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and the choice of point x. An important consequence of uniform convergence is the next
lemma.

Lemma 3.2. The limit of a uniformly convergent sequence of continuous functions is
continuous.

Proof. Let u(x) denote the limit of un(x); we must show that there is a �(", x) such that
|u(y)� u(x)| < " whenever |y � x| < �. Insert four new terms that sum to zero into this
norm:

|u(y)� u(x)|= |u(y)� un(y) + un(y)� un(x) + un(x)� u(x)|
 |u(y)� un(y)|+ |un(y)� un(x)|+ |un(x)� u(x)| .

Since by assumption un converges uniformly, then for any x 2 E and any "/3 there is
a given N such that |un(x)� u(x)| < "/3 whenever n > N . Moreover, since un is
continuous for any fixed n, there is a �(", x) such that |un(x)� un(y)| < "/3 for each
y 2 int(B�(x)). As a consequence,

|u(y)� u(x)| < "

3

+

"

3

+

"

3

= ",

so u is continuous.

There is also a uniform version of continuity:

. uniform continuity: A function f is uniformly continuous on E if for ev-
ery x 2 E and every " > 0, there is a �("), independent of x, such that
|f(y)� f(x)| < " whenever |y � x| < �.

It is not too hard to show that when E is a compact set, then every continuous function on
E is also uniformly continuous (see Exercise 2).

A generalization of Lemma 3.2 is easily obtained: if each of the elements of a uni-
formly convergent sequence is uniformly continuous, then the limit is also uniformly con-
tinuous.

3.2 Function Space Preliminaries
A function f : D ! R is a map from its domain D to its range R; that is, given any
point x 2 D, there is a unique point y 2 R, denoted y = f(x). In our applications the
domain is often a subset of Euclidean space, E ⇢ Rn, and the range is Rn; in this case,
f : E ! Rn is given by n components fi(x1

, x
2

, . . . , xn), i = 1, 2, . . . , n. The set of
functions denoted C(E) or C0

(E) consists of those functions on the domain E whose
components are continuous. Colloquially we say “f is C0” if it is a member of this set. If
it is necessary to distinguish different ranges, the set of continuous functions from D to R
is denoted C0

(D,R); the second argument is often omitted if it is obvious. When E is an
open subset of Rn, a function f : E ! Rn is differentiable at a point x 2 E if there exists
an n⇥ n matrix Df(x) such that

lim

|h|!0

1

|h| |f(x+ h)� f(x)�Df(x)h| = 0 (3.2)
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When it exists, this matrix is unique and is called the Jacobian matrix
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. (3.3)

Conversely,Df exists at xwhen all its partial derivatives, @fi/@xj , exist and are continuous
in a neighborhood of x. We say f is C1

(E)—continuously differentiable—if the elements
of Df(x) are continuous on the open set E. Colloquially we will say that f is smooth when
it is a C1 function of its arguments.

Spaces of functions, like C(E) and C1

(E), are examples of infinite dimensional
linear spaces, or vector spaces. Just as for ordinary vectors (recall §2.1), linearity means
that whenever f and g 2 C(E), then so is c

1

f+c
2

g for any (real) scalars c
1

and c
2

. Much of
our theoretical analysis will depend upon convergence properties of sequences of functions
in some such space. To talk about convergence it is necessary to define a norm on the
space; such norms will be denoted by kfk to distinguish them from the finite dimensional
Euclidean norm |x|. We already met one such norm, the operator norm, in (2.23). For
continuous functions, the supremum or sup-norm, defined by

kfk ⌘ sup

x2E
|f(x)| (3.4)

will often be used. For example, if E = R, and f = tanh(x), then kfk = 1. Other norms
include the Lp norms,

kfkp =

✓Z
E

|f(x)|p dx
◆

1/p

,

but these will not have much application in this book. This formula becomes the sup-norm
in the limit p ! 1, which is why the sup-norm is also called the L1 norm and is often
denoted kfk1.

