithm for down-
ward extrapolation that suppress only the evanescent waves.
We show that evanescent wave modes are associated with the
positive eigenvalues of the spatial operator and introduce
spectral projectors to remove these modes, leaving all propa-
gating modes corresponding to nonpositive eigenvalues in-
tact. This approach suppresses evanescent modes in an arbi-
trary laterally varying background. If the background veloci-
ty is only depth dependent, then the spectral projector may be
applied by using the fast Fourier transform and a filter in the
Fourier domain. In computing spectral projectors, we use an
iteration that avoids the explicit construction of the eigensys-
tem. Moreover, we use arepresentation of matrices leading to
fast matrix-matrix multiplication and, as a result, a fast algo-
rithm necessary for practical implementation of spectral pro-
jectors. The overall structure of the migration algorithm is
similar to survey sinking with an important distinction of us-
ing a new method for downward continuation. Using a
blurred version of the true velocity as a background, steep re-
flectors can be imaged in a 2D slice of the SEG-EAGE model.

INTRODUCTION

Most of the traditional approaches to migration by downward ex-
trapolation use one-way propagators. The reason for that stems from
the fact that an initial-value problem with respect to a spatial variable
for a second-order hyperbolic equation is ill posed and its solution
numerically unstable, as we explain later in the paper. The physical
reason for instability is the amplification of evanescent waves that

leads to a rapid blow-up of the solution, making it necessary to sup-
press unwanted wave modes in downward extrapolation algorithms.
In particular, to avoid the blow-up, it is common to construct direc-
tional splitting of the propagator.

Examples of migration algorithms that use directional splitting in-
clude Stolt migration (Stolt, 1978) and, more generally, downward
continuation migrations (see, e.g., Biondi [2006] for an overview).
The directional splitting of the propagator carries with it two penal-
ties: the one-directional propagator suppresses not only evanescent
waves but also propagating waves moving, for example, in the oppo-
site direction and, in case of variable background, it introduces poor-
ly controlled errors because of the approximation involved in the
splitting. For a background with depth-only dependent velocity and
zero offset source-receiver configuration, Kosloff and Baysal (1983)
propose suppressing only the evanescent waves in the wavenumber
domain by using the Fourier transform and a simple ideal cutoff fil-
ter. For a general variable background, relying on the Fourier trans-
form as a tool, they suggest using a cutoff filter adjusted to the maxi-
mum velocity at a given depth level. As we show in our examples,
such strategy leads to the removal of some propagating waves along
with the evanescent waves and, as a result, poor imaging of steep re-
flectors. We note that in the context of ultrasonic imaging, for a con-
stant background, the idea of removing only evanescent waves by
the same approach is used by Natterer and Wubbeling (1995, 2005),
and Natterer (1997a, 1997b).

To improve downward continuation schemes for laterally vari-
able velocity background, some methods combine the result from
multiple migrations using different (constant) reference velocities.
The results from these migrations are then combined using some
type of interpolation scheme (see e.g. Kessinger [1992] and Biondi
[2002, 2006] and references therein for further descriptions of such
methods).

In this paper, we propose a mathematical formalism and an algo-
rithm for wavefield extrapolation that allows us to suppress only the
evanescent waves for a general variable background, thus yielding
what we call full-wave-equation depth extrapolation for migration.
The overall structure of our algorithm is similar to the usual survey
sinking or source-receiver migration introduced by Claerbout

Manuscript received by the Editor 31 December 2008; revised manuscript received 1 April 2009; published online 15 December 2009.

GeoEnergy Inc., Houston, Texas, U.S.A. E-mail: kristian @ geoenergycorp.com.

University of Colorado, Department of Applied Mathematics, Boulder, Colorado, U.S.A., and consultant for GeoEnergy, Inc. E-mail: beylkin @colorado.edu.

© 2009 Society of Exploration Geophysicists. All rights reserved.

