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ABSTRACT

Most of the traditional approaches to migration by down-
ward extrapolation suffer from inaccuracies caused by using
one-way propagation, both in the construction of such propa-
gators in a variable background and the suppression of propa-
gating waves generated by, e.g., steep reflectors. We present a
new mathematical formulation and an algorithm for down-
ward extrapolation that suppress only the evanescent waves.
We show that evanescent wave modes are associated with the
positive eigenvalues of the spatial operator and introduce
spectral projectors to remove these modes, leaving all propa-
gating modes corresponding to nonpositive eigenvalues in-
tact. This approach suppresses evanescent modes in an arbi-
trary laterally varying background. If the background veloci-
ty is only depth dependent, then the spectral projector may be
applied by using the fast Fourier transform and a filter in the
Fourier domain. In computing spectral projectors, we use an
iteration that avoids the explicit construction of the eigensys-
tem. Moreover, we use a representation of matrices leading to
fast matrix-matrix multiplication and, as a result, a fast algo-
rithm necessary for practical implementation of spectral pro-
jectors. The overall structure of the migration algorithm is
similar to survey sinking with an important distinction of us-
ing a new method for downward continuation. Using a
blurred version of the true velocity as a background, steep re-
flectors can be imaged in a 2D slice of the SEG-EAGE model.

INTRODUCTION

Most of the traditional approaches to migration by downward ex-
rapolation use one-way propagators. The reason for that stems from
he fact that an initial-value problem with respect to a spatial variable
or a second-order hyperbolic equation is ill posed and its solution
umerically unstable, as we explain later in the paper. The physical
eason for instability is the amplification of evanescent waves that
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eads to a rapid blow-up of the solution, making it necessary to sup-
ress unwanted wave modes in downward extrapolation algorithms.
n particular, to avoid the blow-up, it is common to construct direc-
ional splitting of the propagator.

Examples of migration algorithms that use directional splitting in-
lude Stolt migration �Stolt, 1978� and, more generally, downward
ontinuation migrations �see, e.g., Biondi �2006� for an overview�.
he directional splitting of the propagator carries with it two penal-

ies: the one-directional propagator suppresses not only evanescent
aves but also propagating waves moving, for example, in the oppo-

ite direction and, in case of variable background, it introduces poor-
y controlled errors because of the approximation involved in the
plitting. For a background with depth-only dependent velocity and
ero offset source-receiver configuration, Kosloff and Baysal �1983�
ropose suppressing only the evanescent waves in the wavenumber
omain by using the Fourier transform and a simple ideal cutoff fil-
er. For a general variable background, relying on the Fourier trans-
orm as a tool, they suggest using a cutoff filter adjusted to the maxi-
um velocity at a given depth level. As we show in our examples,

uch strategy leads to the removal of some propagating waves along
ith the evanescent waves and, as a result, poor imaging of steep re-
ectors. We note that in the context of ultrasonic imaging, for a con-
tant background, the idea of removing only evanescent waves by
he same approach is used by Natterer and Wubbeling �1995, 2005�,
nd Natterer �1997a, 1997b�.

To improve downward continuation schemes for laterally vari-
ble velocity background, some methods combine the result from
ultiple migrations using different �constant� reference velocities.
he results from these migrations are then combined using some

ype of interpolation scheme �see e.g. Kessinger �1992� and Biondi
2002, 2006� and references therein for further descriptions of such
ethods�.
In this paper, we propose a mathematical formalism and an algo-

ithm for wavefield extrapolation that allows us to suppress only the
vanescent waves for a general variable background, thus yielding
hat we call full-wave-equation depth extrapolation for migration.
he overall structure of our algorithm is similar to the usual survey
inking or source-receiver migration introduced by Claerbout
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WCA122 Sandberg and Beylkin
1985� with the important distinction that we use the two-way propa-
ators in our formulation of the problem and suppress only evanes-
ent waves. We provide examples and discuss some implications of
ur approach later in the paper.

