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ABSTRACT: In this article, we present an algorithm to efficiently
evaluate the exchange matrix in periodic systems when a Gaussian basis
set with pseudopotentials is used. The usual algorithm for evaluating
exchange matrix scales cubically with the system size because one has to
perform O(N?) fast Fourier transform (FFT). Here, we introduce an
algorithm that retains the cubic scaling but reduces the prefactor
significantly by eliminating the need to do FFTs during each exchange
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build. This is accomplished by representing the products of Gaussian o N :

basis function using a linear combination of an auxiliary basis the number 1] toitee ™. Fast

of which scales linearly with the size of the system. We store the potential P as

due to these auxiliary functions in memory, which allows us to obtain the ISDF + Robust Fit—> Exact
exchange matrix without the need to do FFT, albeit at the cost of Exchange

additional memory requirement. Although the basic idea of using

auxiliary functions is not new, our algorithm is cheaper due to a combination of three ingredients: (a) we use a robust pseudospectral
method that allows us to use a relatively small number of auxiliary basis to obtain high accuracy; (b) we use occ-RI exchange, which
eliminates the need to construct the full exchange matrix; and (c) we use the (interpolative separable density fitting) ISDF algorithm
to construct these auxiliary basis sets that are used in the robust pseudospectral method. The resulting algorithm is accurate, and we
note that the error in the final energy decreases exponentially rapidly with the number of auxiliary functions.

1. INTRODUCTION e
The inclusion of exact Hartree—Fock (HF) exchange within
the framework of Kohn—Sham (KS) density functional theory
(DFT) is critical to the success of DFT for molecular systems,
and these “hybrid” functionals are used in almost all modern
DFT calculations on molecules. For periodic solids, hybrid

nonmetallic systems. This asymptotically linear region is
rarely reached in practice, and recent work has focused on
reducing the computational cost of practical calculations by
tensor factorization. The resolution of the identity (RI)
approximation,'”'* also called “density fitting,” is the most
widely used such method, and efficient approaches for both
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functionals can dramatically improve on standard semilocal
functionals for a wide variety of properties,' ™ but the large
computational cost associated with computing the HF
exchange is a limiting factor. The evaluation of the nonlocal
HF exchange can be computationally demanding in any
context, and it is particularly expensive for solids where
calculations with hybrid density functionals may be orders of
magnitude more expensive than for their purely semilocal
counterparts.

Molecular calculations usually use local basis sets where the
ratio of basis functions to electrons, N/n, is small, often on the
order of 3—10. Although computation of the electron repulsion
integrals is naively O(N*), the locality of the basis implies an
asymptotically linear number of significant basis function pairs
and quadratic scaling of the classical Coulomb and the HF
exchange.® The computation of the Coulomb energy and
potential can be further reduced to O(N) by multipole
expansion,”® while the exchange can be computed in linear
time by leveraging the sparsity of the density matrix for

© XXXX American Chemical Society

7 ACS Publications

Coulomb (RI—_])lS’m and exchange (RI-K)""7?° have been
developed. Dunlap introduced a “robust” approximation to the
two-electron integrals for which the error in integrals is
quadratic in the fitting error for the basis function
products.”' 7>* The Cholesky decomposition (CD) is another
method that can be used to obtain a decomposition of RI form
without the need for optimized auxiliary basis sets.”*** An
alternative approach, the pseudospectral (PS) method, is to
provide a factorization from a real-space perspective by
introducing a basis of grid points and performing one of the
integrals analytically.”® The chain-of-spheres exchange
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(COsXx) algorithm27
algorithms** ™" are a particularly general application of the PS
method to exchange. The idea of factorizing the integral tensor
was taken one step further in the tensor hypercontraction
(THC) method of Martinez and co-workers where the four-
index two-electron integral tensor is decomposed into a
product of five 2-index tensors.”>~** The difficulty of efficiently
performing the THC tensor decomposition has largely limited
its use to correlated methods, but a cubic scaling factorization

and related seminumerical exchange

algorithm was first introduced by Lu and Ying” and later used
to accelerate the computation of exact exchange in
periodic*®*’” and molecular” calculations under the name
“interpolative separable density fitting” (ISDF).

In traditional plane wave DFT calculations, the action of the
Coulomb operator on the occupied orbitals can be evaluated
by solving n Poisson equations. This scales quadratically in
total (O(nNyInN,) for n electrons and N, grid points). In
contrast, the action of the exchange operator scales cubically
(O(nZNg In Ng) for n electrons and
has motivated the development of numerous numerical
methods that seek to lessen this cost. Most notable are linear

N, grid points), a fact that

scaling methods'>*’ for which the sparsity in the exchange
operator relies on the system being an insulator.*' Stochastic
density functional theory (sDFT),* including the extension to
hybrid functionals,” can achieve linear scaling without any
locality arguments, but controlling the stochastic error results
in a very large prefactor. As with molecular systems, the linear
regime is usually out-of-reach, and methods that do not
improve the scaling, like the adaptively compressed exchange
(ACE),* can greatly increase the efficiency in practice. When
large super cells are necessary, a screening and/or truncating
the coulomb operator in the exchange term can somewhat
lessen the cost.'” The auxiliary density matrix method*®
(ADMM) can significantly reduce the cost by approximating
the density matrix.*

In this work, we present an efficient algorithm for evaluating
the exchange matrix in periodic Gaussian-type orbital (GTO)
calculations. We begin by providing background information
that will help the reader understand the reason for the high
cost of exchange matrix evaluation, namely, that one has to
perform O(N?) FFTs. In Section 3, we describe the algorithm
which combines several different ideas that eliminate the need
for performing FFTs during exchange build and replace them
with matrix multiplications. Although the algorithm is still
cubic scaling, the prefactor is significantly reduced. In Section
4, we describe the computational details including an eflicient
parallel implementation. Finally, in Section 5, we show that this
algorithm enables computation of the exchange matrix with a
cost comparable to the computation of the Coulomb matrix.
This allows hybrid DFT to be used for systems where
semilocal DFT is feasible.

2. BACKGROUND

In this work, we will solve the Hartree—Fock equations using
the self-consistent field (SCF) method, where, for a given set
of molecular orbitals, one constructs the Coulomb 0) and the
exchange (K) operators, respectively. The Coulomb and
exchange operators are given by the expressions

. lp(x)I*
J() = -/[I; Z |(f(— )r’| dr’
)5 AU

lr — ¢l

K(r, v

i

where ¢,(r) are the occupied molecular orbitals. From the
equation, one can note that while the Coulomb operator is
diagonal, the exchange operator has a rank n. To make
progress, one typically introduces a basis set and obtains the
Coulomb and exchange matrices J and K, respectively.
Although many poss1ble basis functions can be used including
Slater-type orbitals,*”** wavelets,"”™>* numerical basis func-
tions,* ™7 etc., the two most commonly used ones are the
atom-centered Gaussian basis functions’® " and the plane
wave basis.®*™7? Although, in this work, we will use the
Gaussian basis functions to represent molecular orbitals, we
will also make use of the plane wave basis and their dual basis
(the 7per10dlzed Sinc basis) to simplify certain calcula-
tions. We first review the properties of these functions.