Metric Spaces
A normed space is an example of a metric space. A metric is a distance function ⇢(f, g)
that takes as arguments two elements of the space and returns a real number, the “distance”
between f and g. A metric must satisfy the three properties

1. ⇢(f, g) � 0, and ⇢(f, g) = 0 only when f ⌘ g (positivity),

2. ⇢(f, g) = ⇢(g, f) (symmetry), and

3. ⇢(f, h)  ⇢(f, g) + ⇢(g, h) (triangle inequality).
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Associated with any norm kfk is a metric defined by ⇢(f, g) = kf � gk. Therefore, a
normed vector space is also a metric space; however, metric spaces need not be vector
spaces, since in a metric space there is not necessarily a linear structure.

A sequence of functions fn that are elements of a metric space X is said to converge
to f⇤ if ⇢(fn, f⇤

) ! 0 as n ! 1. Since the distance ⇢(fn, f⇤
) is simply a number, the

usual definition of limit can be used for this convergence. Note that the norm (3.4) bounds
the Euclidean distance: if we use

⇢(f, g) = kf � gk1 , then |f(x)� g(x)|  ⇢(f, g).

Thus, convergence of a sequence of functions fn in norm implies that the sequence of points
fn(x) converges uniformly.

Another notion often used to discuss convergence is that of

. Cauchy sequence: Given a metric spaceX with metric ⇢, a sequence fn 2 X
is Cauchy if, for every " > 0 there is anN(") such that ⇢(fn, fm) < "whenever
m,n � N(").

Informally, a Cauchy sequence satisfies

⇢(fn, fm) ! 0 as m,n ! 1,

where m and n approach infinity independently. One advantage of this idea is that the value
of the limit of a sequence need not be known in order to check if it is Cauchy.

It is easy to see that every convergent sequence is a Cauchy sequence. However, it is
not necessarily true that every Cauchy sequence converges.

Example: Consider the sequence of functions fn(x) = sin(nx)/n 2 C[0,⇡], the contin-
uous functions on the interval [0,⇡]. This sequence converges to f⇤

= 0 in the sup norm
because

kfn � 0k =

1

n
! 0.

The sequence is also Cauchy because

kfm � fnk  1

n
+

1

m
 2

N
<

3

N
8m,n � N.

Thus for any ", we may choose N(") = 3/" so that the difference is smaller than ".

Example: Consider the sequence fn =

Pn
j=1

xj

j of functions in C(�1, 1). Assuming that
m > n, then

kfm � fnk =

������
mX

j=n+1

xj

j

������ =

mX
j=n+1

1

j
�

Z m

n

dy

y + 1

= ln

✓
m+ 1

n+ 1

◆
,

since the supremum of
��xj

�� on (�1, 1) is 1. This does not go to zero for m and n arbitrarily
large but otherwise independent. For example, selecting m = 2N + 1 and n = N gives a
difference larger than ln 2. Consequently, the sequence is not Cauchy.
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Note that for any fixedx 2 (�1, 1) this sequence converges to the function� ln(1�x);
however, it does not converge uniformly since the number of terms needed to obtain an
accuracy " depends upon x. Thus in the sense of the L1 norm, the sequence does not
converge on C(�1, 1).

A space X that is nicely behaved with respect to Cauchy sequences is called a

. complete space: A metric space X is complete if every Cauchy sequence in
X converges to an element of X .

For the case of linear spaces a complete space is called a

. Banach space: A complete normed linear space is a Banach space.

Some spaces, like a closed interval with the Euclidean norm, are complete, and some,
like an open interval, are not. The space C(E) with the L1 norm is complete when E is
compact.15 However, the continuous functions are not complete in the L

2

-norm.

Example: Let fn 2 C[�1, 1] be the sequence

fn =

(
1, x  0,
1

1 + nx
, x > 0.

(3.5)

With the L
2

-norm, this sequence limits to the function f =

n
1, x  0
0, x > 0 because

kfn � fk
2

=

✓Z
1

0

dx

(1 + nx)2

◆
1/2

=

1p
1 + n

!
n!1

0.

Note that the limit, however, is not in C[�1, 1]. In the L
2

-norm, the sequence is also a
Cauchy sequence:

kfn � fmk2
2

=

Z
1

0

✓
1

1 + nx
� 1

1 +mx

◆
2

dx 
Z

1

0

"✓
1

1 + nx

◆
2

+

✓
1

1 +mx

◆
2

#
dx

=

1

1 + n
+

1

1 +m
 2

N
,

for any n,m � N—of course every convergent sequence is Cauchy. As a consequence, the
L
2

-norm is not complete on the space C[�1, 1].