We observe that to suppress only the evanescent waves, it is nec-
ssary to use a spectral projector on a subspace spanned by eigen-
unctions corresponding to the propagating modes. In fact, in the
ase of depth-dependent background, a composition of the Fourier
ransform and the ideal cutoff filter in Kosloff and Baysal �1983�
onstitutes such a projector.

For a general variable background, by using spectral projectors
e arrive at a well-conditioned initial-value problem in the spatial
ariable. We note that an algorithm for computing spectral projec-
ors does not necessarily involve computing the eigensystem for the
ropagator, most often a prohibitive proposition. The spectral pro-
ector �simply related to the sign function of a matrix� may be com-
uted without generating individual eigenvectors and eigenvalues
y using matrix iterations �Kenney and Laub �1995��. Matrix poly-
omial recursions for computing the sign function are used by Aus-
ander and Tsao �1992�. However, the algorithms of this type require

atrix-matrix multiplications and, without further development,
hey are still too expensive for practical applications in problems of
ave propagation. Efficient representations of matrices to compute

pectral projectors were introduced by Beylkin et al. �1999�. For ap-
lications in problems of wave propagation, Beylkin and Sandberg
2005� further develop the so-called partitioned low rank �PLR� rep-
esentation. This representation allows us to reduce the cost of com-
uting spectral projectors. Using the PLR representation, we intro-
uce the full-wave-equation extrapolation for depth migration and
emonstrate its performance. Our method makes no assumptions
bout lateral velocity variations, permitting the recovery of steep re-
ectors in our examples. Further work is required to make our ap-
roach practical in three dimensions and demonstrate its perfor-
ance with real data, but the very fact that it is possible to suppress

nly evanescent waves and avoid approximations in splitting the up-
nd downgoing waves is of importance.

We demonstrate performance of the new migration algorithm on
he SEG-EAGE model �Aminzadeh et al., 1996� in two spatial di-

ensions. We conclude with a discussion on the merits of our ap-
roach in relation to other migration methods.

NOTATION

Let us formulate the problem in dimension d�3 using the Carte-
ian coordinate system �x,y,z� with z�0 in the domain of interest.
or simplicity, we assume that all sources and receivers are located
t the surface in the plane z�0. Let xs� ��xi

s,yi
s��i�1

Ns denote the hori-
ontal coordinates of the sources, xr� ��xi

r,yi
r��i�1

Nr those of the re-
eivers, and �x,z� a general position in space, where x� �x,y�. We
efer to the set of all measurements as a survey which we denote as
�xs,xr,z,t�. A survey consists of Ns �Nr traces �time series� of mea-
ured data and, as usual, we refer to the set of all measurements for a
xed source as a source gather and, to the set of all measurements for
fixed receiver, as a receiver gather. Initially, only the survey at

�z0 is known.
Throughout the paper, we define the Fourier transform and its in-

erse as
Downloaded 16 Dec 2009 to 128.138.249.84. Redistribution subject to
û���� �
��

�

u�t�e�2� i�tdt

nd

u�t�� �
��

�

û���e2� it�d� .

e denote the Fourier transform of all traces in the survey with re-
pect to time as û�xs,xr,z,��, where � denotes time frequency.

PROBLEM FORMULATION

Given a survey u�xs,xr,z�z0,t� recorded at a surface, our goal is
o find an image of the reflectors that produced the measurement
ata. We assume that the background velocity model v�x,z� is avail-
ble. We also assume that the propagation is described by the acous-
ic wave equation,

ptt�v�x,z�2�pxx�pyy �pzz�,

p�x,0,t��0, t�0,

� p�x,z,0�� f�x�,
pt�x,z,0��g�x�,� �1�

ogether with absorbing boundary conditions on all boundaries ex-
ept the surface z�0, where we impose the reflecting condition for
�0. Here v�x,z� is the velocity, p�x,z,t� is the acoustic pressure at
he point �x,z�, and subscripts indicate partial derivatives. We note
hat the survey is collected slightly below the surface at z�z0 be-
ause at the surface, z�0, the pressure is zero. We note that alterna-
ive formulations may involve a source term instead of the initial
onditions or a different type of recorded data.

