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Multiresolution quantum chemistry in multiwavelet bases:
Analytic derivatives for Hartree—Fock and density functional theory
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An efficient and accurate analytic gradient method is presented for Hartree—Fock and density
functional calculations using multiresolution analysis in multiwavelet bases. The derivative is
efficiently computed as an inner product between compressed forms of the density and the
differentiated nuclear potential through the Hellmann—Feynman theorem. A smoothed nuclear
potential is directly differentiated, and the smoothing parameter required for a given accuracy is
empirically determined from calculations on six homonuclear diatomic molecules. The derivatives
of N, molecule are shown using multiresolution calculation for various accuracies with comparison
to correlation consistent Gaussian-type basis sets. The optimized geometries of several molecules
are presented using Hartree—Fock and density functional theory. A highly precise Hartree—Fock
optimization for the HO molecule produced six digits for the geometric parameters.
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I. INTRODUCTION lating polynomials defined on disjoint intervals. This ap-

proach is closely related to discontinuous spectral element
methods™® Our selection has been motivated by a number of
contradictory requirements for the bagiee Ref. & In par-
ticular, we require orthonormality, the interpolating property,
n%nd the ability to accommodate boundary conditions while

sion of Hartree—Fock exchange. These works employed a N
; . . aintaining both accuracy and the order of convergence. It
extended the approach described in Ref. 6 for the solution g .
turns out, that there are no smooth bases that satisfy all of

integral and partial differential equations. In this paper, we I, o .
. . . these conditions. Unexpected positive consequences of using

extend the approach to include computation of analytic_ " . . L . .
._multiwavelets with disjoint supports include a family of de-

derivatives of the energy with respect to the atomlcrivative operators with analogs of forward and backward dif-

coordinates. . . .
I . . ferences, and a useful connection to the so-called discontinu-
These derivatives play very important roles in molecular o
ous finite(or spectral element methods.

electronic structure calculations. They enable efficient opti- The multiresolution constructions employed in this paper

mization of molecular structures, as pioneered by P(fay, . o : .
. . : s . are now fairly standard within the mathematical literature
may be combined using numerical finite difference to obtain

harmonic vibrational spectra and anharmonic corrections(see’ €.g. Refs. 2, 6, L3and a nonrigorous description for

. : T ¢chemists is given in an Appendix of Ref. 1. Many objectives
and are increasingly employedai initio molecular dynam- . . ; .
) . . 10 et L of the approach are accomplished, at least in one dimension,
ics simulations:'? Since these derivatives have to be com-

puted at many geometries on the potential surface for thare by a few central features of the multiresolution represen-

R " e tions. However, additional features are necessary to
purpose of geometry optimizations or molecular dynamics, a

fast analytic gradient method is crucial. In the widely usedaCh'eVe efficient algorithms in higher dimensidfts!
ab initio molecular calculations using Gaussian functions,
the derivatives of many one- and two-electron integrals must

In a previous work, we described a practical,
multiresolutiorf® solver in multiwavelet bases for the all-
electron local density approximatiof.DA) Kohn—Sharfi
equations for molecules, and elsewRedescribe the inclu-

Multiresolution wavelet and multiwavelet expansions
organize functions and operators efficiently in terms of

be compute@®!*which add greatly to the computational ex-
pense and software complexity of these programs. For this
reason, mosab initio molecular dynamics have been con-
ducted, as recommended by Car and Parrirtelising plane
wave basis sets for which the computation of analytic deriva-
tives is very efficient. However, plane wave bases are global
and not adaptive, and so cannot be efficiently applied di-
rectly to all-electron systems and are inefficient when ap-
plied to isolated molecules and surfaces.

We chose to use multiwavelet bases, specifically those of
Alpert*?~**which are constructed from Legendre or interpo-
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proximity on a given scale and between the length
scales.

Simple and efficient algorithms exist to transform be-
tween representations at different scdlégN) decom-
position and reconstructign

There is a simple truncation and adaptive refinement
mechanism to maintain the desired accuracy.

A large, physically significant class of differential and
integral operators is sparse in wavelet/multiwavelet
bases. High-order convergence is achieved for solving
partial differential and integral equations.

© 2004 American Institute of Physics
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e Multiwavelet bases with disjoint support allow us to Although Dickson and Becke also demonstrated the ana-
maintain high-order convergence in the presence ofytic gradient method of Kohn—ShafKS) calculations us-
boundary conditions or singularities. ing Hellmann—Feynman theorem based on their numerical
A critical aspect for the efficiency of our approach is the quadrature approachpmot,'® their approach aimed only at

explicit trade-off between precision and speed. All computathe benchmark calculation of the local spin-density approxi-
tions are performed to a user-selected, finite but mathematmation(LSDA) in the basis set limit. We are working toward
cally guaranteed precision. This guarantee is essential fax routinely applicable approach that is able to provide basis-
robust computation. set limit results on large systems.

Maintaining precision in the functions near the nucleus In the following sections, we first present essential de-
is important especially for the present study. The automati¢ails of the numerical approach, discuss the smoothed nuclear
adaptive refinement mechanism can efficiently represent thattraction potential, and then the formulation of the analytic
cusps in orbitals or nuclear potentials at nuclei located aderivative. Subsequently, we present some numerical results
dyadic points on the adaptive mesh, so that the accuracy arahd conclusions.
high-order convergence are maintained. If the nuclei are dis-
placed away from dyadic points, the higher-order conver-
gence for orbitals or potentials breaks down near the nucleué'; BACKGROUND
and many additional levels of adaptive refinement are carried  FEjrst we start with a brief review on our multiresolution
out to deliver the required precision. The previous studyapproach, which closely follows that of Ref. 6. For simplic-
demonstrated the translational invariance of the total energyy. all formulations are discussed in the one-dimensional
within a given precisiort.We should again pay attention to (1D) representation. The solution domain is chosepOas,
the aspect regarding the nuclear potentials on dyadiGyhich is repeatedly subdivided by factors of 2 so that at level
nondyadic points for the gradient calculation. n there are 2 boxes with each of size 2. Within the Ith