WCA121

Downloaded 16 Dec 2009 to 128.138.249.84. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



WCA122

(1985) with the important distinction that we use the two-way propa-
gators in our formulation of the problem and suppress only evanes-
cent waves. We provide examples and discuss some implications of
our approach later in the paper.

We observe that to suppress only the evanescent waves, it is nec-
essary to use a spectral projector on a subspace spanned by eigen-
functions corresponding to the propagating modes. In fact, in the
case of depth-dependent background, a composition of the Fourier
transform and the ideal cutoff filter in Kosloff and Baysal (1983)
constitutes such a projector.

For a general variable background, by using spectral projectors
we arrive at a well-conditioned initial-value problem in the spatial
variable. We note that an algorithm for computing spectral projec-
tors does not necessarily involve computing the eigensystem for the
propagator, most often a prohibitive proposition. The spectral pro-
jector (simply related to the sign function of a matrix) may be com-
puted without generating individual eigenvectors and eigenvalues
by using matrix iterations (Kenney and Laub [1995]). Matrix poly-
nomial recursions for computing the sign function are used by Aus-
lander and Tsao (1992). However, the algorithms of this type require
matrix-matrix multiplications and, without further development,
they are still too expensive for practical applications in problems of
wave propagation. Efficient representations of matrices to compute
spectral projectors were introduced by Beylkin et al. (1999). For ap-
plications in problems of wave propagation, Beylkin and Sandberg
(2005) further develop the so-called partitioned low rank (PLR) rep-
resentation. This representation allows us to reduce the cost of com-
puting spectral projectors. Using the PLR representation, we intro-
duce the full-wave-equation extrapolation for depth migration and
demonstrate its performance. Our method makes no assumptions
about lateral velocity variations, permitting the recovery of steep re-
flectors in our examples. Further work is required to make our ap-
proach practical in three dimensions and demonstrate its perfor-
mance with real data, but the very fact that it is possible to suppress
only evanescent waves and avoid approximations in splitting the up-
and downgoing waves is of importance.

We demonstrate performance of the new migration algorithm on
the SEG-EAGE model (Aminzadeh et al., 1996) in two spatial di-
mensions. We conclude with a discussion on the merits of our ap-
proach in relation to other migration methods.

NOTATION

Let us formulate the problem in dimension d = 3 using the Carte-
sian coordinate system (x,y,z) with z=0 in the domain of interest.
For simplicity, we assume that all sources and receivers are located
at the surface in the plane z = 0. Letx, = {(x},y})}" | denote the hori-
zontal coordinates of the sources, x, = {(x},y/)}- | those of the re-
ceivers, and (x,z) a general position in space, where x = (x,y). We
refer to the set of all measurements as a survey which we denote as
u(X,,X,,2,1). A survey consists of N, X N, traces (time series) of mea-
sured data and, as usual, we refer to the set of all measurements for a
fixed source as a source gather and, to the set of all measurements for
a fixed receiver, as a receiver gather. Initially, only the survey at
7 = zpis known.

Throughout the paper, we define the Fourier transform and its in-
verse as
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o)

i(w) = f u(t)e 2ol dy

—

and

©

u(t) = f Ww)e*™dw.

—

We denote the Fourier transform of all traces in the survey with re-
spect to time as ii(X,,X,,2,), where  denotes time frequency.

PROBLEM FORMULATION

Given a survey u(X,X,,z = Zo,) recorded at a surface, our goal is
to find an image of the reflectors that produced the measurement
data. We assume that the background velocity model v(x,z) is avail-
able. We also assume that the propagation is described by the acous-
tic wave equation,

Pu=V(X2) (P + Py + 120),
p(x,0,0) =0, =0,

p(x.2.0) = f(x),

Pi%2.0) = g(x), W

together with absorbing boundary conditions on all boundaries ex-
cept the surface z = 0, where we impose the reflecting condition for
t=0. Here v(x,z) is the velocity, p(x,z,f) is the acoustic pressure at
the point (x,z), and subscripts indicate partial derivatives. We note
that the survey is collected slightly below the surface at z = z, be-
cause at the surface, z = 0, the pressure is zero. We note that alterna-
tive formulations may involve a source term instead of the initial
conditions or a different type of recorded data.