In this paper, we develop a migration method based on the concept
f survey sinking, sometimes referred to as source-receiver migra-
ion �Claerbout, 1985; Biondi, 2006�. The idea is that given a back-
round velocity function v�x,z� and a survey recorded at the surface
�z0, we compute what the survey would look like at
n�z0�n�z, n�0,1,. . ., where �z is the desired depth resolution.
n taking the Fourier transform, we propagate the survey

ˆ �xs,xr,zn,�� for each frequency � separately. The key to our ap-
roach is the new way of downward continuation that yields a stable
ropagator that suppresses only evanescent waves. By using spectral
rojectors, we also avoid approximations associated with lateral ve-
ocity variations.

We define the migrated image as

I�x,zn�� �
��

�

�û�xs,xr,zn,���xs�xr�xd�, n�0,1, . . . .

�2�

he integral in equation 2 is also known as the imaging condition
nd may be interpreted as the inverse Fourier transform with respect
o � of the survey at zero offset, evaluated at zero time �t�0�,
Claerbout, 1985; Biondi, 2006; Sava and Hill, 2009�. Specifically,
o evaluate equation 2, we first extrapolate in depth all source gathers
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Full-wave-equation depth extrapolation WCA123
ˆ �xs,xr,zn,�� to zn�1�zn��z. We then take the resulting survey
nd extrapolate in depth all receiver gathers, again by a step �z. Fi-
ally, we interpolate the result to zero offset xs�xr and sum over all
requencies. Note that we do not compute the cross-correlation of
he source and the scattered fields, although these imaging condi-
ions may be equivalent �Biondi, 2006� with their practical efficien-
y depending on the acquisition geometry �Jeannot, 1988; Biondi
nd Palacharla, 1996; Biondi, 2006; Sava and Hill, 2009�.

In order to begin constructing equations to describe survey sink-
ng, let us apply the Fourier transform with respect to time in equa-
ion 1 and consider the result as an equation for p̂,

p̂zz�	�
 2��

v�x,z��
2

�Dxx�Dyy�p̂
Lp̂ . �3�

epending on the conditions at the boundary in the lateral direction
for a fixed depth z�, the self-adjoint operator L may have either con-
inuous or discrete spectrum. However, because in either case we use
discrete version of L, we treat it as having a discrete spectrum with

eal eigenvalues ��k�k�0
� and a complete set of normalized eigen-

unctions �ek�x��k�0
� �Grimbergen et al., 1998; Wapenaar and Grim-

ergen, 1998�.
We consider equation 3 with the initial conditions q and qz at the

urface z�zn �assuming that we already have a survey from the pre-
ious depth level�

� p̂�x,zn,���q�x,zn,��
p̂z�x,zn,���qz�x,zn,�� � . �4�

ormally, we may view equations 3 and 4 as an initial-value problem
n z. Unfortunately, such an initial-value problem is ill conditioned
nd is numerically unstable. Our goal is to construct a well-posed,
table alternative to equations 3 and 4.

ILL-POSEDNESS OF DOWNWARD
CONTINUATION

We start by motivating our approach. The cause of instability of
he initial-value problem �equations 3 and 4� is the indefinite nature
f the self-adjoint operator L, namely, the fact that it has both posi-
ive and negative eigenvalues. Negative eigenvalues correspond to
ropagating modes, and the positive eigenvalues are associated with
he nonpropagating evanescent waves and are responsible for the ill-
osedness of this initial-value problem.

