
Lab for APPM 3010 Nov 30, 2016 
 Name____________________ 
The “Standard Map” (named by Boris Chirikov, a Russian physicist) is the 2-dimensional map  

 
′y = y − k

2π
sin 2πx( )

′x = x + y − k
2π

sin 2πx( )   mod  1
 

As we showed in class it is a model for the kicked rotor. Here of course the prime, ′ , means the new point 
after one step (not a derivative!). We take x mod 1, so that the line x = –½  and the line x = ½ are 
identified (and the phase space is wrapped into a cylinder, this can be implemented as floor(x + 0.5) – 
0.5). When k = 0, it has simple behavior:  

′y = y
′x = x + y   mod 1

 

So the motion moves along at constant y with x jumping by y each step, xt = xo+ ty, yt = yo. Because we 
take x mod 1, this means that x wraps around and begins to fill in the line (a circle really) y = const.  Our 
task is to investigate what happens to these orbits as k increases from 0. 
 
The program is installed in the /Applications directory on the Macs in Claire 111. You can also download 
the program “StdMap” from  

<http://amath.Colorado.edu/faculty/jdm/stdmap.html> 
 
Launch the program. The program starts at k = 0.971 and iterates random initial conditions. You can 
iterate initial conditions by clicking in the main graphics window. You can change the parameter k either 
by using the Change → Map Parameters Menu (⌘-K), or the up and down arrow keys.  
a) Set k = 0. Choose the Find → Single Step menu. Click on a point in the plot window to start iteration. 
Hit the space bar repeatedly to iterate. What happens to the iterates? What happens when x increases to 
½? 
 
 
 
 
 
b) Choose a low-order rational value of y , such as y = 2

5 , for an initial condition, using the Find → Set 
Initial Condition menu. What is different? 
 
 
 
 
 
 



Now switch to Find → Continuously Iterate (⌘-G). Your initial point will rapidly iterate (as a pixel sized 
point), and each time you click in the plot window, you’ll get a new initial condition and a new orbit.  
c) Now we will investigate the orbits as  k increases Using the up arrow key, increase k and click various 
places in the window to see the orbits. For what value of k does chaos first appear? Where in the (x,y) 
plane does it first appear? 
 
 
 
d) Increase k up to about 6. When does the entire phase space first look like it becomes chaotic? 
 
 
 
 
e) Now set  k = 2π.  (Use the Change → Map Parameters menu). Increase k a small amount from this 
point. What happens? 
 
 
 
 
 
f) Change k back near 1 or 2. Find the stable and unstable manifolds of the fixed point by using the Find 
→ Stable Manifold (⌘-H) menu. The default values in the dialog (0,1,±1) that appears are fine (try 
changing the sign!). Iterate the manifolds by hitting “space”, or clicking the button. The red curve is the 
unstable manifold and the blue curve is the stable manifold. The manifolds begin at the fixed point (x,y) = 
(0.5,0). What type of fixed point is it? (When you are done with a manifold, click the “Stop” button, or 
type “s”). 
 
 
 
 
 
g) What happens to the manifolds as you iterate them? By varying k compare this with the chaos 
threshold you found in (c). 
 
 
 
 
 
 
h) When k is small the fixed point at (0,0) is a center. At what value of k does it becomes unstable? At 
this point a period-two orbit is created. Follow these new orbits until they lose stability (at what value of 
k?).  (Select Change→Clipping→ 0<y<1 to be able to see what happens near y = 1

2 . Change the window 
bounds to  0<y<1 with the Window→Choose Plot Range command). What happens then?  