In this paper, we develop a migration method based on the concept
of survey sinking, sometimes referred to as source-receiver migra-
tion (Claerbout, 1985; Biondi, 2006). The idea is that given a back-
ground velocity function v(x,z) and a survey recorded at the surface
7=12zp, we compute what the survey would look like at
2, =20 + nAz,n =0,1,..., where Az is the desired depth resolution.
On taking the Fourier transform, we propagate the survey
(X4, X, 2,,w) for each frequency w separately. The key to our ap-
proach is the new way of downward continuation that yields a stable
propagator that suppresses only evanescent waves. By using spectral
projectors, we also avoid approximations associated with lateral ve-
locity variations.

We define the migrated image as

o

I(X,zn)=Jﬁ(xs,x,,zn,w)Ixs_xr_xdw, n=0,1,....

— 0

(2)

The integral in equation 2 is also known as the imaging condition
and may be interpreted as the inverse Fourier transform with respect
to w of the survey at zero offset, evaluated at zero time (7 = 0),
(Claerbout, 1985; Biondi, 2006; Sava and Hill, 2009). Specifically,
to evaluate equation 2, we first extrapolate in depth all source gathers
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(X5, Xps 2 ) 10 2,41 = 2, + Az. We then take the resulting survey
and extrapolate in depth all receiver gathers, again by a step Az. Fi-
nally, we interpolate the result to zero offset x; = x,. and sum over all
frequencies. Note that we do not compute the cross-correlation of
the source and the scattered fields, although these imaging condi-
tions may be equivalent (Biondi, 2006) with their practical efficien-
cy depending on the acquisition geometry (Jeannot, 1988; Biondi
and Palacharla, 1996; Biondi, 2006; Sava and Hill, 2009).

In order to begin constructing equations to describe survey sink-
ing, let us apply the Fourier transform with respect to time in equa-
tion 1 and consider the result as an equation for p,

s o
Pz= U(X,Z) XX yy pP=Lp.

Depending on the conditions at the boundary in the lateral direction
(for a fixed depth z), the self-adjoint operator L may have either con-
tinuous or discrete spectrum. However, because in either case we use
adiscrete version of L, we treat it as having a discrete spectrum with
real eigenvalues {A,}7_, and a complete set of normalized eigen-
functions {e,(x)};_, (Grimbergen et al., 1998; Wapenaar and Grim-
bergen, 1998).

We consider equation 3 with the initial conditions ¢ and ¢, at the
surface z = z, (assuming that we already have a survey from the pre-
vious depth level)

P(x,2,,0) = q(X,z2,,0)

P(X,2,,0) = q.(X,2,,0)

(4)

Formally, we may view equations 3 and 4 as an initial-value problem
in z. Unfortunately, such an initial-value problem is ill conditioned
and is numerically unstable. Our goal is to construct a well-posed,
stable alternative to equations 3 and 4.

ILL-POSEDNESS OF DOWNWARD
CONTINUATION

We start by motivating our approach. The cause of instability of
the initial-value problem (equations 3 and 4) is the indefinite nature
of the self-adjoint operator L, namely, the fact that it has both posi-
tive and negative eigenvalues. Negative eigenvalues correspond to
propagating modes, and the positive eigenvalues are associated with
the nonpropagating evanescent waves and are responsible for the ill-
posedness of this initial-value problem.

