Lab for APPM 3010
Nov 30, 2016
Name
The "Standard Map" (named by Boris Chirikov, a Russian physicist) is the 2-dimensional map

$$
\begin{aligned}
& y^{\prime}=y-\frac{k}{2 \pi} \sin (2 \pi x) \\
& x^{\prime}=x+y-\frac{k}{2 \pi} \sin (2 \pi x) \bmod 1
\end{aligned}
$$

As we showed in class it is a model for the kicked rotor. Here of course the prime, ', means the new point after one step (not a derivative!). We take $x \bmod 1$, so that the line $x=-1 / 2$ and the line $x=1 / 2$ are identified (and the phase space is wrapped into a cylinder, this can be implemented as floor $(x+0.5)-$ $0.5)$. When $k=0$, it has simple behavior:

$$
\begin{aligned}
& y^{\prime}=y \\
& x^{\prime}=x+y \bmod 1
\end{aligned}
$$

So the motion moves along at constant y with x jumping by y each step, $x_{t}=x_{o}+t y, y_{t}=y_{o}$. Because we take $x \bmod 1$, this means that x wraps around and begins to fill in the line (a circle really) $y=$ const. Our task is to investigate what happens to these orbits as k increases from 0 .

The program is installed in the /Applications directory on the Macs in Claire 111. You can also download the program "StdMap" from

http://amath.Colorado.edu/faculty/jdm/stdmap.html

Launch the program. The program starts at $k=0.971$ and iterates random initial conditions. You can iterate initial conditions by clicking in the main graphics window. You can change the parameter k either by using the Change \rightarrow Map Parameters Menu ($\mathscr{H}-\mathrm{K}$), or the up and down arrow keys.
a) Set $k=0$. Choose the Find \rightarrow Single Step menu. Click on a point in the plot window to start iteration. Hit the space bar repeatedly to iterate. What happens to the iterates? What happens when x increases to $1 / 2$?
b) Choose a low-order rational value of y, such as $y=\frac{2}{5}$, for an initial condition, using the Find \rightarrow Set Initial Condition menu. What is different?

Now switch to Find \rightarrow Continuously Iterate ($\mathscr{H}-\mathrm{G}$). Your initial point will rapidly iterate (as a pixel sized point), and each time you click in the plot window, you'll get a new initial condition and a new orbit. c) Now we will investigate the orbits as k increases Using the up arrow key, increase k and click various places in the window to see the orbits. For what value of k does chaos first appear? Where in the (x, y) plane does it first appear?
d) Increase k up to about 6 . When does the entire phase space first look like it becomes chaotic?
e) Now set $k=2 \pi$. (Use the Change \rightarrow Map Parameters menu). Increase k a small amount from this point. What happens?
f) Change k back near 1 or 2. Find the stable and unstable manifolds of the fixed point by using the Find \rightarrow Stable Manifold $(\mathscr{H}-\mathrm{H})$ menu. The default values in the dialog $(0,1, \pm 1)$ that appears are fine (try changing the sign!). Iterate the manifolds by hitting "space", or clicking the button. The red curve is the unstable manifold and the blue curve is the stable manifold. The manifolds begin at the fixed point $(x, y)=$ $(0.5,0)$. What type of fixed point is it? (When you are done with a manifold, click the "Stop" button, or type " s ").
g) What happens to the manifolds as you iterate them? By varying k compare this with the chaos threshold you found in (c).
h) When k is small the fixed point at $(0,0)$ is a center. At what value of k does it becomes unstable? At this point a period-two orbit is created. Follow these new orbits until they lose stability (at what value of k ?). (Select Change \rightarrow Clipping $\rightarrow 0<y<1$ to be able to see what happens near $y=\frac{1}{2}$. Change the window bounds to $0<\mathrm{y}<1$ with the Window \rightarrow Choose Plot Range command). What happens then?