2.1. Basis Functions. We begin by introducing periodic
basis functions in the unit cell defined by vectors a;, a,, a3 such
that the volume Q = a;-(a, X a;). The reciprocal vectors are
denoted by Aj, A,, Ay so that a; - A; = 275,

2.1.1. Plane Wave Basis. The plane wave basis functions
(&) are parameterized by the wave vector G and are given by

= 1e —iG-r
Ea(r)—\/axp( Gr)

It is easy to check that these functions form an orthogonal
basis i.e.,

/Q E(r) Eq()dr = 8

as long as G = n,A| + nyA,; + n3A;, where n, are integers. If in a
N+1
calculation one retains n; = —=, -, s
integer, i = 1, 2, 3, then the total number of plane waves is
equal to N, = N;N,N;.

2.1.2. Sinc Basis. The dual basis consists of the periodized
Sinc functions (£y) (referred to as pSinc functions from now
on) which are associated with grid points R. They are obtained

by the unitary transformation of the plane wave basis functions

&(r) = exp(iG-R)&g(r)
3

, where N; is an

(1)

E(r) = exp(—iG-R)&(r)

1

=2
VY% e 2)
Again it is easy to see that £y are orthogonal if

may May nzay . . . .

R = N, + N, + N, e a uniform set of grid points in the
unit cell. Since the plane wave and the pSinc bases are related
via a unitary transformation, they span the same space.

2.1.3. Atom-Centered Gaussian Basis. We also have the
computational basis, the periodized atom-centered Gaussian
functions ¢p,(r) given by

$p, (1) = D (r+T)

where ¢(r) is the atom-centered Gaussian and T = n;a; + n,a,
+ n3a; are the lattice vectors in the real space. This function is
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also known as a Jacobi theta function. Note that ¢p,(r) is
neither orthogonal nor normalized even if the functions ¢(r)
themselves are. The periodized Gaussians can be represented

as a linear combination of the plane waves

CEDWIOES o

where a)ﬂ(G) is the Fourier transform of the function ¢,(r)
4(6) = [ expliGr)e(x)dr
R

The Fourier transform of a Gaussian basis function is also a

Gaussian, thus if
@(r) = exp(—,ulr—A/Jz)

then
3/2 )
A exp(—IGl
@(G)=[%] ep(IG/HW | Gea)

JQ . #)

If the factor u of the exponent of the Gaussian is small, then a
relatively few plane waves N, are needed to represent it (with a
small but finite error). In this work, we will use
pseudopotentials so that the Gaussian basis functions will be
reasonably flat and a manageable number of plane waves is
sufficient to represent them.

It is also possible to represent the periodized Gaussians as a

linear combination of the pSinc basis functions

bp, (1) =

R

§,(R)E(x)

z 1 . .

$(R) = E %: exp(~iG-R)¢, (G)

4(c) = exp(iG-R)G,(R)
w2

These equations follow from eqs 3 and 1, respectively. In the
following, it will be convenient to switch from the pSinc basis
to the plane wave basis using the Fast Fourier transform
(FFT), ie, the coefficients ¢,(R) can be calculated from those
of a)ﬂ(G) (and vice versa) rapidly using FFT at a cost of
O(N,In N,).

So far, we have been careful to distinguish between ¢, and
¢p,; however, we will not do so for the rest of the paper where
we only use the symbol ¢, and it should be understood that it

refers to the periodized Gaussian function.
2.2. Integral Evaluation and the Diagonal Approx-

imation. In the following, we evaluate the potential due to a
charge density where the charge density is given as a product of
two orbitals. If we represent both orbitals ¢,(r) and ¢,(r)

using plane wave basis, we then obtain the charge density

Pu(r) as

£,(®) = B (®)

@(G)@(G/)5G+G’(r)
. % (6-G)h(G)ég(r)

$,(G-G)h(G)é&g(x)

(]

Q

il gl ol-
oMz oML o M=
oM.z anz a M=

where in going from the second to the third expression, we
have changed the variables, and in the last expression, we made
an approximation by truncating the summation over G. By
choosing a sufficiently large cutoff N,, the error due to the
approximation can be made negligibly small since we expect
the density to be sufficiently smooth so that the contributions
to p,,(G) coming from plane waves above the cutoff are small.
With this approximation, the final equation starts to look like a
convolution and one can show that

p/w(r) ~ % Zg Zg %(G G)(b (¢ )5(;(1')
N, &
~ E ; $,(R)B (R)&(r) .

The last expression has been called the diagonal approximation
and has been extensively used in the work of Steve White in
the context of Gausslets’>”””® and before that with Sinc
functions.”

Using the diagonal approximation described above, we can
calculate the two-electron integrals of four Gaussian basis

functions as follows

(utie) = [ 40 6)——¢,0),@)dr ar

gZ Z 3,(R)E(R)F,(R)G (R)
/ / e )——r

=5‘°‘ Y Y GRGRR — R)ER)E(R)

ER(r )dr dr’

6)
(R — R) = / &) &()drd’ (7)
=ﬁ Z exp(—iG- R)—exp(lG ‘R) (8)

g G (7)

In going from the first to the second expression in eq 6, we
have used eq 5, and in going from the second to the third
expression, we have used eq 1 and made use of the fact that the

Coulomb operator is diagonal and is equal to % in plane wave

basis. It is useful to note that eq 6 takes the form of tensor
hypercontraction (THC) and just like in THC one can make
use of the integrals in this form to calculate exchange with a
cubic scaling cost. As we will show next, the Coulomb matrix

https://doi.org/10.1021/acs.jctc.2c00720
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can be evaluated using a linear scaling algorithm because the
matrix v(R — R’) takes a special form shown in eq 7.

2.3. Coulomb Matrix. In the self-consistent field
calculation, we construct the coulomb matrix J,, = (ulJlv) for
a set of periodized Gaussian functions ¢, and ¢,. Further, we
represent the molecular orbitals as a linear combination of the
basis functions ¢(r) = X,C; ibp;(r), where C,; is the matrix of
molecular coefficients and we also define the density matrix
Dy, = X.C)C, . Using these, the Coulomb matrix can be
written as

o= [0 [ Jar— ZDM@(W@]

=5 2GR0 Yevion g

Z exp(iG~R’)[z D,,¢,(R)d, (R’)]
Ao

R

where we have made use of eqs 6 and 7. Also the order in
which the brackets are placed specifies the order in which the
tensor contractions are performed. Specifically, the steps
involved are

1. We first evaluate the density on a grid p(R") =
ZA,TDMdJﬂ(R’)dJU(R') This can be performed with a
linear cost since for any finite threshold, the atom-
centered Gaussian basis functions have a compact
support, which implies that for a given 4 only an O(1)
number of ¢ have nonzero overlap.