To illustrate the ill-posedness, let us consider a simple 2D exam-
ple of downward continuation in a periodic medium with constant
velocity v,

( 47% 0’

u, = T — Dz)u, xe(0,27)

2z

v

u(0,z) = u(2m.,2)

o0
ux,00= X, o,
k= —o

u(x,0)= X Bre™ (5)

k= —o

The explicit solution of this problem is given by
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1 < iB:)
u(x,z) — 5 2 (ak _ ﬁ)el(kx+kzz)

k= —o kz
+ (ak - lﬁ)e"(’“"‘ﬂ) (6)
kZ
where
4 2 2
k= |2 2 (7)
v

Because k, is imaginary if k > 27 w/v, we observe that some of the
modes in equation 6 grow exponentially fast, resulting in a blow-up
of the solution. We also note that the eigenvalues in this problem are
given by A= — 4m2w?/v? + k2, k=0,1,... and the eigenvalues
corresponding to the unstable modes satisfying k > 27 w/v are pos-
itive.

In Kosloff and Baysal (1983) and later, more systematically, in
Natterer and Wubbeling (1995 and 2005) and Natterer (1997a,
1997b), the authors address the stability problem by applying an ide-
al low-pass filter to remove all modes with kK > 27 w/v after each
step, thereby suppressing the evanescent modes. Generalizing this
approach to problems with laterally varying background velocity,
Kosloff and Baysal (1983) suggest removing all modes k
> 27 w/max,v(x) at a given depth. Unfortunately, as we demon-
strate in our examples below, using this condition causes unwanted
artifacts and poor imaging of steep reflectors. Baysal et al. (1983) in-
troduce the reverse time migration and it appears that the approach in
Kosloff and Baysal (1983) has been abandoned. In what follows, we
formulate a stable depth extrapolation problem for a general back-
ground and demonstrate its advantages.

SPECTRAL PROJECTORS

Let us consider domain A in variable x = (x,y) representing a re-
ceiver or source location. Let L be a self-adjoint operator acting on
functions defined on the domain A and having a complete set of nor-
malized eigenfunctions {e;(x)};_,, X € A. We define the projector P,
on the eigenfunction e,(x) by

Ppf(x)— (f f(X’)ek(X’)dX'>€k(X),
A

so that the operator L may be written as

oo

L= 2 MPy. (8)
k=0

We define the spectral projector on the nonpositive part of the spec-
trum as

P = E P ks (9)
{k:2; =0}
and the propagating part of the operator L as
PLP = E )\kP ks
{k:A,=0}

where, as a result, all eigenvalues of the operator PLP are negative
or zero. Next, we replace the ill-posed problem (equations 3 and 4)
with
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p..= PLPp,
P(X,2,,0) = q(X,2,,w)

. (10)
P.(X.z,,0) = q.(X,2,,0)

thus removing the growing modes causing instability.

The difficulty now shifts to computing the spectral projector P.
Because of the definition of the spectral projector, it may appear nec-
essary to compute the eigensystem of the operator L. However, we
use an alternative approach (described in Appendix A) that does not
require the direct computation of the eigensystem. Methods for com-
puting spectral projectors or, equivalently, the so-called sign func-
tion of a matrix, because P = (I — sign(L))/2, may be found in the
survey Kenney and Laub (1995). Polynomial recursions for this pur-
pose are used by Auslander and Tsao (1992). The main difficulty in
using recursions is that they require matrix-matrix multiplications
and, thus, may not be practical for large-size problems. The key
point of our approach is that we consider matrix representations that
remain sparse (up to finite but arbitrary accuracy) throughout the it-
eration that produces the spectral projector. Such approach first ap-
pears in Beylkin et al. (1999) using sparse representations for a class
of operators of interest in quantum chemistry. For problems of wave
propagation, the so-called partitioned low rank (PLR) representa-
tion is further developed and used by Beylkin and Sandberg (2005).
Using PLR representation of matrices allows us to obtain a reason-
able speed for computing spectral projectors (see Appendix A for
further details).

SOURCE/RECEIVER DOWNWARD
CONTINUATION

In order to compute the survey at z,;.;, we recursively downward
continue the survey from z, to z,+; based on solving equation 10 in
the frequency domain.

In the first step, we downward continue all source gathers from z,
to z,+ 1, resulting in a new survey, which we denote as #(X,X,,2,,®).
This intermediate survey models what the survey would look like if
all sources were located at z, and all receivers were located at z,, . ;.