To illustrate the ill-posedness, let us consider a simple 2D exam-
le of downward continuation in a periodic medium with constant
elocity v,

uzz�
�
4�2�2

v2 �D2�u, x� �0,2��

u�0,z��u�2� ,z�

u�x,0�� �
k���

�

�ke
ikx.

uz�x,0�� �
k���

�

	 ke
ikx �5�

he explicit solution of this problem is given by
Downloaded 16 Dec 2009 to 128.138.249.84. Redistribution subject to
u�x,z��
1

2 �
k���

� 
�k�
i	 k

kz
�ei�kx�kzz�

�
�k�
i	 k

kz
�ei�kx�kzz� �6�

here

kz��4�2�2

v2 �k2. �7�

ecause kz is imaginary if k 
 2�� /v, we observe that some of the
odes in equation 6 grow exponentially fast, resulting in a blow-up

f the solution. We also note that the eigenvalues in this problem are
iven by �k�� 4� 2�2 / v2 �k2, k�0,1,. . . and the eigenvalues
orresponding to the unstable modes satisfying k 
 2�� /v are pos-
tive.

In Kosloff and Baysal �1983� and later, more systematically, in
atterer and Wubbeling �1995 and 2005� and Natterer �1997a,
997b�, the authors address the stability problem by applying an ide-
l low-pass filter to remove all modes with k 
 2�� /v after each
tep, thereby suppressing the evanescent modes. Generalizing this
pproach to problems with laterally varying background velocity,
osloff and Baysal �1983� suggest removing all modes k
2�� /maxxv�x� at a given depth. Unfortunately, as we demon-

trate in our examples below, using this condition causes unwanted
rtifacts and poor imaging of steep reflectors. Baysal et al. �1983� in-
roduce the reverse time migration and it appears that the approach in
osloff and Baysal �1983� has been abandoned. In what follows, we

ormulate a stable depth extrapolation problem for a general back-
round and demonstrate its advantages.

SPECTRAL PROJECTORS

Let us consider domain A in variable x� �x,y� representing a re-
eiver or source location. Let L be a self-adjoint operator acting on
unctions defined on the domain A and having a complete set of nor-
alized eigenfunctions �ek�x��k�0

� , x�A. We define the projector Pk

n the eigenfunction ek�x� by

Pk:f�x��
�
A

f�x��ek�x��dx��ek�x�,

o that the operator L may be written as

L� �
k�0

�

�kPk. �8�

e define the spectral projector on the nonpositive part of the spec-
rum as

P� �
�k:�k�0�

Pk, �9�

nd the propagating part of the operator L as

PLP� �
�k:�k�0�

�kPk,

here, as a result, all eigenvalues of the operator PLP are negative
r zero. Next, we replace the ill-posed problem �equations 3 and 4�
ith
 SEG license or copyright; see Terms of Use at http://segdl.org/
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WCA124 Sandberg and Beylkin
p̂zz�PLPp̂,

� p̂�x,zn,���q�x,zn,��
p̂z�x,zn,���qz�x,zn,�� �, �10�

hus removing the growing modes causing instability.
The difficulty now shifts to computing the spectral projector P.

ecause of the definition of the spectral projector, it may appear nec-
ssary to compute the eigensystem of the operator L. However, we
se an alternative approach �described in Appendix A� that does not
equire the direct computation of the eigensystem. Methods for com-
uting spectral projectors or, equivalently, the so-called sign func-
ion of a matrix, because P� �I�sign�L�� /2, may be found in the
urvey Kenney and Laub �1995�. Polynomial recursions for this pur-
ose are used by Auslander and Tsao �1992�. The main difficulty in
sing recursions is that they require matrix-matrix multiplications
nd, thus, may not be practical for large-size problems. The key
oint of our approach is that we consider matrix representations that
emain sparse �up to finite but arbitrary accuracy� throughout the it-
ration that produces the spectral projector. Such approach first ap-
ears in Beylkin et al. �1999� using sparse representations for a class
f operators of interest in quantum chemistry. For problems of wave
ropagation, the so-called partitioned low rank �PLR� representa-
ion is further developed and used by Beylkin and Sandberg �2005�.
sing PLR representation of matrices allows us to obtain a reason-

ble speed for computing spectral projectors �see Appendix A for
urther details�.

SOURCE/RECEIVER DOWNWARD
CONTINUATION

In order to compute the survey at zn�1, we recursively downward
ontinue the survey from zn to zn�1 based on solving equation 10 in
he frequency domain.