2. Next the density in Fourier space is evaluated p(G) =
Y rexp(iG - R')p(R’), which is done efficiently with
N, In N, cost using the FFT.

3. In the next step, the potential due to this density is
evaluated in real space as
V(R) = Y. exp(—iG'R)%p(G), which can also be
evaluated efficiently using FFT with an N, In N; cost.

4. Finally, the Coulomb matrix is evaluated as J, =
ZR¢”(R)¢V(R)V(R’) which again is calculated with a
linear scaling due to the compact support of the
Gaussian basis set.

Thus, the construction of the Coulomb matrix only requires
two FFT and step 4 is the dominant cost of the calculation.

2.4. Exchange Matrix. The exchange matrix (uIKlY) can
be constructed in a number of ways using a quartic scaling
algorithm, e.g., using density fitting. However, a cubic scaling
algorithm is as follows

, ()G (x)
g 2 GEIm)

Z exp(—iG~R)%

G

[Z exp(ic-R/)zﬁ(R/)qz(R/)]

©)

where the order of tensor contraction is represented by the
brackets. The steps involved in constructing the exchange
matrix are

1. We first evaluate the product of the molecular orbital
#(R’) and atomic orbital ¢,(R’) on the grid to obtain
(R = §(R),(R’), which is an O(1) operation for a
given iv. The value of this product density is then
evaluated in the Fourier space j,(G) using FFT.

2. Next the Coulomb kernel % multiplies p,,(G) and the
inverse FFT is used to evaluate the potential V,(R’) due
to plU(R,)

3. Finally, the potential is contracted with the product
qbﬂ(R)dJ (R) to obtain the value of K,

Thus, one has to perform Nn FFTs and inverse FFTs, one pair
each for a given i and v. The cost of the FFT is N, In N, which
makes the total cost of the exchange evaluations equal to
NnN, lnN where, as explained in Table 1, N, n, and Nj are
the number of basis functions, number of electrons (or
occupied orbitals), and number of grid points (or plane wave
basis), respectively.

Table 1. Notation Used in the Rest of the Paper

notation meaning

number of electrons

Zz =

number of atom-centered Gaussian basis
functions

number of grid points or plane wave basis

Z.zZ

number of grid points used in pseudospectral
method

k number of processors (including MPI and OMP)
k; number of threads per node
¢, or with subscripts i, j, occupied molecular orbitals

¢, or with subscripts 1,  atom-centered Gaussian basis

v, 4, 0, -
X pseudospectral fitting functions
R location of the grid point (or the center of the
periodized Sinc basis)
G wavenumber of the plane wave

2.5. Other Steps. For performing the HF calculation, one
also needs the kinetic matrix T),,, the nuclear matrix N,,, and
the overlap matrix S e These matrices are evaluated using
standard techniques®’ and we do not discuss them further.
Finally, the Fock matrix F,, = T,, + N, + ], — K, is
constructed and diagonalized to obtain the molecular
coefficients Cj; using which the molecular orbitals ¢,(r) are
formed. These molecular orbitals are used to construct the
Fock matrix in a self-consistent field cycle. The diagonalization
of the Fock matrix to obtain the molecular orbitals scales
cubically; however, the prefactor of this step is small so that its
cost does not exceed that of Coulomb matrix construction
(which scales linearly) for systems with less than 5000 basis
functions (for example, see Table 4).

3. SPEEDING UP EXCHANGE EVALUATION

As we mentioned in the previous section, the exchange
evaluation scales cubically with the size of the system. In
particular, we have to perform Nn FFTs. In practice, the cubic
scaling in itself is not a severe limitation (at least for problems
in which <5000 basis functions are utilized) since other steps
such as Fock matrix diagonalization scale cubically as well.

https://doi.org/10.1021/acs.jctc.2c00720
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However, the high prefactor associated with performing Nn
FFTs results in a large overall cost. In principle, one can make
the evaluation of the exchange matrix to scale linearly using the
fact that K(r, r') decays exponentially with Ir — 1’| for systems
with a band gap or metallic systems at finite temperatures.
However, even for insulating systems with a reasonably large
band gap, the exponential decay is extremely slow and one
does not reach the linear scaling regime until very large system
sizes. In this work, we take the point of view that by reducing
the prefactor in the cubic scaling algorithm, we can obtain a
method for exchange matrix formation that is only slightly
more expensive than the formation of the Coulomb matrix. We
briefly describe how this is accomplished before going into
details in subsequent subsections.

Let us begin by observing that the number of pairs of basis
function (¢,¢,) scale quadratically with the size of the system.
However, eq S shows that using the diagonal approximation
(which can be made arbitrarily accurate), one can ensure that
the products can be represented using a linear combination of
pSinc basis, the number of which scales linearly with the size of
the system. This fact reduces the scaling of the exchange build
to cubic (from the usual quartic), however with a large
prefactor. We will retain the cubic scaling but reduce the
prefactor by fitting the products of Gaussians using a linear
combination of a relatively small number of auxiliary functions.
We are able to get away with using a small number of auxiliary
functions because we make use of the so-called robust
pseudospectral method, which ensures that the error in the
exchange matrix is quadratic of the error in the fitting. Below
we first show how the auxiliary functions (represented by y,)
are obtained and then how they are used in the robust
pseudospectral method. Finally, we also introduce occ-RI
exchange algorithm that further allows us to reduce the cost.

3.1. Interpolative Separable Density Fitting. This
algorithm was introduced by Lu and Ying® for writing down
the two-electron integrals in the THC format and later it was
adapted for speeding up exchange matrix evaluation in hybrid
DFT with plane wave basis.*>*” The basis idea is to view the

product density
Bur = BRG(R)

as a matrix with N* rows corresponding to indices yvand N,
columns corresponding to the grid points. One then tries to
obtain a subset of columns such that all other columns can be
written as a linear combination of this subset. Specifically, we
will attempt to write

Pur = BRGR) ~ Y §(RIER )z (R) + 0(e)

Ry

(10)

where R is a subset of all grid points that we call interpolation
points, 7,(R) is a function defined on all grid points, and € is
the error incurred due to the approximation. The interpolation
grid points R; are obtained by performing QR decomposition
with column pivoting (QRCP)** on the matrix Puvry Which
allows one to write it as

pP = QR

where P is a permutation matrix that ensures that the diagonal
entries of the matrix R are in the descending order, R} > Ry, >
R;;-+. We then choose a user-defined N, set of interpolation
points specified by the leading pivot points in P. These provide

an optimal set of interpolation points. The cost of performing
this step directly scales as NzNg (assuming N* > Ng) and is
thus prohibitively expensive. It can be made to scale cubically
using a randomized algorithm, and we provide more details in
Section 4.3.