The intermediate survey # is computed by solving

p..=PLPp,

pP(X,2,,w) = ﬁ(xsi,xr,z,,,w)

(11)

Po(%.2,,0) = (X, Xp.2,, 0)

for each source gather i. In other words, solving equation 11 maps
the source gather ﬁ(xsi,x,,zn,w) to the downward continued source
gather L'Z(Xsi,x,,z,,,w).

In the second step, we downward continue all receiver gathers of
i(Xg, X, 2, ) from z, to z,, . The resulting survey 6(Xe,Xp,Z, 1 1,®)
models what the survey would look like if all sources and receivers
were located atz = z,,4 ;.

The downward continued survey # is computed by solving

p.. = PLPp,
P(X,2,,0) = U(Xg Xy ,2,,@)
! (12)

ﬁz(xazn,w) = ﬁz(xs7xrjszn7w)

for each receiver gather j. In other words, solving equation 12 maps
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the receiver gather ii( xs,x,j,z,,,w) to the downward continued receiv-
er gather ﬁ(xs,xrl_,zn LLW).

In order to initialize the iteration, we need the normal derivative of
the wavefield at the surface ii.(x,,X;,z = zo,@) which typically is not
available from the field data. However, assuming constant-velocity
background near the surface, we can estimate i.(X,z = zg,w) from
ii(x,z = z9,w) using the same approach as in Kosloff and Baysal
(1983). In two dimensions, we compute the normal derivative from
i(x,z = zp,w) as

27w
. . 472 w? 2
i.(x,z = 7p,0) = i > —k
1%
—2mlw

[

Xfﬁ(x,zzzo,w)ez’”kxdx 2™k dk, (13)

—

where integrals are evaluated using the fast Fourier transform (FFT).
The assumption of a constant velocity near the surface also allows us
to use an ideal low-pass filter in the spatial wavenumber domain to
suppress evanescent waves at this initial step of the algorithm.

ALGORITHM

Letus describe the steps of our migration algorithm. We define the
forward operator L as in equation 3 and the projector P as in equation
9. We write the downward continuation problem p.. = PLPp as the
first-order system

dlp|_| o 1|[s i

dzlp. |~ L PLP o]l p,

together with initial conditions given by the source or receiver gath-

ers from the previous depth level.
Our algorithm may now be formulated as follows:

1. Initialize the migrated image / = 0.
2. for all frequencies w,,,m = 1,...,M:

for all depth stepsn = 1,...,N:
(a) forallsourcesi=1,...,N,:
i Compute the spectral projector P (see Appendix A).
ii. Downward continue ﬁ(xsi,x,,z,,,w) and ﬁz(xs’,xr,zn, )

to ﬁ(xs[,x,,zn,w) and ﬁz(xs‘,xr,z,,,w), respectively, by solving equa-
tion 14 with ﬁ(xsl,xr,zn,w) and ﬁz(xsi,xr,zn,w) as the initial condition.
(b) forallreceiversj=1,...,N,:

i Compute the spectral projector P (see Appendix).

ii. Downward continue (X, X, ,Z,, @) and i1, (X, Xy ,2,,, @)
J J

to ﬁ(xs,x,j,znﬂ,w) and ﬁz(xs,xrl_,znﬂ,w), respectively, by solving

equation 14 with z"i(xs,xrj,zn,a)) and iiz(xs,xrj,z,l,a)) as the initial con-

dition.

(c) Interpolate the survey i(X,,X,,z,+1,@) to zero offset
WXy = X,X, = X, 2,1 1,0)
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(d) Update the migrated image I(X,7,+1) = I(X,2,41)

+ 0% = XX = X,2,41,0)

For propagating the wavefield from z, to z, ., we use an algorithm
based on Coult et al. (2006) that has practically insignificant numeri-
cal dispersion. We note that in some cases the source-receiver con-
figuration may allow the same spectral projector to be used for
downward continuing several gathers. For example, if the source
and receiver grids coincide, so do the corresponding projectors.