The well-known Hellmann—Feynman or electrostatic g,pdomain (=0,...,2"1) at leveln(n=0,1,...), the firstk
theorem is obeyed in our chosen basis, up to the finite Preregendre (or, equivalently, interpolating polynomials

cision of the computation. The expectation value of the first+p. (x)|j=0,...k— 1} are currently used for the scaling func-
order perturbation term in the Hamiltonian is identical to thetjgns as

first derivative of the energy with respect to the parameter

determining the strength of the perturbation, e.g., the coordi- Bl (x)=2"2¢;(2"x—1), (2
nate here, where the functionp;(x) is called the mother scaling func-
JE oV tion defined as
—={ =) +0(e), ) .
aq aq (0 | J2i+1P;(2x—1), xe(0,1) .
. X frd .
whereV,,, is the external potentiglusually the sum of the ' 0, xe (0,1

electron-nuclear and nuclear-nuclear potenfialsd g is @  The functions are orthonormal at a given lewel

parametere.g., a nuclear coordingteThe energy for varia-

gonal models is quadratic in the error in the wave function f BBy, ()dX= 8/ 4)
ue to approximate solution of the equations, and the gradi- —w

entis linear n this error. However, bOt.h the energy ar_ld theand span the space denotégl. The sequence of subspaces

gradient are linear in the b_a5|s trunc_atlon error. That is, € ave the following important containment property:

glect of small coefficients in the basis expansion of the or-

bitals introduces an error linearly proportional to the trunca- VoCV,CV,C---CV,. (5)

tion threshold. One main point of this paper is to analyze thi

numerical error.

As a consequence of the Hellmann—Feynman theore
the derivative of energies can be calculated as an inner pro
uct between the multiwavelet representations for a density
function and a differentiated nuclear attraction potential. We 2"-1k-1
straightforwardly exploit the multiresolution, multiwavelet ()= > > sheh(x), (6)
representation to calculate this product very efficiently. The 1=0 =0
derivative of the nuclear potential is more singular than thewhere due to the orthonormality of the scaling functions,
potential itself. In our first papérwe introduced a smoothed
nuclear attraction potential. The goals of this were to avoid sﬂ:f ol (x)f(x)dx. (7
the projection(via numerical quadratuyef a singular func-
tion into the multiwavelet basis, and to reduce the number ofhis is referred to as theeconstructedorm.
fine-scale levels of refinement for computational efficiency.  The space spanned by the orthonormal multiwavelets
The smoothed potential has a single parameter that controlg)(x)(eW,) is the complementary subspat¥,=V,
the smoothing and was directly related to the error in the-V, . By construction, the multiwavelets W, are orthogo-
total energy. The second topic of this paper is to examinaal to the scaling function@lisjoint polynomial$ of V,,, and
how this parameter controls the error in the gradient. W, is a subspace of/, ;. In this work we use Alpert’s

SThe basis becomes complete in the limits of either infinite
refinement — ) or infinite order polynomials K— ).

"he projection of a function ont®/, is straightforwardly
omputed as
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multiwavelet§?~14in which he imposed the additional con- smooth the potential before performing the projection. It is
strains that the higher-index multiwavelets have an increasalso more straightforward since we may then use standard
ingly higher number of vanishing moments. The multiwave-Gauss—Legendre quadrature. As already noted, the smooth-
lets ¥"(x) can be explicitly constructed from the scaling ing eliminates some fine scale components in the orbitals
functions on the next finest scalg"*1(x) using the two- which makes the overall calculation more efficient.

scale relation§,and also have disjoint support. It is important for the smoothing method to make both
The orthonormality of the multiwavelets is stronger thanthe potential and the resulting orbitals as smooth as possible
that of the scaling functions as follows: (i.e., to reduce the derivatives of the potentiaonsistent
with the required precision in either the energy or the wave
f P ()Y =8 8 S (8)  function.

The electron-nuclear attraction potential at the electron

, positionr is given by
f (X)), =0 if n=n". 9)
Vend )=, — 2t (12)

The direct sum of subspace¥,=V,&Wy®dW;&:-- e = TR’
® W, _4 provides an equivalent representation of the function
of Eq. (6) as

a-(6) ——> Z,f(r =Ry, (13

k—1 n-12m1-1 k-1 I

fr(x)= 2 shep()+ > > 2 diyix), (10 whereZ, andR,, are the nuclear charge and position of the
=0 m=0 170 1=0 atomy, and the functiorf(r) is the Coulomb potential with

which is called thecompressedorm. The transformation be- point charge nucleus given as
tween scaling function(reconstructed and multiwavelet f(r)y=r-1 (14)
(compressedrepresentations is an orthogonal transforma- ’
tion, is therefore numerically stable, and is also f@(N),  We have adoptédthe following smoother form for the po-
asymptotically faster than the fast Fourier transformdtion tential:

Adaptive refinemefitis readily accomplished in 1D by —
truncation of small wavelet coefficients. In higher dimen- ~ f(r)=u(r/c)/c, (15

sions, there is a choice of wavelet basis corresponding t%hereu(r) is the smoothed function, arwis the smoothing
applying the wavelet transformation separately in each diygriapie, which depends on the desired precision in the en-
mension, or simultaneously, level by level in each dimen'ergyeand the nuclear charge. The smoothed functigr) is
sion. The first approach results in a basis with rectangulafjefined as
support(in 2D) that inhibits true local refinement since it
includes basis functions that connect fine-scale behavior in erf(r) 2 2
one dimension with coarse scale in others. The second ap- U(f)=——+ ﬁ(eﬂ +16e™ ). (16)
proach, which we choosetesults in square support at each &
level, enabling true local refinement and does not couplé=or r=6, u(r) differs from 1f by less than machine preci-
length scales between dimensions. sion.