Once the interpolation points are selected, we can obtain the
function )(g(R) using a least square minimization

Zmn |p;w,R - p,ub,Rg)(Rg,RlF
RgR

where we have written y,(R) as a matrix yp g using the

Einstein notation of summing over repeated indices (which we
will continue to do so for the rest of this subsection), and
subscript F indices the Frobenius norm. The least squares

problem is solved by transforming it into a system of linear

equations
pﬂv,R;pyy,Rg)(Rg,R = yv,R;,.p/w,R
X = X4
Rg,RgIRg,R R, R (11)

where X = p7j. We solve a set of N, linear equations of size N,
X N, to obtain the fitting functions Xr, - A naive evaluation of

X will cost NZNgNg; however, using the product structure of p
= ¢, we reduce the cost to NN,N,

7 7 2
Xgr = (@ p bx)

Thus, by obtaining the interpolation points using QRCP and
the fitting functions by solving the least squares problem, we
have a way of systematically improving approximation in eq 10.
We show in Section 3.2 how to use ISDF to reduce the CPU
cost for exchange evaluation.

3.2. Robust Fitting. Substituting eq 10 into eq 6, we
obtain a set of approximate integrals

(uvlio) ~ é Z Z @(Rg)ﬁé(Rg)

£,(®) X exp(~iG-R)Zexp(iG-R) |f,(R)
¢,(R) + O(e)
v T T ARMGRIVR, RO, R)(R)

+ O(e)
(12)

where we have defined V(Rg, R) as the potential due to the
function )(g(R). However, these integrals are not symmetric
with respect to functions on the bra and ket (i.e, (uvldc) #
(Aoluv)), and consequently lead to exchange matrix that is
asymmetric. The integrals can be made symmetric, and more
importantly, the error can be made O(€*) (which is a
significant improvement over O(¢) error) using the following
modification

https://doi.org/10.1021/acs.jctc.2c00720
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(uihdo) é 2 X GRIGRYVR, R)E(R)

B + = Z Z §,(RG(RV(R, R)
FRIGR,) — iZ Zzﬁ(R

¢ (RYW(Ry, R, )@(R )¢, (R ) + O0(e”)
(13)
where W(R,, R;) is a symmetric matrix given by

W(Ry Ry = ) V(Ry R)z (R)
R (14)

To see where the quadratic error in eq 13 comes from, it is
useful to recognize that the two-electron integral is of the form
Y v(a)M(a, b)w(b). Now we can approximate v(a) =
Yar(a)é(a) + e5(a) and write a similar expression for
w(b), where 5(a) is a normalized error vector and ¢ is included
to signify the magnitude of the error. Using these
approximations, one can write

D v(@)M(a, byw(b) = D | D5 v(a)E(a) + ed(a) [

ab ab a,

(a, b)| D5 w(b)E(b) + €5 (b)
hs

=y W[Z &(a)M(a, b)]w<b)
a'b a

+ 2 v<a){2 M(a, b)éfg(b)]
ab b

w(b,)
+ 2, v(ay)
a't/

[Z £(a)M(a, b>5g<b)]w<b)

ab

+ec' Y, 8(a)M(a, b)5'(b)
ab

The above expression is exact and in the robust pseudospectral
(rPS) technique we include the first three terms and exclude
the final term which is quadratic in the error €. The
approximation made in eq 13 is known as the robust
pseudospectral (rPS) and was introduced recently.®’ If one
only includes the first line of the equation, then we get the
pseudospectral (PS) method, and if one only uses the last line
of the equation, then we get the tensor hypercontraction
(THC) method. Recently, it was emphasized by Valeev et al.**
that the quadratic error can be obtained using rPS. In fact, this
approach has been previously used in other contexts including
robust density fitting”"** and even in quantum Monte Carlo
for the evaluation of the reduced density matrices.*””**

The key point is that one can evaluate the potential due to
the functions y,(R) only at the beginning of the calculation
and then during subsequent evaluations of the exchange matrix
one can avoid having to do FFT. Below we show the order in

which the tensor contraction can be performed to obtain the

exchange matrix

= é ; 3R ; V(R, R’)[Z [Z h(R, ]

> %m]]@(w
A

(15)

where we have only focused on the first term of eq 13 (other
terms can be treated in a similar way). More explicitly, the
steps involved are
1. First contraction over A and o indices is carried out to
obtain molecular orbitals at all grid points (¢,(R’)) and
interpolation grid points (¢, (Rg) ), respectively. The cost

of both these calculations is O(nN) because of the
locality of the atomic orbitals.

2. Next the contraction over i is carried out to obtain the

matrix p(Rg R) = Zd) (R, (Rg) and the cost of this

contraction is O(nNgNZ)

3. Next we element-wise multiply V and p matrices to
obtain V,(Ry, R’) = V(R, R')p(R, R’) which costs
0NN,

4. The matrix V,(R, R’) is contracted with ¢”(Rg) to

obtain a new matrix M,(R) = Xp V2(Ry, R’ )gb”(Rg) ata
cost of O(NN,N,).

S. Flnally, we contract over R’ to obtain exchange matrix

= Y rM,(R)P,(R') at a cost of O(N,N?).

Given that N, > N, > N > n we can see that several steps of the

algorithm are cubic scaling with step 4 being the most
expensive. Note that no FFT evaluations are involved, and in
Section 5, we will show that this leads to significant speed-up
of the calculation.

3.3. occ-Rl. If one is only interested in calculating the total
energy or the energy of the occupied orbitals, then it is easy to
show that only the rectangular part of the Fock matrix F,, is
needed, where i are the labels of the occupied molecular
orbitals and y are the atomic orbitals. This was first introduced
by Manzer et al’’ to reduce the cost of construction of the
exchange matrix. Using F,, instead of the full F,, matrix during
the SCF cycle does not deteriorate the rate of convergence and
the only drawback is that the virtual orbital energies are not
evaluated correctly. However, this shortcoming can be
overcome at the very end of the SCF cycle by evaluating the
full matrix one time. This idea is also at the heart of the
efficiency of the ACE method proposed by Lin,** with the
difference being that the Fock matrix is not explicitly
constructed but is written as a sum of outer product of n
vectors. This trick can readily be used with the integrals given

in eq 13, and we obtain
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’

Ry
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[Z cﬁi@m;)] d,(R))
A
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The cost of performing contractions in the first line is
O(nN,N,), of second line is O(nN,N), and third line is
O(nN;) which are all lower than the leading cost of O(NN,N,)
of evaluatlng the exchange matrix without occ-RI. However, as
we will see in the next section, when performing the calculation
in parallel, the cost of the second step shown above is either
O(nN[Ng/k) + O(nN,N) or O(NNgNZ/k), where k is the
number of processors (assuming we do not want to incur
additional communication overhead) and the choice between
the two is not always obvious. In fact, if one goes with the
second choice, then occ-RI provides no advantage.