In the first step, we downward continue all source gathers from zn

o zn�1, resulting in a new survey, which we denote as ũ�xs,xr,zn,��.
his intermediate survey models what the survey would look like if
ll sources were located at zn and all receivers were located at zn�1.

The intermediate survey ũ is computed by solving

p̂zz�PLPp̂,

� p̂�x,zn,��� û�xsi
,xr,zn,��

p̂z�x,zn,��� ûz�xsi
,xr,zn,�� � . �11�

or each source gather i. In other words, solving equation 11 maps
he source gather û�xsi

,xr,zn,�� to the downward continued source
ather ũ�xsi

,xr,zn,��.
In the second step, we downward continue all receiver gathers of

�xs,xr,zn,�� from zn to zn�1. The resulting survey û�xs,xr,zn�1,��
odels what the survey would look like if all sources and receivers
ere located at z�zn�1.
The downward continued survey û is computed by solving

p̂zz�PLPp̂,

� p̂�x,zn,��� ũ�xs,xrj
,zn,��

p̂z�x,zn,��� ǔz�xs,xrj
,zn,�� � . �12�

or each receiver gather j. In other words, solving equation 12 maps
Downloaded 16 Dec 2009 to 128.138.249.84. Redistribution subject to
he receiver gather ũ�xs,xr j
,zn,�� to the downward continued receiv-

r gather û�xs,xr j
,zn�1,��.

In order to initialize the iteration, we need the normal derivative of
he wavefield at the surface ûz�xs,xr,z�z0,�� which typically is not
vailable from the field data. However, assuming constant-velocity
ackground near the surface, we can estimate ûz�x,z�z0,�� from

ˆ �x,z�z0,�� using the same approach as in Kosloff and Baysal
1983�. In two dimensions, we compute the normal derivative from
ˆ �x,z�z0,�� as

ûz�x,z�z0,��� �
�2� /�

2� /�

�i�4�2�2

v2 �k2

��
��

�

û�x,z�z0,��e�2� ikxdx�e2� ixkdk, �13�

here integrals are evaluated using the fast Fourier transform �FFT�.
he assumption of a constant velocity near the surface also allows us

o use an ideal low-pass filter in the spatial wavenumber domain to
uppress evanescent waves at this initial step of the algorithm.

ALGORITHM

Let us describe the steps of our migration algorithm. We define the
orward operator L as in equation 3 and the projector P as in equation
. We write the downward continuation problem p̂zz�PLPp̂ as the
rst-order system

d

dz
	 p̂

p̂z
��	 0 1

PLP 0
�	 p̂

p̂z
� �14�

ogether with initial conditions given by the source or receiver gath-
rs from the previous depth level.

Our algorithm may now be formulated as follows:

. Initialize the migrated image I�0.

. for all frequencies �m,m�1, . . . ,M:

for all depth steps n�1, . . . ,N:

a� for all sources i�1, . . . ,Ns:

i. Compute the spectral projector P �seeAppendix A�.

ii. Downward continue û�xsi
,xr,zn,�� and ûz�xsi

,xr,zn,��

o ũ�xsi
,xr,zn,�� and ũz�xsi

,xr,zn,��, respectively, by solving equa-
ion 14 with û�xsi

,xr,zn,�� and ûz�xsi
,xr,zn,�� as the initial condition.

b� for all receivers j�1, . . . ,Nr:

i. Compute the spectral projector P �seeAppendix�.

ii. Downward continue ũ�xs,xr j
,zn,�� and ũz�xs,xr j

,zn,��

o û�xs,xr j
,zn�1,�� and ûz�xs,xr j

,zn�1,��, respectively, by solving
quation 14 with ũ�xs,xr j

,zn,�� and ũz�xs,xr j
,zn,�� as the initial con-

ition.
c� Interpolate the survey û�xs,xr,zn�1,�� to zero offset

û�x �x,x �x,z ,��
s r n�1
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Full-wave-equation depth extrapolation WCA125
d� Update the migrated image I�x,zn�1�� I�x,zn�1�
� û�xs�x,xr�x,zn�1,��

or propagating the wavefield from zn to zn�1, we use an algorithm
ased on Coult et al. �2006� that has practically insignificant numeri-
al dispersion. We note that in some cases the source-receiver con-
guration may allow the same spectral projector to be used for
ownward continuing several gathers. For example, if the source
nd receiver grids coincide, so do the corresponding projectors.