We also note that if the velocity varies only in depth but not hori-
zontally, then applying the spectral projector to the operator is equiv-
alent to applying an ideal low-pass filter in the spatial wavenumber
domain. In such situations, our method is similar to the method pro-
posed in Kosloff and Baysal (1983), as noted earlier in the discussion
of ill-posedness of downward continuation.

We implement the absorbing boundary conditions using a variant
of the approach of Cerjan et al. (1985). This allows us to decouple the
application of the absorbing boundary conditions from the applica-
tion of spectral projectors. As a result, we need to compute the spec-
tral projector in a slightly extended domain but only for either peri-
odic or zero boundary condition. As a result, the operator on the ex-
tended domain remains self-adjoint so that we may use the algorithm
in Appendix A.

Computing costs

We estimate the computing costs of 3D survey sinking except for
the cost of computing spectral projectors which we estimate only in
two dimensions. Computing spectral projectors in three dimensions
is part of further research, and we expect significant savings by de-
veloping fast algorithms for this purpose. Let N, and N, denote the
number of offsets in the survey, N, the number of depth steps, N, the
number of frequencies, and N,(w;), N,(w,) describe the size of the
computational grid in the horizontal plane for a given frequency w;.

The total computational cost for wide-azimuth survey sinking in
three dimensions may be estimated as

Ny
Coota = 2 NNy N Cpp(N (@) ,Ny(wy)).
k=1

Here Cpg denotes the cost of extrapolating the survey one depth step.
The cost depends on the size of computational grid. We note that we
may choose lower sampling rates for lower frequencies, i.e., use an
adaptive approach.

For a given frequency wy, the cost Cpg may be broken up as

Cpg = Cwe(NuNy) + Coroi(NN,)

where Cyg denotes the cost of extrapolating one depth step in equa-
tion 14 and C,,,,; the cost of computing the projector P. The cost Cyg
depends on the solver for equation 14. For example, for a finite dif-
ference scheme Cyg = O(N,N,), whereas for a spectral scheme Cyg
= O(N, log(N,)N, log(N,)). In our current implementation the cost
of computing the projector in two dimensions is Cpy;
= O(N, 1og(N.)?).

Impulse response

As a way of comparing with other approaches to downward ex-
trapolation, we provide the impulse response of our method in a con-
stant background. This by itself does not describe the quality of an
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imaging algorithm in a variable background, but it gives a quick way
to assess some of its properties.

We compute the impulse response of the depth extrapolation
scheme defined by equation 14. Considering a domain of 2000 m
deep and 4000 m wide with constant velocity of 1500 m/s, we posi-
tion the point source atx = 2000 and z = 0 and record its field p(x;,z
= 0,) at an equally spaced receiver array x; = 10i,i = 0,...,400 us-
ing a Ricker wavelet with dominating frequency at 7 Hz. We then
compute p(x;,z = 0,w) and apply our downward extrapolation in
depth to obtain p(x;,z,w). Using the imaging condition at time t = 1,

o0

I(x,z) = fﬁ(x,-,z,w)ezm“’dw,

— 0

we display the result in Figure 1. The impulse response indicates ex-
cellent performance for all angles.

RESULTS AND DISCUSSION

Our goal in this section is to demonstrate the performance of our
method on a synthetic example. As a background velocity, we use
two smoothed versions of the true velocity, one moderately (exam-
ple 1) and another heavily blurred (example 2). We compare our ap-
proach to that of using a combination of the Fourier transform and
the ideal cutoff filter adjusted to the maximum velocity at each depth
level in order to make downward depth propagation stable as sug-
gested by Kosloff and Baysal (1983). The latter is a natural (but, as it
turns out, rather inaccurate) approximation as it suppresses waves
necessary for proper image formation, for example, of steep reflec-
tors. We find it instructive to compare the effect of such approxima-
tion to the result of our approach. The moderately blurred back-
ground velocity of example 1 (see below) is fairly close to the true
velocity and, in this case, our migration produces an image that in-
cludes steep reflectors and practically no artifacts inside the simulat-
ed saltdome.