Due to the strong orthogonality of the multiwavelets The first three moments of the error are zero, i.e.,
[Egs.(4), (8), and(9)], the inner product between two com-
pressed functions can be calculated simply and efficiently as fxdr r2+n( u(r)— 1) =0, (17)
a linear sum 0 r

k-1 n-12"1-1k-1 for n=0, 1, 2. These zero moments ensure that the expecta-
(M= shsd+ > > > did/™.  (11) tion value of the potential is quite accurate, implying that the

1=0 m=0 1=0 =0 error arising from use of the modified potential is second
order. Other forms may be preferable, but this has proved
satisfactory to date. The smoothed functibfr) has the
gsymptotic behavior for the smoothing parametas

IIl. SMOOTHED NUCLEAR ATTRACTION POTENTIAL

The one-electron, nuclear-attraction potential is the sam
for both the Hartree—FockHF) and KS density functional
methods. In the HF and KS calculation using our multireso-  lim
lution method, we obtain the reconstructed and compressed ¢~°

forms of the nuclear potential function by projecting onto theThjs form is similar to the finite-nucleus model that has been
scaling functions. Projection of the singular point-chargeexploited in the relativistic calculations using Gaussian-type
nuclear potential onto a finite nonsingular basis, whether dishasis function to decrease the number of basis functions de-
joint Legendre polynomials or atom-centered Gaussians, Unscribing the nuclear cusp for heavy atofhsn this model, a

avoidably smooths the potential—the singularity of the po-Gaussian nuclear charge distribution is defined by
tential is represented only in some average sense. While,

with special purpose quadratures, we can project the singular
potential onto our basis directly, it is much more efficient to

— 1
f( -~ =0. (18)

ko

3/2
p(r>=(3> e’ (19)
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with corresponding potential Our multiresolution approach will satisfy this theorem within
the precision to which the equation is solved with the trun-
erf(r) cation threshold. The derivative of the potential is divided
Urn(F)=— (20 into electron-nuclear interactiom{nuc) and nuclear-nuclear
(nuc-nug contributions
The corresponding smoothing parameter is thus related V(1) _ Venudr) N IV nuc-nuc 23
= 1/\/;to the nuclear sizéwidth of the GaussianHowever, X IXp Xp

since this form does not have any vanishing moments, onlype |ast term is given by
very small radii produce physically reasonable res{disce

the error is first ordgr The form with vanishing moments iv -3 7,7
permits the potential to be modified at much larger radii X, nue-nud 1) = g A B|RA— Rgl®

since the errors are primarily second order. For example, a | ) i
smoothing parameter af=0.26 atomic units for hydrogen The integral in Eq(22) can be regarded as an inner product

introduces only 0.1 millihartree error in the Hartree—Fockbet""ee_n the functionp(r) and dVe nudr)/9Xa. Qur multi-
energy of the hydrogen molecule with a bond length of 1 4resolution approach allows us to do the fast inner product

Xa—Xp (24)

bohrs. between the compressed functions as reviewed in Sec. Il.
Since the compressed density functipfr) has been ob-
IV. ANALYTIC DERIVATIVES tained after HF/KS-SCF calculations, all we have to do is to
_ o obtain the compressed form of the derivative of the electron-
A. Expression for derivatives nuclear potential 3Ve ,,{r)/dX,. The derivative of
Using Hellmann—Feynman theorem, the derivative ofVe-nudr).
the total energyE with respect to the nuclear coordinatg J 9
is expressed as mVe-nuc(f): —2/:4 Z,La—XA u(|r=R,l/c,)lc,
s < aV> 21 Xpa—X
Xy \ IXq @D Z—ZA“_f—RA|u’(|I’—RA|/CA)/Ci, (25
:J' dr p(r) &V(r). (22) requires the derivative afi(r), which is given to the ma-
IXA chine precision by

(—r 2 (r=6)

2e " _erir) 1 (2re "+128e %) (6>r=0.1)
d re e r=0.
—u(r)={ Vmr 12 3Jx : (26)

dr
4 4 2 2 1 1 2 5
_ _v3_ " 54 7 9__ -r —A4r =
3r+5r 7r +27r 66r 3 _W(Zre +128&e ) (0.1>r=0)

The expression for (6r=0.1) in Eq.(26) is a direct deriva- —0 instead of diverging as 1/r? to —o. This leads to the
tive form of u(r) in Eq. (16). The last case in Eq26) is  desirable elimination of high-frequency components. It is
expanded as a series to avoid numerical error in the regioalso most suitable for geometry optimization and dynamics
lim,_odu/dr=0. The first three moments of the error are since the energy and gradient are consistent. Furthermore,

zero even for the derivative as the error can be controlled by just one smoothing parameter
. d 1 c. It is also possible to apply smoothing after differentiation,

f dr r3+”(—u(r)+ —|=0, (27 though this has the potential of making the gradient and en-

0 dr r? ergy inconsistent and might require two smoothing param-

for n=0, 1, 2 from integration by parts. Alternatively, since eters. We have explored this option to a limited extent but
the first three moments of the error in the potential are zerd/ere unable to formulate an approach competitive with the
independent of the geometry, the corresponding moments irecision readily obtained by differentiation of the smoothed
the derivative will also be zero. potential.

In this approach, we smooth the nuclear attraction poten- ~ As previously noted, the form of the smoothed potential
tial, and differentiate the smoothed potential directly. Thewas chosen in part so that the resulting molecular orbitals
potential and its derivative are displayed in Fig. 1. Noticewould be smooth, i.e., possess no cusp. This behavior is
that the differentiated smoothed potential goes to zero as desirable to make the orbitals compactly represented, even if
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10 T T T T TABLE |. The z coordinates of molecular geometri¢i® bohn for the
: u(r) homonuclear diatomic molecules; HLi,, B,, N,, O,, and k given in the
8 I L] — 7 derivative calculations with the box size 40 bohrs.

o 6 \ du/d1r/(2 ........ i Molecule Dyadié Nondyadic
@ \ I —
e 4 _ I‘ 4
E H, +0.625 000 0011=6) +0.723 039 57
S 2 N - Li, +1.250 000 00=5) +1.445 312 50
< ) B, +1.562 500 0014=7) +1.537 486 44
% 0 : e } N, +1.250 000 00=5) +1.034 345 97
520 § 0, +1.250 000 004=5) +1.132 81250
= ; F, +1.250 000 001(="5) +1.307 43497
2 4 + L -
(o)
o 6L ) #The numbers in parentheses indicate the resolution levels of diadified ge-

) ometries in the box.