We also note that if the velocity varies only in depth but not hori-
ontally, then applying the spectral projector to the operator is equiv-
lent to applying an ideal low-pass filter in the spatial wavenumber
omain. In such situations, our method is similar to the method pro-
osed in Kosloff and Baysal �1983�, as noted earlier in the discussion
f ill-posedness of downward continuation.

We implement the absorbing boundary conditions using a variant
f the approach of Cerjan et al. �1985�. This allows us to decouple the
pplication of the absorbing boundary conditions from the applica-
ion of spectral projectors. As a result, we need to compute the spec-
ral projector in a slightly extended domain but only for either peri-
dic or zero boundary condition. As a result, the operator on the ex-
ended domain remains self-adjoint so that we may use the algorithm
nAppendix A.

omputing costs

We estimate the computing costs of 3D survey sinking except for
he cost of computing spectral projectors which we estimate only in
wo dimensions. Computing spectral projectors in three dimensions
s part of further research, and we expect significant savings by de-
eloping fast algorithms for this purpose. Let Nhx and Nhy denote the
umber of offsets in the survey, Nz the number of depth steps, Nf the
umber of frequencies, and Nx��k�, Ny��k� describe the size of the
omputational grid in the horizontal plane for a given frequency �k.

The total computational cost for wide-azimuth survey sinking in
hree dimensions may be estimated as

Ctotal� �
k�1

Nf

NhxNhyNzCDE�Nx��k�,Ny��k�� .

ere CDE denotes the cost of extrapolating the survey one depth step.
he cost depends on the size of computational grid. We note that we
ay choose lower sampling rates for lower frequencies, i.e., use an

daptive approach.
For a given frequency �k, the cost CDE may be broken up as

CDE�CWE�Nx,Ny��Cproj�Nx,Ny�

here CWE denotes the cost of extrapolating one depth step in equa-
ion 14 and Cproj the cost of computing the projector P. The cost CWE

epends on the solver for equation 14. For example, for a finite dif-
erence scheme CWE�O�NxNy�, whereas for a spectral scheme CWE

O�Nx log�Nx�Ny log�Ny��. In our current implementation the cost
f computing the projector in two dimensions is Cproj

O�Nx log�Nx�2�.

mpulse response

As a way of comparing with other approaches to downward ex-
rapolation, we provide the impulse response of our method in a con-
tant background. This by itself does not describe the quality of an
Downloaded 16 Dec 2009 to 128.138.249.84. Redistribution subject to
maging algorithm in a variable background, but it gives a quick way
o assess some of its properties.

We compute the impulse response of the depth extrapolation
cheme defined by equation 14. Considering a domain of 2000 m
eep and 4000 m wide with constant velocity of 1500 m /s, we posi-
ion the point source at x�2000 and z�0 and record its field p�xi,z

0,t� at an equally spaced receiver array xi�10i, i�0, . . . ,400 us-
ng a Ricker wavelet with dominating frequency at 7 Hz. We then
ompute p̂�xi,z�0,�� and apply our downward extrapolation in
epth to obtain p̂�xi,z,��. Using the imaging condition at time t�1,

I�x,z�� �
��

�

p̂�xi,z,��e2� i�d�,

e display the result in Figure 1. The impulse response indicates ex-
ellent performance for all angles.