We do not compare our results with those obtained by other migra-
tion methods and, instead, rely on the fact that we use a model for
which such results are available in the literature (e.g., Stoffa et al.,
2006).

500

1000

Depth (m)

1500

0 500

1000 1500 2000 2500 3000 3500
Position (m)

Figure 1. Impulse response from a point source at x = 2000 and z
= 0 using a Ricker source wavelet with a dominating frequency of
7 Hz.
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Generating the survey

We generate data for our experiments using slice 337 in the
crossline dimension of the SEG-EAGE model (Figure 2a). The same
slice was used by Stoffa et al. (2006). The input model has the physi-
cal dimension 13,500 X 4000 m.

The receiver data was generated by using the modeling algorithm
described by Coult et al. (2006) with absorbing boundary conditions
at the sides. We used a Ricker pulse with a dominating frequency of
7 Hz, and recorded a 12 s time trace for each shot. We placed sourc-

0 2000 4000 6000 8000 10,000 12,000

2000 4000 6000 8000 10,000 12,000

2000 4000 6000 8000 10,000
Distance (m)

12,000

Figure 2. (a) Original velocity model and two background velocities
used for migration in (b) example 1 and (c) example 2, obtained by
blurring the original model.

Distance (m)
a) 0 2000 4000 6000 8000 10,000 12,000

4000 6000 8000 10,000 12,000

Figure 3. Comparison of migrated images using the moderately
blurred background velocity of Example 1. Results of using (a) the
ideal low-pass filter and (b) spectral projectors. Migration using
spectral projectors recovers steep reflectors and is nearly free from
artifacts inside the salt dome.
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es at shot locations x} = iAx, i = 0,...,675 where Ax = 20 m. For
each source i, we placed receivers at xj,=x;+ jAx, j=

— 68,...,68. Hence, the receiver aperture for each shot corresponds
to 2700 m, or one-fifth of the lateral extent of the domain, except for
sources near the boundaries where the receiver array was truncated
in order to fall within the modeling domain.

Example 1

As background velocity for the migration algorithm, we used a
blurred version of the original velocity model in Figure 2a. The ve-
locity model was generated by first applying a median filter using a
3 X3 mask, followed by applying a 5 X5 averaging mask, where
each element in the mask was set to 1/25. The purpose of the median
filter is to (completely) remove the line-like reflectors in the original
model, whereas the averaging mask blurs the interfaces. The result-
ing blurred model is shown in Figure 2b.

We first used the ideal low-pass filter in the spatial wavenumber
domain, as described by Kosloff and Baysal (1983). The migrated
image is shown Figure 3a. We note that most of the reflectors above
the salt body are accurately imaged as well as the top and the bottom
of the salt body. However, steep structures such as the left flank of the
salt body are not imaged correctly.

Next, we used spectral projectors as described in the Algorithm
section. The result is shown in Figure 3b. Comparing Figure 3a and
b, we note a significant improvement in imaging of steep structures.
Despite the relative narrow aperture of the receiver array, the salt
flank is very well imaged.

Example 2

For our next experiment, we used a heavily blurred version of the
background velocity. The velocity model was generated by first ap-
plying a median filter using a 3 X 3 mask, followed by applying a 25
X 25 averaging mask where each element in the mask was set to
1/625. The resulting blurred model is shown in Figure 2c.

We first used the ideal low-pass filter in the spatial wavenumber
domain as described by Kosloff and Baysal (1983). The migrated
image is shown in Figure 4a. Next, we used spectral projectors as de-
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Figure 4. Comparison of migrated images using the heavily blurred
background velocity of Example 2. Results of using (a) the ideal
low-pass filter and (b) spectral projectors. Despite a relatively poor
background velocity model, migration using spectral projectors still
recovers steep reflectors.
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scribed in the Algorithm section. The result is shown in Figure 4b.