4. COMPUTATIONAL DETAILS

Having outlined the basic algorithm for fast evaluation of
exchange we will outline the computational details of the
program paying particular attention to the way in which it is
parallelized by making use of both the message passing
interface (MPI) and OpenMP (OMP) together. The summary
of the memory and CPU cost of the various steps of the
algorithm are displayed in Table 2, and the details are
presented in the section specified in the fourth column.

4.1. Voronoi Partitioning for Each Atom. We begin by
partitioning the grid points {R} into disjoint set of points k,
one set for each nucleus I, such that all points in the set are
closer to atom I (or its periodic images) than any other atom
(or its periodic images). The algorithm for doing Voronoi

Table 2. Memory and CPU Cost for Constructing the
Various Tensors in the Algorithm®

steps memory CPU section
¢, (R) O(Ny/k) O(NNy/k) 4.1
Juw O(N?) O(Ny/k) 42
2:(R) O(N,N,/k) O(N;/k,) 4.3
V(R, R') O(N,N/k) O((NN,In N,)/k) 43
W(R, R) O(N;/k) O(N;N,/k) 43
K, O(N?) O(nN,N/k) + O(nN,N) 4.4

“All of the symbols are defined in Table 1. For details, see the text in
the sections pointed out in the last column.

partitioning for periodic unit cells is standard.*® The sets are
distributed in a round-robin manner between different
processors and roughly an equal number of grid points end
up on each processor.

After the partitioning is performed, each processor is used to
evaluate the value of periodized Gaussian basis on the grid
point belonging to k; associated with it. These values, up to a
user-defined threshold €, (usually 107%), are stored in memory.
Thus, we end up getting a different matrix ¢”(R) for each
atom I, which specifies the values of only those functions y that
have a non-negligible value on a subset of grid points R in the
Voronoi partition k. The memory cost of storing this matrix is
O(1) because only those u are included that have a value above
€, for at least one grid point in k; and due to the local nature of
Gaussians, this only happens for a number of functions that are
asymptotically system-size-independent. The number of grid
points R in k; are also system-size-independent. Thus, the total
memory requirement for storing the Gaussian basis set is linear
in system size and it is equally divided among the different
processors, each processor stores O(N/k) amount of memory.
Although in principle one should be able to calculate the
matrix d)l (R) (the value of all Gaussian basis functions at all
grid pomts) at an O(N) cost by evaluating the values of the
Gaussian basis functions in real space (each Gaussian has
compact support up to a finite threshold). However, in our
algorithm, we use an O(N?) algorithm, whereby we evaluate
the value of the basis functions in the reciprocal space (recall
that the Fourier transform of a Gaussian is also a Gaussian),
and then we use FFT to evaluate the functions at all grid
points. This procedure is more expensive but one avoids the
need for lattice summations (needed for at least small unit
cells) and is more convenient to implement. This calculation is
split up nearly evenly among the various processors leading to
an asymptotic O(NNg/ k) cost per processor. The cost of this
step is small enough compared to the rest of the steps that
even for large systems, it does not become a bottleneck.

4.2. Parallel Coulomb Matrix Formation. With the
Gaussians stored in memory, the three steps of the
construction of the Coulomb matrix are evaluated in parallel
on each processor. The density matrix D, is replicated on each
processor, and first, the density p(R') = ¥,.D,.¢,(R)$,(R")
is calculated on each processor separately only for the grid
points associated with it. The current algorithm is naturally
linear scaling because only those basis 4,0 are contracted that
have a non-negligible contribution to the same Voronoi
partition k. The cumulative density is then evaluated by
summing up the contributions to density coming from all
processors using the MPI command MPI_Allreduce, after
which the potential is evaluated by calling FFT two times. The
calls to FFT are only parallelized using OMP locally on each
processor. The cost of these FFT calculations is negligible and
constitutes a very small fraction of the overall cost, and thus
not carrying it out in parallel does not cause significant
overhead. Finally, after the potential is obtained, the third step
in which the potential is contracted with the Gaussians on the
local grid to obtain the Coulomb operator J,, = Xx
¢M(R)¢D(R)V(R’) is carried out on each processor and then
reduced together. Thus, one calculates those elements of the
Coulomb operator J,, for which both the indices y, v have
non-negligible values on the Voronoi partitions associated with
a given processor. However, the entire Coulomb matrix is
replicated on each processor. Thus, the CPU cost of the
algorithm is O(N,/k) and the memory cost is O(N?).
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The Voronoi partitioning allows us to screen the overlap
between Gaussians efficiently and results in a linear scaling
algorithm that is distributed over different processors almost
ideally.

4.3. ISDF. Next we evaluate the interpolation points and the
fitting functions for use in exchange build. The input to the
program is a number ¢ that specifies the number of
interpolation points that will be used as a factor of the
number of basis functions e.g,, ¢ = 2 means that twice as many
interpolation points and fitting functions as the number of
basis functions will be used. When the number of fitting
functions becomes equal to N,, one gets the exact result.
Calculating all interpolation points for the entire system scales
as O(NZNg) which is grohibitive. So as a first step, a
randomized algorithm®”*® is used to reduce the cost. In this
algorithm, one first constructs two random matrices G' and G*

with orthogonal columns of size N X p, where p = /N, + m,

where we round up /N, and m is a small integer usually less

than S. Using these matrices, we first construct the randomized
density matrix

Prnr = | 20 Gt (R) [Z G2, (R)]

where the size of the cumulative index mn ~ N,, ie., the
number of fitting bases that will be used. The QRCP
decomposition is then performed on this much smaller matrix
Punr instead of the full matrix p,, r, which reduces the scaling
to O(N;N,). The step is still fairly slow and without additional
simplification can dominate the overall cost of the calculation
even for small systems. Previously Dong et al.”” have proposed
to use a method based on centroid Voronoi tessellation (CVT)
with a weighted K-Mean algorithm to reduce the cost to
O(N,N,). Here we follow a different approach. We first
calculate a small subset of fitting points for each Voronoi
partitioning k; (described in Section 4.1) for each atom L If the
number of atom-centered basis functions on an atom I is N,
then we obtain a set of ~cN; + 10 fitting points from each
partition using the same randomized QRCP as described
above. Each of these calculations is extremely fast and
independent of the size of the system because both the
number of grid points in k; and the number of basis functions
Nj are small and system-size-independent. In the second step,
all of these fitting points are accumulated to form a set {Ry}
where the number of points is of similar number as N, but
much smaller than N,. Now we try to find N, interpolation
points from all of these {R;,} grid points again using the same
randomized algorithm described above, only this time we end
up with a much smaller matrix

ﬁmn,Rh = Z G/ld,m%(Rh) [Z Glzz,mdi(Rh)]
u v

on which one can readily perform QRCP decomposition at a
cost of O(N;). The QRCP is parallelized using OMP and thus
the CPU cost is O(N,/k,), where k; is the number of threads
per node. The construction of the interpolation points is no
longer the dominant cost of the overall calculation unless one
goes to very large system sizes (see Table 4). In our current
implementation, the QRCP is only parallelized using OMP and

not using MPI+OMP. In a future publication, we will use

Scalapack™ to further reduce the scaling from O(N3/k,) to
O(N;/k).