RESULTS AND DISCUSSION

Our goal in this section is to demonstrate the performance of our
ethod on a synthetic example. As a background velocity, we use

wo smoothed versions of the true velocity, one moderately �exam-
le 1� and another heavily blurred �example 2�. We compare our ap-
roach to that of using a combination of the Fourier transform and
he ideal cutoff filter adjusted to the maximum velocity at each depth
evel in order to make downward depth propagation stable as sug-
ested by Kosloff and Baysal �1983�. The latter is a natural �but, as it
urns out, rather inaccurate� approximation as it suppresses waves
ecessary for proper image formation, for example, of steep reflec-
ors. We find it instructive to compare the effect of such approxima-
ion to the result of our approach. The moderately blurred back-
round velocity of example 1 �see below� is fairly close to the true
elocity and, in this case, our migration produces an image that in-
ludes steep reflectors and practically no artifacts inside the simulat-
d salt dome.

We do not compare our results with those obtained by other migra-
ion methods and, instead, rely on the fact that we use a model for
hich such results are available in the literature �e.g., Stoffa et al.,
006�.
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igure 1. Impulse response from a point source at x�2000 and z
0 using a Ricker source wavelet with a dominating frequency of

Hz.
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enerating the survey
We generate data for our experiments using slice 337 in the

rossline dimension of the SEG-EAGE model �Figure 2a�. The same
lice was used by Stoffa et al. �2006�. The input model has the physi-
al dimension 13,500�4000 m.

The receiver data was generated by using the modeling algorithm
escribed by Coult et al. �2006� with absorbing boundary conditions
t the sides. We used a Ricker pulse with a dominating frequency of
Hz, and recorded a 12 s time trace for each shot. We placed sourc-
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igure 2. �a� Original velocity model and two background velocities
sed for migration in �b� example 1 and �c� example 2, obtained by
lurring the original model.
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igure 3. Comparison of migrated images using the moderately
lurred background velocity of Example 1. Results of using �a� the
deal low-pass filter and �b� spectral projectors. Migration using
pectral projectors recovers steep reflectors and is nearly free from
rtifacts inside the salt dome.
Downloaded 16 Dec 2009 to 128.138.249.84. Redistribution subject to
s at shot locations xi
s� i�x, i�0, . . . ,675 where �x�20 m. For

ach source i, we placed receivers at xj,i
r �xi

s� j�x, j�
68, . . . ,68. Hence, the receiver aperture for each shot corresponds

o 2700 m, or one-fifth of the lateral extent of the domain, except for
ources near the boundaries where the receiver array was truncated
n order to fall within the modeling domain.

xample 1

As background velocity for the migration algorithm, we used a
lurred version of the original velocity model in Figure 2a. The ve-
ocity model was generated by first applying a median filter using a
�3 mask, followed by applying a 5�5 averaging mask, where
ach element in the mask was set to 1 /25. The purpose of the median
lter is to �completely� remove the line-like reflectors in the original
odel, whereas the averaging mask blurs the interfaces. The result-

ng blurred model is shown in Figure 2b.
We first used the ideal low-pass filter in the spatial wavenumber

omain, as described by Kosloff and Baysal �1983�. The migrated
mage is shown Figure 3a. We note that most of the reflectors above
he salt body are accurately imaged as well as the top and the bottom
f the salt body. However, steep structures such as the left flank of the
alt body are not imaged correctly.

Next, we used spectral projectors as described in the Algorithm
ection. The result is shown in Figure 3b. Comparing Figure 3a and
, we note a significant improvement in imaging of steep structures.
espite the relative narrow aperture of the receiver array, the salt
ank is very well imaged.

xample 2

For our next experiment, we used a heavily blurred version of the
ackground velocity. The velocity model was generated by first ap-
lying a median filter using a 3�3 mask, followed by applying a 25
25 averaging mask where each element in the mask was set to

/625. The resulting blurred model is shown in Figure 2c.
We first used the ideal low-pass filter in the spatial wavenumber

omain as described by Kosloff and Baysal �1983�. The migrated
mage is shown in Figure 4a. Next, we used spectral projectors as de-
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igure 4. Comparison of migrated images using the heavily blurred
ackground velocity of Example 2. Results of using �a� the ideal
ow-pass filter and �b� spectral projectors. Despite a relatively poor
ackground velocity model, migration using spectral projectors still
ecovers steep reflectors.
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Full-wave-equation depth extrapolation WCA127
cribed in theAlgorithm section. The result is shown in Figure 4b.
Comparing Figure 4a and b, we note that the shape of the salt body

s remarkably well preserved despite the inexact velocity model. We
lso note that although the velocity model in Figure 2c does not con-
ain significant velocity variations, the spectral projector method
till gives a significant advantage over the method using an ideal
ow-pass filter.