8t 4

10 L 1 1 1 1
0 1 2 3 4 5 V. RESULTS

/ boh
r/bonr A. Dependence of accuracy

FIG. 1. Plots of the function &/ the smoothed function(r) of Eq. (16), on the smoothing parameter

and their derivatives 1 anddu/dr of Eq. (26). . L .
The error in the derivatives arises from two sources, the

smoothing of the nuclear potential and numerical noise aris-
the nuclei are not located at dyadic points, and to make th#'g from truncation of small coefficients in the numerical
potential differentiable. These conditions imply that the oddrePresentations of the derivative potential and the orbitals
derivatives of both the potential and the orbitals are zero at@nd hence the densjty
the nuclei(for isolated spherical atoms

E OV exact

This pursuit of smoothness is in the spirit of effective R:<\I}exact_|' d| &;Xac+A|\Ifexact+ ) (28
core potentiafS and, in particular, the pseudopotentfls A A
used in plane-wave calculations that yield smooth valence IE exact IV exact

pseudo-orbitals. If we are interested in the detailed electronic = IXa +2(3| IXa |V exacy
structure near the nuclei, the structure of the cusp should be
retained in solving for the orbitals, but it is not necessary for H(Vexacl AV exacd T (29)

the gradient. Since the core orbitals are, in general, very The dependence of the gradient on the smoothing param-
nearly spherically symmetric, they are expected to contributgyer is expected to be systematic, as it is for the energy. The
very little to the gradients. numerical noise, however, is only controlled in a norm-wise
sense by the truncation threshold, and point-wise errors can
be much larger. Moreover, reduction of the numerical noise
in the orbitals requires either increased end-to-end precision
in the solution of the DFT equations, which is expensive, or
introduction of a postprocessing filter which is unsatisfac-
tory, though might still be of utility.

g We examined the LSDA energy and gradients of six
homonuclear diatomic molecules, HLi,, B,, N,, O,, and

F,, near their equilibrium geometries. In computation of the
derivative, highly accurate KS orbitals were used with 11th

3D ((:g)oflgizart]tel.e PYTHON Statement to obtain a compressed order multiwavelets, a truncation threshold of 70 and
g P solving the KS equations to a residual of less than "1

Euncnon instance prOjectln_g the differentiated nuclear pOtenény orbital. Use of accurate solutions of the KS equations
tial, Eq. (25), onto the multiwavelets.

. . eliminates solution error as a source of error in the gradient.
(3) A single PYTHON statement to compute an inner . .
product, Eq.(22), The box size was 4Q bohrs. Two gets of computations were
performed. In the first, the nuclei were placed at dyadic
points—i.e., at below some level of refinemedbetween 5
and 7 the nuclei were placed at grid nodes. In the second,
the nuclei were placed at nondyadic points—i.e., at no level
In comparison with conventional Gaussian gradient codesf refinement would the nuclei be resolved to a grid node.
including atomic orbital integral routind€:'! this imple-  The geometries are listed in Table | together with the reso-
mentation is much simpler and smaller—in total only a fewlution levelsn for dyadic points in a 40-bohr cube.
dozen extra lines of code. Symmetry can be exploited in our  Figures 2 and 3 show the absolute errors of the deriva-
gradient code, and its implementation will be reported intives against the smoothing parameteior the dyadic and
detail in another paper regarding overall use of symmetry imondyadic geometries. The absolute error is defined relative
MADNESS. to the derivative computed with the smallest value of the

B. Implementation

Our multiresolution solver[MADNESS (Ref. 22] is
implemented usingPYTHON (Ref. 23] for high-level control
and C/Ct+/FORTRAN for computationally intensive opera-
tions. The new gradient code we have added into the existin
HF/KS-SCF program is composed of the following three
parts.

(1) A C function to return a value of E425) at a given

grad=rho-inner(gradvnuc(i,p))#i:

atom index, p: dx,dy,dz
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10-4 L T 10-1 T T T T T T T T T
1072 density diff. (dyadic) ------- i
102 density diff. (non-dyadic) ------- i
L 10 dv/dz diff. (dyadic) - -
o 1 0,-5 - i 10% dv/dZ diff. (non—dyaf:iic)
= L ;
5 : i
= L > :
-~ (4
>
& 10° | 4 s I
Q [
[
)
€ L
Q2
E 107 | E
(=)}
“6 b 'S 1 d
2 r 00 02 04 06 08 10 12 14 16 18 20
[ 10.3 L . r/ bohr
FIG. 4. (Anti-)symmetric differencegrelative errorg of the compressed
density and the compressed derivative potential for Mg atom along an axis
10°° i through the atom. Essentially no asymmetry is seen at the dyadic geometry,
0.001 0.1 whereas both the density and compressed derivative potential have signifi-

smoothing parameter ¢ cant errors at the nondyadic geometry.

FIG. 2. Absolute errors of derivatives for,HLi,, B,, N,, O,, and k put
on dyadic points. The error is defined as the difference from the derivative =~ To explore the origin of this numerical noise, we note

calculated with the smoothing parameter 10 *. that the electronic contribution to the derivative in some
sense measures the loss of spherical symmetry of an atom.
We examine loss of spherical symmetry in Fig. 4 for a single
smoothing parameterc=10"% as e(c)=|dE/dX(c) magnesium' atom at both dyaglic and nondyadic points. To
—dE/dX(c=10"%)|. Systematic reduction of the error as a Measure this in poth the density anq numencgl form 'of the
power function ofc was observed in the calculations at the derivative potential we used thesanti-)symmetric relative
dyadic geometrieFig. 2. On the other hand, the deriva- differences: [p(Xug=X)—p(Xugtx)| ~ and  [dVen/
tives calculated at the nondyadic geometries were less acc8Xmg(Xng=X) +dVe.nuc/dXug(Xug+X)|. A smoothing pa-
rate than those at the dyadic geometries and systematic ii@meterc=0.0005 was used, and the density and potential
provement was not observed—the errors were almos{/ere calculated wittk=9 wavelets with molecular orbitals
constant for the molecules 4iB,, O,, F,, and were higher converged to a residual of 1. The gradient values were

than the accuracy of the orbitals (1§) even for the small 6>10 '?hartree/bohr at the dyadic geometry and 4
smoothing parameter§ig. 3. X 10~ ° hartree/bohr at the nondyadic one.