Comparing Figure 4a and b, we note that the shape of the salt body
is remarkably well preserved despite the inexact velocity model. We
also note that although the velocity model in Figure 2¢ does not con-
tain significant velocity variations, the spectral projector method
still gives a significant advantage over the method using an ideal
low-pass filter.

CONCLUSION

Migration schemes based on factorization of operator L in equa-
tion 3 into up- and downgoing waves produce errors because of sup-
pression of propagating waves and, in a variable background, be-
cause of approximate factorization of the operator. Alternative ap-
proaches in variable background that exist today are two-way equa-
tion schemes based on using the initial-value problem in time. Such
reverse-time migration schemes change the inverse problem so that
“local interactions” between events are now in time rather than in
depth. A careful comparison of our full-wave-equation depth extrap-
olation for migration with that of reverse-time migration is beyond
the topic of this paper and should be a subject of further research.

Our formulation of the downward-continuation operator removes
only nonpropagating evanescent waves, thus preserving propagat-
ing waves moving in all directions. We have demonstrated signifi-
cantimprovement in imaging by comparing our approach to that of a
method where most but not all propagating waves are preserved,
hence emphasizing the sensitivity of imaging to the erroneous re-
moval of propagating waves.

While our method is computationally more expensive than some
simpler techniques, the quality of the results justifies the effort to de-
velop fast 3D algorithms for this type of migration and inversion. We
plan to develop our approach further to a full 3D version and work on
making our algorithm competitive with other migration methods in
terms of speed. We also plan to test full-wave-equation depth extrap-
olation on real data. Looking beyond these remaining issues, the re-
sults of this paper indicate many new interesting possibilities to ad-
vance seismic methods, such as to include multiple reflections into
image formation and to improve the velocity analysis.

Figure A-1. Matrix partitioning in PLR representation.
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APPENDIX A

COMPUTING SPECTRAL PROJECTORS

To compute the spectral projector on the negative part of the
spectrum in equation 9, we use a simple iteration scheme (see e.g.,
Kenney and Laub, 1995; Auslander and Tsao, 1992; and Beylkin et
al., 1999).

For a self-adjoint matrix L, the spectral projector P is simply re-
lated to the sign function of a matrix, namely P = (I — sign(L))/2.
In order to find sign(L), we iterate according to

1. Initialize Sy = L/||L])-
2. Fork=1,...,N;

Sie1= 58— 1S}

The iteration converges quadratically, S,— sign(L). For details
on analysis of this iteration, see Beylkin et al. (1999), although the
basic proof is simple. Noting that all matrices S, are diagonalizable
by the same transform, this iteration needs to be verified only in the
scalar case. Viewed as a fixed-point iteration, the scalar version has
only three fixed points, 1, — 1 and 0, where only the first two are sta-
ble. We note that the normalization assures that the absolute value of
all eigenvalues of Sy is less than one, so it is perfectly fine to start
with 8y = L/||L]|, or use any other norm.

In Figure A-1, we illustrate the PLR representation by showing
the partitioning of a matrix. In each off-diagonal block, we use alow-
rank representation of the individual off-diagonal submatrices as

> Wy, (15)
k=1

where u, and v;, k = 1,...,r are vectors of appropriate size for a giv-
en block. In this representation, the number of terms r (the rank of an
off-diagonal submatrix) is selected for a given user-supplied accura-
cy and can be found by the singular value decomposition (SVD).
However, we note that because we do not require orthogonality be-
tween vectors, a simpler algorithm based on the Gram-Schmidt or-
thogonalization is also available. If the ranks of off-diagonal blocks
are small and do not grow with iteration, the cost of multiplying ma-
trices in the PLR representation is O(M(log M)?). The operation
count depends on the rank, r, but because we rely on it staying small,
we treat its impact as a constant factor. For details, see Beylkin and
Sandberg (2005).
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