CONCLUSION

Migration schemes based on factorization of operator L in equa-
ion 3 into up- and downgoing waves produce errors because of sup-
ression of propagating waves and, in a variable background, be-
ause of approximate factorization of the operator. Alternative ap-
roaches in variable background that exist today are two-way equa-
ion schemes based on using the initial-value problem in time. Such
everse-time migration schemes change the inverse problem so that
local interactions” between events are now in time rather than in
epth.Acareful comparison of our full-wave-equation depth extrap-
lation for migration with that of reverse-time migration is beyond
he topic of this paper and should be a subject of further research.

Our formulation of the downward-continuation operator removes
nly nonpropagating evanescent waves, thus preserving propagat-
ng waves moving in all directions. We have demonstrated signifi-
ant improvement in imaging by comparing our approach to that of a
ethod where most but not all propagating waves are preserved,

ence emphasizing the sensitivity of imaging to the erroneous re-
oval of propagating waves.
While our method is computationally more expensive than some

impler techniques, the quality of the results justifies the effort to de-
elop fast 3D algorithms for this type of migration and inversion. We
lan to develop our approach further to a full 3D version and work on
aking our algorithm competitive with other migration methods in

erms of speed. We also plan to test full-wave-equation depth extrap-
lation on real data. Looking beyond these remaining issues, the re-
ults of this paper indicate many new interesting possibilities to ad-
ance seismic methods, such as to include multiple reflections into
mage formation and to improve the velocity analysis.

igure A-1. Matrix partitioning in PLR representation.
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APPENDIX A

COMPUTING SPECTRAL PROJECTORS

To compute the spectral projector on the negative part of the
pectrum in equation 9, we use a simple iteration scheme �see e.g.,
enney and Laub, 1995; Auslander and Tsao, 1992; and Beylkin et

l., 1999�.
For a self-adjoint matrix L, the spectral projector P is simply re-

ated to the sign function of a matrix, namely P� �I�sign�L�� /2.
n order to find sign�L�, we iterate according to

. Initialize S0�L / �L�2.

. For k�1, . . . ,Nit:

Sk�1�
3
2Sk�

1
2Sk

3.
The iteration converges quadratically, Sk→sign�L�. For details

n analysis of this iteration, see Beylkin et al. �1999�, although the
asic proof is simple. Noting that all matrices Sk are diagonalizable
y the same transform, this iteration needs to be verified only in the
calar case. Viewed as a fixed-point iteration, the scalar version has
nly three fixed points, 1, �1 and 0, where only the first two are sta-
le. We note that the normalization assures that the absolute value of
ll eigenvalues of S0 is less than one, so it is perfectly fine to start
ith S0�L / �L�2 or use any other norm.

In Figure A-1, we illustrate the PLR representation by showing
he partitioning of a matrix. In each off-diagonal block, we use a low-
ank representation of the individual off-diagonal submatrices as

�
k�1

r

ukvk, �15�

here uk and vk, k�1, . . . ,r are vectors of appropriate size for a giv-
n block. In this representation, the number of terms r �the rank of an
ff-diagonal submatrix� is selected for a given user-supplied accura-
y and can be found by the singular value decomposition �SVD�.
owever, we note that because we do not require orthogonality be-

ween vectors, a simpler algorithm based on the Gram-Schmidt or-
hogonalization is also available. If the ranks of off-diagonal blocks
re small and do not grow with iteration, the cost of multiplying ma-
rices in the PLR representation is O�M�log M�2�. The operation
ount depends on the rank, r, but because we rely on it staying small,
e treat its impact as a constant factor. For details, see Beylkin and
andberg �2005�.
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