Although the(anti-)symmetric difference of the density
and the differentiated potential of the atom should be zero
algebraically, the compressed density and potential for the

107 [ ————————rr ———— nondyadic geometry was much less accurate in relative error
"!z — a7 D ] than those for the dyadic geometry. Tkanti-)symmetric

Lip --ox--- e-e-eo-&ee‘eig/ | relative errors of the compressed density and the compressed
10 F By oo - i differentiated potential on the nondyadic geometry was less

[ Ng g na & ] than 10°°, which is comparable to the gradient value on the

Oy -—-&— a1 nondyadic geometry, % 10~ °. Therefore we can explain the

10 L Fp o~ EJF * ] source of the constant errors in Fig. 3 as coming from the

P ﬁ—x EVEVE

: Xt — Al oX

TABLE Il. The fitted parametersx and g for the error functione(c)
= ac” depending on the smoothing parametevith respect to the gradient

on dyadic points and the total energy.

107 | -
¥l

Gradient Energy

error of gradient energy / hartree

10% | Molecule P B Py B

H, 0.0102 2.95 0.008 70 3.0
Li, 0.001 77 2.55 2.11 3.0
109 - e s i B, 0.0149 2.84 27.2 3.0
0.001 0.01 0.1 N, 0.402 2.72 146 3.0

smoothing parameter ¢ O, 0.623 2.72 285 3.0
F, 0.558 2.68 514 3.0

FIG. 3. Absolute errors of derivatives for,HLi,, B,, N,, O,, and F, put
on nondyadic points. The error is defined as the difference from the deriva®The fitted parameters are referred to in Ref. d=0.00435 Z°Noms
tive calculated with the smoothing parameter 10, and 8=3.0.
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wheree is a given accuracy. Hereafter the smoothing param-
eter defined by Eq(30) is used for not only the nuclear
potential but also its derivative. Figure 5 describes the shapes
of the smoothed differentiated potentials of fér given ac-
curaciese=10"", n=4,...,10. The smoothing parameters
corresponding toe are 1.199K10° !, 5.5658<10 2,
2.5834x1072, 1.1991x10 %, 5.5658<10 %, 2.5834

x 1073, and 1.199% 10 3 for n=4,...,10. It might be more
efficient to use larger values of the smoothing parameter for
the purposes of geometry optimization and then compute the

107 [ T T T

I1/r2—

potential energy / hartree

10? ,,,,, 3 final energy with a smaller parameter, but we have not ex-
plored this.
1 L i I ! 1 .
1005 001 00 003 ™ 0.05 We also explored the dependence of the gradient on the
£/ bohr box size used for the simulation. Table Il shows the gradient

of the H, molecule atr(HH)=1.40 bohrs using LDA KS

orbitals with four kinds of box size, 321.4Xn bohrs,n

=1, 2, 3, 4. The box size is chosen to put the atoms on the

dyadic points. Two types of orbitals were used: one is calcu-

lated with seventh multiwavelets;(MO)<10 ° and e

numerical errors in both the nonsymmetric density and dif-=10"° for nuclear potential; the other is with ninth multi-

ferentiated potential on the nondyadic geometry because theavelets,r (MO)<10 ’ and e=10" ' for nuclear potential.

rigorously symmetric expression of the density and derivaThe errors of the gradient for the coarse MO were constant

tive potential is important for cancellation in the integral of within the desired accuracy, 18, and those for the other

Eqg. (22). MO were almost constant within the desired accuracy,’10
We fitted the errors in diatomic gradients at dyadic to aThe box size did not affect the gradient to within an accept-

power of the smoothing parameteras e(c)=ac? using able value.

least-squares fitting for two parametersand g (Table II).

For the energy, perturbation theory suggests a8 and

the coefficient was previously determirteoly fitting to re-  B. Comparing gradients of N, molecule

sults for hydrogenic atomse=0.004 3Z°N,,ms The ex-  With correlation-consistent basis sets

ponentsg for the gradient, which were empirically obtained The energy derivative of the Nmolecule at a bond

separately for each atom, were also close to 3. Intuitively, ifength of 2.0 bohrs was calculated using several correlation-

is reasonable that the error in the gradient shoulld have thgynsistent Gaussian-type basis sets, unaugmented and aug-

same exponent. The coefficientditted for the gradient cal- ented cC-pVXZ K=D,T,Q,5),24-%" and the multiresolu-

culation are, with the exception of the hydrogen atom, muchjon approach with a box size of 32 bohrs. Table IV shows

smaller than the corresponding coefficients for the energye gerivative values together with their errors in the paren-

This implies that a smoothing parameter which introduces gneses. The errors are defined as the differences from the

fairly large total energy error, will result in a proportionately geriyative calculated with the most accurate multiresolution
much smaller error in the gradient, and therefore in theapproackk: 11,r(MOs)<10"7, ande= 10"

FIG. 5. The shapes of 17 and the differentiated smoothed potentials of H
for given accuracieg=10"", n=4,...,10.

geometry. N _ The derivative in the multiresolution calculations was
The above empirical tests have demonstrated that it iBumerically converged with the error up <40 7, and the

sufficient for the gradient calculation to use the same:gnyergence behavior of the precision was systematic and

smoothing parameterc determined for the energy {esjrable. The error of the most accurate derivative the

calculation correlation-consistent basis sets yielded wasx2Q 5,
c 13 which was comparable with only seventh order multiwvave-
:(—) (30 lets, which is the most inexpensive calculation that yields
0.004 3Z°Nt0m reliable results. Table V lists the CPU times spent on the

TABLE Ill. The gradient valuegin hartree/bohr of H, molecule atr (HH)=1.40 bohr with the box sizé&
=32X1.4Xn bohr,n=1, 2, 3, 4

Gradient Gradient
Box sizel k=7,r(MOs)<10°%, e=10"% k=9, r(MOs)<107, e=10""
32x1.4 0.016 466 472 8 0.016 4673191
64x1.4 0.016 469 206 8 (2.3310°%) 0.016 4673193 (1.39107%9
96x1.4 0.016 4652335 (1.2410°9) 0.016 4673194 (2.8210° %9
128x1.4 0.016 469577 3 (3.2010°%) 0.016 467 3205 (1.3810°°)