Once the interpolation points have been obtained, one can
now calculate the fitting function )(g(R) by solving eq 11. It is
worth noting that it contains N, equations which can be solved
in parallel to obtain y,(R) with only a subset of R that are
associated with the processor. Thus, the CPU cost of this step
is O(Nf(/kt) + O(NNXNg/k). The first term arises because of
the need to perform Cholesky decomposition of the matrix

Xg;, r, and the term arises because of the need to solve eq 11.

Following this, one needs to obtain W(R,, R}) using eq 14, and
to do that, one has to first obtain the potential V(R,, R) due to
each function y,(R) (see eq 12). If we view y,(R) as a matrix
of size N, X N, then after solving the linear equations, we
obtain a matrix of size roughly N, X (N,/k) on each processor
where we have k processors, ie., each processor contains a
subset of columns of the entire matrix. To obtain the potential,
we first use MPI_Alltoall to obtain matrices of size (N,/k) X
N,, i.e., each processor now only contains a subset of rows of
the entire matrix. FFT is performed in parallel on these rows to
obtain the potential V(Rg, R) where each processor again only
retains a submatrix of size (N,/k) X N, and this results in a
CPU cost of O(NXNgln(Ng)/k). After this, a call to
MPI_Alltoall is used to now distribute the matrix V(R,, R)
with a column-wise split such that each processor ends up with
a submatrix of size N, X (N,/k). Finally, having access to V(R,,
R) and )(g(R) one can evaluate the inner product defined in eq
14 to obtain W(R,, Ry), which can again be distributed over all
processors leading to a cost of O(N;N,/k). Finally, in all of
these calculations, the matrices y,(R), V(R, R), W(R, R})
are all distributed evenly among the processors and thus
require a memory of O(NXNg/k), O(NINg/k), O(Nj/k),
respectively.

4.4, Parallel Exchange Matrix Formation. As mentioned
in the text below eq 16, when one uses the occ-RI, one has two
choices on how to perform contraction in the second line of
the equation. One can first calcu}ate M](Rg) = ZR{bj(R)V(Rg,
R) followed by K v = zRgM](Rg)¢y(Rg)) or one can reverse the

order of these two contractions. In the first case, only the first
step can be parallelized and the second step has to be
performed on each processor and this leads to the computa-
tional cost O(nN,N,/k) + O(nN,N), while when the reversed
order is used, the computational cost becomes O(NNgN)(/ k).
In practice, the first algorithm tends to be faster unless the
number of processors is very large because the ratio Ny/n can
be on the order of 10* or more.

4.5. Other Considerations. The nuclear matrix takes the
form

N, = / —4
we [R;—rl

N.
—Z N AT
=0 Zc: EGXP(IG'RI)PW(G)

B (r)dr

where p,,(G) are the Fourier components of the density p(r)
= ¢,(r)¢,(r), and here, we have represented the nucleus as a
delta distribution of charge Z; at position R;. The summation is
truncated at N, and the largest error is incurred when both
functions p,v are sharp. The expression for the two-electron
integral for the same sharp functions is given as
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N,
1 £ 47 2
(wluv) = o % @ |,0,,,,(G)|

where again the error is due to the use of a finite N,. However,
if the nuclear charge is truly assumed to be distributed as a
delta function, then it is clear that the error incurred in the
two-electron integrals is quadratic of that of the one incurred
while calculating nuclear integrals. This trend is somewhat
tempered due to the fact that pseudopotentials used in this
work are not quite delta functions, but nonetheless, the nuclear
integrals still show the largest error. To reduce the error, we
use an effectively larger N, while calculating the nuclear
integral, which has to be done only once and use a sparser grid
for the rest of the calculation (including for the Coulomb and
exchange matrix formation).

In periodic systems, one often encounters the problem of
linear dependencies of the Gaussian basis sets. This can be
understood by looking at eq 4; if the value of y is smaller than
0.3/L% where L is the length of the super cell, then one can
confirm that ¢,(G) is effectively a constant. For small unit
cells, several Gaussian functions in a standard basis set can
become constants and thus are linearly dependent. However,
when one tries to reach the thermodynamic limit by increasing
L (the dimension of the super cell), then the Gaussians are no
longer going to be linearly dependent and the number of
linearly dependent functions do not increase linearly with the
number of super cells in the system (of course the basis
functions corresponding to the y point of the primitive unit cell
are still present in the super cell which are constants). Thus, in
the large super cell limit, we do not expect the linear
dependency problem to be significantly worse than in a large
relatively uniform molecule or a cluster. Nevertheless, it is true
that using Gaussian basis functions, it is difficult to obtain
results in the basis set limit because it is difficult to
systematically improve the basis set without running into
linear dependencies (which also happens for molecular
systems). One way to overcome this is to use a mixed plane
wave Gaussian basis set. In our algorithm, it is relatively
straightforward to do so such that sharp features are described
by the Gaussian basis function and diffuse features are
described by plane wave basis functions. We will pursue this
line of work in the future.

It is well known that the exchange energy has an integrable
singularity that disappears in the infinite systems size limit.
However, when one is using finite-sized super cells, the
singularity persists (note the presence of 1/G* in the
denominator of eq 8) and one needs ways of regularizing it.
Several approaches have been proposed”””” to do so including
using truncated coulomb’ or the minimum image con-
vention.””?> Here, we have used a very simple approach
whereby we remove the G = 0 term in the exchange matrix
evaluation and include a correction term nM/2, where M is the
Madelung constant of the super cell. It is worth pointing out
that one can readily use the truncated Coulomb kernel in
exchange evaluation using our algorithm.