@The numbers in parentheses are the differences from the gradient value&hx 1.4.
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TABLE IV. The gradients and total energiei@n hartree/bohr of N, cc-pV5Z was reproduced with seventh multivavelet bases
molecule  at T(NN)=2.0 bohr with ~Gaussian basis sets and 70_g0 times faster. The scaling of CPU time against the
multiresolution approach. .. . . . .
precision was much better with multiresolution calculations
Calculation Gradiefit Total energy ~ than with Gaussian. This excellent lower scaling and the ca-
pability to produce very high precision up to 410 im-
cc-pvDZ 007698198 (501072 —-108.954210 Ply an extrgmely high adgptwlty of our multiwavelet bases.
aug-cc-pvVDZ  0.079966 88 (5310 %) —108.960452 The CPU times for the inner products were shown to be
cc-pvTZ 0.03370106 (6:910°°) —108.986281 extremely minute. Comparing with two multiresolution cal-
—3 . . . .
aug-CC\;ré\;TZ g-(())2373 ggf;? ((763874; —igg-ggz 222 culations to compress the differentiated nuclear potential
cc-p . - . . _ —5 7 . .
aug-co-pVQZ  0.02772927 (8910 —108.994 744 with e=10 75and 10" using seventh. multlwayelets an_d
ccpvsZ  0.02696189 (12104 —108.996009 [(MOs)<10°>, the accuracies were similar. This _result il-
aug-cc-pvV5Z  0.02681890 (241075 —108.996191 lustrated that the smoothing of the nuclear potentials repro-
duced the sufficient accuracy.

NWCHEM

MADNESS

k=5r(MOs)<10 %,e=10"* 0.02819327 (1.410° —108.984529 o

k=7,r(MOs)<10"%e=10"% 0.02694719 (1.%x10 4 -108.996439 C. Geometry optimization for several molecules
k=7r(MOs)<1075,e=10"° 0.02670951 (1.810 %) -108.996398 With comparison to NumoL and aug-cc-pVTZ

k=7r(MOs)<10 % e=10"7 0.02672375 (1.210 %) —108.996 400 .
K=9r(MOS)<10 5 e=10"° 0.02684240 (2.10°%) —108.996 426 Tables VI and VII present the molecular geometries op-

k=97(MOs)<10%,e=10"® 0.02684017 (4%10°7) —108.996423 timized with LSDA and HF calculations, respectively, using
k=11y(MOs)<10 8,e=10"% 0.02684011 (4.%¥107) —108.996423 seventh and ninth order multiwavelets. The residuals of MOs
k=11r(MOs)<10 7,e=10"8 0.02683970 - -108.996 423 were less than 3010 °; the smoothing parametersfor
. . . the smoothed nuclear potentials were chosen so as to yield a
*The numbers_ in parenthe_ses are the differences from the gradlfent vall{e | £—10°6 d the b . t 40
calculated with the multiresolution approadh=11, r(MOs)<10 7, otal energy error o . » an € box Slze, was set as
=108 bohrs. The tables include LSDA geometries reported by
Dickson and Becke usingiumoL as LSDA limit!® and
LSDA and HF geometries calculated with augmented cc-
gradient calculations inwcHEM version 4.1(Ref. 28 and pVTZ atom-centered Gaussian-type basis sets using
MADNESS. The CPU time was measured on a single 1.3 GHawcHEM, along with experimental values. The tested mol-
Power4 processor on IBM p690 system, dhgl, symmetry  ecules were selected from the compounds for which Dickson
was used in both programs. The total CPU times for theand Becke optimized geometries in their paper, and include
multiresolution calculations are composed of those to obtaimoth first- and second-row elements. The geometries deter-
a density, compress the differentiated smoothed potentiaimined by MADNESS were optimized with a quasi-Newton
and compute the inner product between the density and thRaphson algorithm using an approximated Hessian inverse
differentiated smoothed potential, Eg2). In the highly ac- matrix updated with BFGS algorithA-3? During the opti-
curate calculations, the multiresolution approach was evemization, all geometries, except for the final one, were forced
faster than Gaussian calculations, even though our implee dyadic points within a millibohr displacement in any di-
mentation was just a prototype. The precision obtained wittrection for each atom.

Our LSDA geometries almost completely reproduced
NuUmMoOL results with both the seventh and ninth order multi-
wavelets. The maximum discrepancies fraowmoL with re-
spect to the bond length were 31 millibohrs foriR seventh

Differentiated  Inner multiwavelet results(reduced to 1 millibohr for the ninth
Calculation Total Density ~ potential ~ product  order basis and 4 millibohrs for SiO in ninth multiwavelet

TABLE V. CPU times(in seg to calculate gradients of Nmolecule using
NWCHEM and MADNESS.

NWCHEM results. The averages were 2.0 millibohrs for seventh multi-
cc-pvDZ 1.6 wavelets and 0.6 millibohrs for ninth multiwavelets. As to
aug-cc-pVDZ 33 the Gaussian LSDA results, the average discrepancy from
ce-pvTZ 6.9 NumoL was 3.4 millibohrs and the maximum error was 18
aucgc-_cc\;%vaz 52935 millibohrs for SiO. The ninth order multiwavelets yielded the
aug_fc_pVQz 2376 closest geometries taumoL, but the seventh order multi-
cc-pV5Z 358.4 wavelets, which is much less computational demanding, still
aug-cc-pV5Z 2,2615 gave better results than aug-cc-pVTZ.
VADNESS In Table VII, we report corresponding HF geometry op-
k=5, r(MOs)<10 %, e=10"% 16 03 1.3 0.004 timization results. For the linear CO,Nand HF molecules,
k=7,r(MOs)<10 4 e=10"* 49 06 4.3 0.015 and the HO molecule,MADNESS reproduced the past nu-
k=7,r(MOs)<10% €=10° 44 05 3.9 0013 merical resultd~*¥within a millibohr.
k=7,r(M0Os)<10"°, e=10"' 47 06 4.1 0.014 The discrepancy between ninth order multiwavelets and
k=9,r(MOs)<10 % e=10"° 169 24 14.5 0046 Gaussians was on average 4.0 millibohrs with the largest
k=9, r(MOs)<107%, e=10"° 182 4.0 14.2 0.041 : o . )
K—11,1(MOS)=<10°, e~10° 991 641 348 0240 €rror being 19 millibohrs for SiO. Noticeable errors were

k=11,r(MOs)<10 7, e=108 1085 75.0 333 0200 found in the Gaussian results for second-row compounds in
both LSDA and HF calculations.
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TABLE VI. Geometric parameters optimized with LSDA calculatiéns.

LSDA geometry
MADNESS MADNESS NWCHEM
Molecule Parameter k=7 k=9 NUMOLP aug-cc-pVTZ ExptP?
H, r (H-H) 1.446 1.446 1.446 1.448 1.401
Li, r(Li-Li) 5.120 5.120 5.120 5.120 5.051
LiH r(Li-H) 3.030 3.030 3.029 3.032 3.015
CcO r(C-0) 2.129 2.129 2.129 2.133 2.132
N, r(N-N) 2.070 2.068 2.068 2.071 2.074
Be, r(Be-Be) 4.507 4.521 4.521 4.524 4.63
HF r(H-F) 1.760 1.761 1.761 1.765 1.733
BH r(B-H) 2.373 2.373 2.373 2.375 2.329
F r(F-F) 2.617 2.614 2.615 2.617 2.668
P, r(P-P) 3.559 3.571 3.572 3.585 3.578
BH; r(B-H) 2.268 2.268 2.269 2.270 2.329
CH, r(C-H) 2.123 2.124 2.124 2.126 2.099
/HCH 100.9 101.1 101.1 101.1 102.4
CH, r(C-H) 2.072 2.072 2.072 2.073 2.052
C,H, r(C-C) 2.269 2.269 2.269 2.271 2.274
r(C-H) 2.030 2.030 2.030 2.029 2.005
C,H, r(C-C) 2.498 2.499 2.500 2.501 2.530
r(C-H) 2.067 2.067 2.066 2.067 2.050
/CCH 121.7 121.6 121.6 121.6 121.1
C,Hg r(C-C) 2.854 2.851 2.849 2.852 2.876
r(C-H) 2.079 2.079 2.079 2.081 2.058
/CCH 111.7 111.7 111.7 111.7 111.8
NH; r(N-H) 1.930 1.930 1.930 1.932 1.912
ZHNH 107.5 107.3 107.3 107.2 106.7
H,O r(O-H) 1.833 1.833 1.833 1.836 1.809
/HOH 105.0 105.0 105.0 104.9 104.5
CO, r(C-0) 2.191 2.195 2.195 2.198 2.192
H,CO r(C-0) 2.265 2.263 2.263 2.267 2.279
r(C-H) 2.118 2.119 2.119 2.120 2.094
/OCH 121.9 121.9 121.9 121.9 121.7
SiH, r(Si-H) 2.818 2.818 2.821 2.825 2.795
SiOo r(Si-0O) 2.856 2.855 2.859 2.877 2.853
PH; r(P-H) 2.703 2.702 2.704 2.709 2.671
/HPH 91.8 91.9 91.8 91.9 93.45
HCP r(P-C) 2.898 2.900 2.902 2912 2.910
r(C-H) 2.047 2.046 2.047 2.048 2.020

@Units are bohr for bond lengths.
PCalculated values and experimental references in Ref. 18.

D. High-precision Hartree—Fock geometry of water dyadic points. The accuracy of the gradient of hydrogen is

3 . . >
Recently, Pahl and Handy reported a novel mixed basi?ﬁtter tq%n 107 even aftttr:we m:_nd_yacti_lc p_omts, ast E'? ‘2

of plane waves and polynomial basis functions strictly local-S"OWS. 'he accuracy of he optimization IS expected 1o be

ized within disjoint spheres around the nucd®iTable VIl substantially better than that of Pahl, and no extrapolation is

compares Pahl's HF geometry optimization on a water mol/1€cessary since we are a}ble to use a large box size. The
ecule with our multiresolution calculation employing high d|ﬁe[e6nces betweerlﬁPahIs and the prese;nt results are 7
precision. The precision of the optimization Pahl and Hand 10 bOh[SS’ 4<10"° A for 1(OH), 0.0012° for~HOH,
estimated was an error in the total energy of 3 microhartreélnd 1.0<107" hartree for the total energy.

with the box sizd_=18.0 bohrs and the 30 polynomials, and

the geometry was converged to femtometer accuracyl' CONCLUSIONS
(10" °A) using a picohartree energy threshold for the total ~ We have presented an efficient and accurate analytic gra-
energy. Our optimized geometry was obtained with11l, dient method for HF and KS calculations using multiresolu-
e€=10"°, and converging the orbitals to a residual less thartion analysis in multiwavelet bases. From the Hellman—
108, with a box size of 40 bohrs. The geometry optimiza- Feynman theorem, the derivative of the total energy with
tion was performed until the maximum derivative was 1.7respect to the nuclear coordinate is given as an inner product
X 10 "hartree/bohr and RMS of the derivatives 2.7 between the density function and the differentiated nuclear
X 10”7 hartree/bohr. The water molecule was translated evpotential. The multiwavelets are exploited to compute the
ery iteration to put the oxygen atom at the center of the boxnner product between the compressed functions efficiently.
(a dyadic poink, but we did not force the hydrogen atoms to Given the density from a converged HF or DFT calculation,
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TABLE VII. Geometric parameters optimized with Hartree—Fock calculatfons.

Hartree—Fock geometry

MADNESS MADNESS NWCHEM Nearly
Molecule Parameter k=7 k=9 aug-cc-pvVTZ HF-limit Expt?
H, r(H-H) 1.386 1.386 1.388 1.401
Li, r (Li-Li) 5.264 5.259 5.260 e 5.051
LiH r(Li-H) 3.035 3.035 3.038 e 3.015
CcO r(C-0) 2.081 2.082 2.086 2.081 2.132
Ny r(N-N) 2.012 2.013 2.016 2.0%3 2.074
Be, r(Be-Be) .. 4.63
HF r(H-F) 1.695 1.695 1.699 1.696 1.733
BH r(B-H) 2.305 2.305 2.308 2.329
F> r(F-F) 2.502 2.506 2.510 2.668
P, r(P-P) 3.495 3.493 3.510 3.578
BH3 r(B-H) 2.243 2.243 2.244 2.329
CH, r(C-H) 2.068 2.068 2.069 e 2.099
£HCH 103.8 103.8 103.8 102.4
CH, r(C-H) 2.043 2.044 2.045 2.048 2.052
C,H, r(C-C) 2.228 2.228 2.230 e 2.274
r(C-H) 1.992 1.992 1.992 e 2.005
C,H, r(C-C) 2.484 2.484 2.484 e 2.530
r(C-H) 2.029 2.029 2.030 e 2.050
£CCH 121.8 121.8 121.6 121.1
C,Hg r(C-C) 2.878 2.879 2.882 e 2.876
r(C-H) 2.046 2.046 2.048 e 2.058
£CCH 111.3 111.2 111.2 e 111.8
NH; r(N-H) 1.886 1.885 1.887 1.890 1.912
/HNH 107.8 108.2 108.1 1072 106.7
H,O r(O-H) 1.776 1.776 1.778 1.776 1.809
/HOH 106.3 106.4 106.3 106.3 104.5
COo, r(C-0) 2.146 2.144 2.147 - 2.192
H,CO r(C-0) 2.226 2.223 2.227 e 2.279
r(C-H) 2.064 2.064 2.065 e 2.094
£0OCH 122.0 122.0 121.9 121.7
SiH, r(Si-H) 2.785 2.785 2.793 e 2.795
SiO r(Si-0O) 2.788 2.788 2.807 e 2.853
PH; r(P-H) 2.653 2.653 2.660 2.671
/HPH 95.7 95.7 95.6 93.45
HCP r(P-C) 2.849 2.849 2.860 e 2.910
r(C-H) 2.005 2.006 2.006 e 2.020