5. RESULTS

In this section, we present calculations using two benchmark
systems Li—H solid (Li,H,), and diamond with unit cell (Cy),.
For both these systems, we make use of the Goedecker—
Teter—Hutter (GTH) pseudogotentials%’95 and GTH-DZVP
and GTH-TZVP basis sets.”” As pointed in the previous

section, the nuclear integrals are evaluated using a large N,
cutoff (in fact part of the calculation is performed in real
space). For the calculation of the Coulomb and exchange
matrix, N, = 35% is used for the conventional unit cell.
Numerical experiments showed that this grid is sufficient to
deliver an error of less than 0.5 mHartree accuracy in Li—H
system and 2 pHartree in diamond. In this section, we first
look at the relative accuracy of a single-step randomized ISDF
calculation versus Voronoi-based one that we have proposed
here. Second, we compare the accuracy of the rPS and THC
approximations for obtaining the exchange energy and
accuracy of the rPS as we change the basis set and the size
of the system. Finally, we present data on the cost of the
calculations for Li—H of various system sizes, with the largest
one being Liys¢H,s¢ that contains 4864 basis functions.

5.1. Accuracy of Approximate ISDF. In our algorithm,
we do not perform a single large ISDF calculation, instead we
first perform a single small ISDF calculation for each atom and
then do a single ISDF calculation to select the most important
pivot points out of the collection of all of the pivots points
obtained from the individual calculations (let us call it v-ISDF
for Voronoi-ISDF). Table 3 shows the error incurred in Li,H,

Table 3. Error in mE, for Li;H, and C4(Diamond) as N, Is
Increased with respect to Results Obtained with Exact
Exchange”

Li,H, Cg(diamond)
c= NI/N ISDF v-ISDF ISDF v-ISDF
3 0.86 0.67 44.15 39.15
4 0.18 0.23 6.02 6.39
S 0.03 0.08 1.15 1.41
6 0.01 0.03 0.17 0.29

“It is noteworthy that the errors of randomized ISDF (labeled ISDF)
and Voronoi-ISDF (the algorithm proposed in this work) are quite
similar. The differences between the two are slightly larger than the
random errors one expects to see due to the use of randomized
algorithm.

and Cg systems when the usual randomized ISDF is used as
opposed to v-ISDF. We note that the errors are quite similar
pointing to the fact that the collection of pivot points that we
obtain from individual ISDF calculations contains the
important pivot points. One can thus devise other algorithms
to select the most important points out of this small subset,
including for example the K-Means algorithm presented
previously.”” We will work on these aspects in a future
publication, particularly because the single ISDF calculation
needed can become expensive for large system sizes as shown
in Table 4.

5.2. Accuracy of rPS vs THC. Figure 1 shows the error as
a function of ¢ when rPS and THC are used for the two
systems. It is clear that the error incurred by rPS is significantly
lower than THC consistent with the fact that the error in the
former is expected to be square of that of the latter. Two
trends stand out in the left two subfigure. First, it appears that
for the same value of ¢ the error in the larger TZ basis set is
smaller than that in the smaller DZ basis set and this trend is
observed for both systems. Interestingly, when one plots the
error versus N, rather than ¢, the errors in the two curves
nearly overlap and again this trend is observed for both systems
(see rightmost subfigure). Given that the cost of formation of
the exchange matrix is O(nN,N,/k) + O(nN,N), we expect the
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Table 4. Comparison of the Cost of Various Steps of the Decay of diagonal values of R
Algorithm Relative to the Cost of the Coulomb Matrix 1072 4 ‘
Construction as the Size of the Lithium Hydride System Is i

Increased”

b W(ﬁ’ R/ b 107
system N K QRCP )(g(R) (MPI) diagonalize”

Li,H, 76 12 1.0 0.4 1.3/(0.0) 0.0 o
LiHs, 608 1.0 0.3 0.3 0.7/(0.0) 0.0 = 107 4
LijgsHps 2052 1.1 0.6 0.4 0.6/(0.3) 0.0 >
LiyHy, 2736 14 0.7 0.5 0.7/(0.3) 0.0
Li,H9, 3648 1.6 1.8 0.5 1.9/(1.4) 0.3 1075 4
LiygHys 4864 1.9 3.9 0.6 2.9/(1.9) 0.6

“All calculations are I' point calculations and do not make use of k-
point symmetry. For Li,H,, the various parameters are n = 16, N = 76,
N, = 304, and N, = 42875, and for other systems, each of these
parameters increase in proportion to the size of the system. Column
“K” refers to the cost of exchange build, column “QRCP” refers to the
cost of performing of obtaining the interpolation points, column
“%o(R)” refers to the cost of obtaining the interpolation functions by
solving the least square problem, and column W(Rg, Ré) refers to the
cost of building the matrix W(Rg, R{;) in eq 13. All Hartree—Fock
calculations converged with eight iterations, and the CPU cost is
relative to the cost for constructing the Coulomb matrix 8 times. In
column 6, the number in brackets represents the time spent in just the
MPI calls. "This is parallelized using only OMP and not MPL

cost to increase linearly with the increase in the size of the
basis set N (assuming N, and N, remain constant). The second
trend one can observe is that the error decreases extremely
rapidly for the LijH, compared to the Cg(diamond). To
understand this fact, in Figure 2 we have plotted the diagonal
elements of the R matrix that is obtained by performing the
QR decomposition of the pJ,,r matrix. These diagonal

elements reflect the importance of the various pivot points
and explain why one has to include a much larger number of
pivot points for C4(diamond) to obtain comparable accuracy.
The results show that some amount of experimentation is
needed to decide on the appropriate number of ¢ needed for a
desired accuracy. However, the results in Figure 1 show that
for both systems, the results converge roughly exponentially
fast with the increase in c.

5.3. Accuracy with System Size. In Figure 3, we have
plotted the energy/atom as a function of ¢ for three systems
Li,H,, LiyHy,, and LijggH,ps. The errors/atom are quite

-0- Li4H4
10764 -¥- Cg

0 100 200 300 400 500 600
diagonal indices

Figure 2. Diagonal elements of the R matrix obtained by performing

the QR decomposition of the p,,, g matrix. The diagonal elements

decay much faster for Li,H, compared to the Cg(diamond).
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Figure 3. Intensive error (Error/atom) is approximately independent
of the size of the system for the same value of c.
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Figure 1. (Left and middle) Error incurred due to rPS and THC approximations in Li,H, and Cg(diamond) systems, respectively. In both systems,
one sees that the accuracy of rPS is significantly higher than that of THC, and it can be explained by the quadratic error, we expect to get in the
former as opposed to the linear error of the latter. A noteworthy observation is that for the same value of ¢, the error is smaller with the larger basis
set (TZ) rather than the smaller basis set (DZ). In fact, when one plots the error versus N, rather than ¢ = N,/N (as is done in the rightmost
figure), one sees that the curves for the two basis sets nearly overlap, which shows that the error one makes is largely independent of the size of the

basis set for a fixed number of fitting functions. Another observation is that the error is highly system-dependent (see text and Figure 2).
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Figure 4. Wall time needed for a single build of the Coulomb and exchange matrix on nodes containing two Intel(R) Xeon(R) CPU ES-2680 v3 @
2.50GHz processors (red and blue curves). The systems used to obtain this figure are (Li,H,), (lithium hydride) and (Cg), (diamond), where n =
1, 4, 8, 27, 36, 48, and 64 for the lithium hydride system and n = 1, 4, 8, 36, and 48 for diamond. For lithium hydride, a ¢ = 4 was used, and for
diamond, ¢ = 6 was used. These values of ¢ are chosen to ensure that sub mE, errors are obtained for the n = 1 calculation. The timings were
normalized for that of 1 node; for example, the largest calculation for lithium hydride contained 64 unit cells and the figures show a timing of 1000 s
for Coulomb build; however, the wall time was 1000/16 = 62.5 s on 16 nodes. The black line shows the number of basis functions with a value
>107% on the Voronoi partition. Note that this number is not yet a constant, which leads to the super linear scaling of the Coulomb matrix
construction. The relative cost of exchange is higher in diamond because a higher value of ¢ = 6 as opposed to ¢ = 4 for lithium hydride is used.

Note that the cost of exchange increases linearly with ¢ while the cost of the Coulomb matrix construction is independent of it.

similar for the three systems and in all cases decrease
exponentially with c. The figure indicates that one can
experiment on a smaller system to estimate the value of ¢
needed for a desired accuracy and then the calculation can be
scaled to a larger system size.

5.4. Cost of the Calculations. Figure 4 shows the cost of
a single Coulomb and exchange build for lithium hydride and
diamond for various system sizes. The scaling of the Coulomb
matrix appears to be nonlinear mainly because the system
contains highly diffuse functions that do not decay rapidly
enough. For example, the black line in both the graphs shows
that the number of basis functions that have a non-negligible
value on the grid points of the Voronoi partition increases with
the size of the system. Asymptotically, this number becomes a
constant, but because of the presence of extremely diffuse
functions, this does not happen even for the largest system that
contains more than 1000 electrons.
implementation, the grid spacing is determined by the sharpest
Gaussian, while the number of basis functions with non-
negligible value is determined by the most diffuse function.
This naturally leads to a suboptimal performance in the
Coulomb build. In the software packages CP2K®’ and
PySCE,”*”” a technique known as multigrid (different from
the multigrid approach used in the solution of partial
differential equation) is used, whereby several grids are utilized
from sparse to dense with sparse grid used to represent diffuse
basis functions and the dense for sharp basis function. This
allows one to reach the linear scaling regime rapidly. Another
option in this context is to use (and further develop) the
Gaussian basis set recently introduced by Ye and Berkelbach™
that has fewer diffuse functions, which leads to fewer linear
dependency problems and as a side benefit would allow one to
reach the linear scaling regime more quickly without having to
implement multigrid approaches. Finally, one can also replace
diffuse Gaussians with plane waves which will not only allow us
to more systematically increase the accuracy of the calculation
but will also help reduce the overall cost by reaching the linear

In our current

scaling regime sooner. We plan to pursue these lines of work in
a future publication.

Table 4 shows the timings for the various steps of the
calculation for a series of Li—H solids of increasing super cell
size. All calculations are performed using computational nodes
containing two Intel(R) Xeon(R) CPU ES-2680 v3 @
2.50GHz processors with a total number of threads equaling
24. In all calculations, a value of ¢ = 4 was used. From these
calculations, it is clear that the cost of performing QRCP to
obtain the interpolation points increases quite rapidly with the
system size. This is particularly true because the QRCP is not
parallelized over the number of processors and only OMP is
used. We are optimistic that using Scalapack, one can reduce
the cost of this step. Besides this step, the cost of evaluating
W(Ry, Ry) also increases rather steeply. A significant part of the
cost is incurred due to the calls to the MPI All-to-all function
which is given in the bracket of column 6. The relative cost of
evaluation of the exchange matrix never increases beyond 2
compared to the Coulomb matrix even for large systems.
However, for even larger systems, this relative cost will keep
increasing because the scaling of the two steps is not the same.
Number of nodes needed increases quadratically with the size
of the system because the memory cost of storing V(R,, R) is
N,N,, for example, 16 nodes were needed to perform the
largest calculation in Table 4.

6. CONCLUSIONS

In this work, we have presented an algorithm for reducing the
cost of evaluation of the exchange matrix such that it is only
slightly more expensive than the evaluation of the Coulomb
matrix. We have done so by reducing the prefactor without
changing the scaling. Currently, the most expensive step of the
algorithm is obtaining the interpolation points using QRCP
which is cubic scaling with a fairly large overhead. The QRCP
cost can be decreased in two ways. First, one can parallelize the
current algorithm using Scalapack to effectively make use of
both the MPI and OMP, while currently we only make use of
OMP. Second, we can reduce the computational cost of the
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algorithm as follows. In the first step of the current algorithm,
we obtain a set of interpolation points from each atom, and in
the second step, we perform a large QRCP calculation to
identify the most important points in this set. The second step
is by far the dominant cost and this can be replaced by
selecting points using a criterion different from the QRCP
method. For example, the centroid Voronoi tesselation (CVT)
with K-mean algorithm®” can be used to replace the last step.
We expect this to be an effective approach because CVT is
only used for selecting a subset of points that are already close
to optimal.

In addition, the algorithm can be extended in several ways.
First, we can use a mixture of plane wave and Gaussian basis
function by removing diffuse Gaussians and replacing them
with a set of plane wave basis. By increasing the number of
plane wave basis we expect to be able to reach basis set limit
when calculating energy differences (e.g, atomization ener-
gies). It remains to be seen how effective rPS algorithm
remains at selecting pivot points to represent the product
density of this mixed basis set. Also the number of basis
functions will increase rapidly with the threshold and one will
most likely have to resort to direct diagonalization. Second, our
algorithm has similarities with the discontinuous Galerkin
method,*®*” and it is possible to obtain a set of Galerkin basis
that are localized to a given Voronoi partition. This will have a
significant advantage that the fitting functions will also be
perfectly localized to an atomic domain and thus the cubic
scaling of the QRCP step and the evaluation of the W(R,, R})
will be reduced to linear and quadratic scaling, respectively.
Third, we can implement k-point symmetry which is expected
to reduce the cost of the exchange evaluation to O(m In(my)),
where ny is the number of k-points.'”" Fourth, if one wants to
avoid the use of pseudo-potential, then sharp Gaussians are
needed. To include such Gaussians one can split the solution
of Poisson’s equation between real space and reciprocal
space,”” with real-space calculations requiring the evaluation of
mixed-Gaussians-plane wave integrals which we have recently
developed.'” Alternatively, one has to use an irregular grid,
where wavelet basis with multiresolution analysis is an
attractive approach. Several wavelet bases such as interpolating
wavelets, Coiflets, and Gausslets allow one to use the diagonal
approximation that is needed for our algorithm to work.
Finally, it is possible to use the rPS integrals in correlated
calculations for periodic and molecular systems.
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