@Units are bohr for bond lengths.
PExperimental references in Ref. 18.
°CO for Ref. 33, N for Ref. 34, HF for Ref. 35, Ckifor Ref. 36, NH, for Ref. 37, and HO for Ref. 38.

the additional effort to compute the analytic derivatives islution representation and multiwavelet basis, results in the
expected to grow with system size and precision according togarithmic dependence upon both the volume and precision.
O(NaomIn VIn(1/e)), whereN omis the number of atomy/ We directly differentiated our previous form of

is the system volume, andis the required, finite precision. smoothed nuclear potential, and values of the smoothing pa-
The linear dependence on the number of atoms arises simpiameter that yield acceptable errors in total energy, were
from the need to compute the derivative of the potential forshown to yield proportionately smaller errors in the gradient

each atom. Each of these derivatives is smooth both at longased upon study of six homonuclear diatomic molecules.
range and very close to the nuclei, which, in the multireso-This approach does not require additional smoothing param-

TABLE VIII. Highly precise Hartree—Fock geometry optimization fos®i?

r(O-H) (bohp r(O-H) (A) /HOH Total energy(hartre¢
MADNESS k=11 1.775575 0.939 5%4 106.3375 —76.068 180 09
Pahl and Handy 1.775582 0.939 598 106.3387 —76.068 178
aug-cc-pVQZ Gaussian 1.775972 0.939'804 106.3286 —76.066 676

@Units are bohr for bond lengths and hartree for total energies.

PUnits are converted by a factor 0.529 177 249 from bohr to A.

‘Reference 38.

“The multiresolution approach produced the total energ.068 180 hartree at Pahl's geometry.
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eters. It has been implemented into the existing prototyp&ational Energy Scientific Computing Center which is sup-
multiresolution HF/KS-SCF solvemADNESS, and demon- ported by the Office of Energy Research of the U.S. Depart-
strated as practical by reproduction within available digits ofment of Energy under Contract No. DE-AC03-76SF0098,
the LSDA basis set limit results of Dickson and Beckeand the Center for Computational Sciences at Oak Ridge
NUmoL. The discrepancy of LSDA and HF geometries be-National Laboratory under Contract No. DE-AC05-0
tween ninth multiwavelets and aug-cc-pVTZ bases was 0®OR22725NwWCHEM Version 4.1, as developed and distrib-
an average 3—4 millibohrs for bond lengths, and was greatarted by Pacific Northwest National Laboratory, P.O. Box
in second-row compounds by a few dozen millibohrs. 999, Richland, Washington 99352, USA, funded by the U.S.
Also reported was a high-precision HF geometry for theDepartment of Energy, was used to obtain the HF and DFT
water molecule. Our calculation improved upon the previougesults.
best result of Pahl and Handy byx70 ® bohrs, 4 . _ _ _
%106 A for r(OH), 0.0012° for ~HOH, and 1.0 Eh;s (}:?glrzzg G. I. Fann, T. Yanai, Z. Gan, and G. Beylkin, J. Chem.
X107° hartreg for the total energy. The accuracy O.f OUr 9€-2g Jaffard, Y. Meyer, and R. D. Ryakyavelets: Tools for Science and
ometry is estimated from the gradients and Hessian at theTechnology(SIAM, Philadelphia, PA, 1989
optimized geometry to be within 2107 bohr, X107 A 3?415‘(?2;5;31 R. Coifman, and V. Rokhlin, Commun. Pure Appl. Math,
for I’(OH), f’md_ Wlthl_n 3<10 _deQ fOI’LHOH. The I_‘SDA 4R. G. Parr and W. YangDensity-Functional Theory of Atoms and Mol-
energy derivatives in Gaussian and multiresolution basesecyles(Oxford University Press, New York, 1989
were compared for the Nmolecule. While the best aug-cc- °T. Yanai, G. I. Fann, Z. Gan, R. J. Harrison, and G. Beylkin, J. Chem.
pV5Z basis were in error by only 10 hartree/bohr, the eghisl-(totbg p;b“?l?eﬁo . 4 L Vosovol 3. Comput. Phs
most inexpensive multiresolution calculation that we recom- ;o (285‘3- - Beylkin, D. Gines, and L. Vozovol, J. Comput. Phy82
mend(seventh order waveletss already more accurate and 7p, pylay, Mol. Phys17, 197 (1969.
substantially faster. 8p. Pulay, G. Fogarasi, F. Pang, and J. E. Boggs, J. Am. Chem18#c.
In the current approach, the derivatives for nuclei at dy- ,2550(1979. .

di . h hiah .. b h dvadi 9R. Car and M. Parrinello, Phys. Rev. Lef6, 2471(1985.
adic points show high precision, u't those at non yadiao;'s 1se, Annu. Rev. Phys. Chefig, 249 (2002.
points are not accurate enough for reliable geometry optimitm. bupuis and H. F. King, J. Chem. Phy&8, 3998(1978.
zation. An unsatisfactory approach that we have temporaril 3B- Alpert, Ph.D. thesis, Yale University, 1990.

: ; ; B. Alpert, SIAM J. Math. Anal.24, 246 (1993.
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