Example: Now consider the sequence (3.5) with the sup-norm. In this case the sequence
does not converge to f , since

kfn � fk = max

(
|1� 1| , sup

x2(0,1]

���� 1

1 + nx

����
)

= max{0, 1} = 1.

15The nontrivial proof is given in (Friedman, 1982) and (Guenther and Lee, 1996).
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Accordingly, the very definition of convergence can depend upon the choice of norm. More-
over, this sequence is not Cauchy in the sup-norm:

kfn � fmk = sup

x2[0,1]

���� 1

1 + nx
� 1

1 +mx

���� = sup

x2[0,1]

���� m� n

(1 + nx) (1 +mx)
x

���� .
Differentiation of this expression shows that its maximum occurs at x = (mn)�1/2 and has
the value kfn � fmk =

���pm�
p
np

m+

p
n

��� that does not approach zero for all m,n � N ! 1.

For example, kf
4N � fNk =

1

3

. This proves that the sequence is not Cauchy.

Since complete spaces are so important, it is worthwhile noting that given one such
space we can construct more of them by taking subsets, as in the next lemma.

Lemma 3.3. A closed subset of a complete metric space is complete.

Proof. To see this, first note that if fj 2 Y ⇢ X is a Cauchy sequence on a complete space
X , then fj ! f⇤ 2 X . Moreover, since f is a limit point of the sequence fj , and a closed
set Y includes all of its limit points, then f 2 Y .

The issues that we have discussed are rather subtle and worthy of a second look—see
Exercises 1-3.

Contraction Maps
We have already used the concept of an operator, or map, T : X ! X , from a metric space
to itself in Chapter 2: an n ⇥ n matrix is a map from Rn to itself. We will have many
more occasions to use maps in our study of dynamical systems, including the proof of the
existence and uniqueness theorem in §3.3. This proof will rely heavily on what is perhaps
the most important theorem in all of analysis, Stefan Banach’s 1922 fixed-point theorem.

Theorem 3.4 (Contraction Mapping). Let T : X ! X be a map on a complete metric
space X . The map T is a contraction if there exists a constant c < 1 such that for all
f, g 2 X ,

⇢ (T (f), T (g))  c⇢(f, g). (3.6)

In this case T has a unique fixed point, f⇤
= T (f⇤

) 2 X .

Proof. The result will be obtained iteratively. Choose an arbitrary f
0

2 X . Define the
sequence fn+1

= T (fn). We wish to show that fn is a Cauchy sequence. Applying (3.6)
repeatedly yields

⇢(fn+1

, fn) = ⇢ (T (fn), T (fn�1

))  c⇢(fn, fn�1

)  c2⇢(fn�1

, fn�2

)  · · ·  cn⇢(f
1

, f
0

).

Therefore, for any integers m > n, the triangle inequality implies that

⇢(fm, fn) 
m�1X
i=n

⇢(fi+1

, fi) 
m�1X
i=n

ci⇢(f
1

, f
0

) =

1� cm�n

1� c
cn⇢(f

1

, f
0

)  Kcn,



3.2. Function Space Preliminaries 81

where K = ⇢(f
1

, f
0

)/(1� c). Since c < 1, then for any " > 0 there is an N such that for
all m,n � N , ⇢(fm, fn)  KcN < ". This implies that the sequence fn is Cauchy and,
since X is complete, that the sequence converges.

The limit, f⇤, is a fixed point of T . Indeed, suppose that N is large enough so that
⇢(fn, f⇤

) < " for all n > N , then

⇢(T (f⇤
), f⇤

)  ⇢(T (f⇤
), fn+1

) + ⇢(fn+1

, f⇤
)

= ⇢(T (f⇤
), T (fn)) + ⇢(fn+1

, f⇤
) < (c+ 1)".

Because this is true for any ", the distance is zero and T (f⇤
) = f⇤.

Finally, we show that the fixed point is unique. Suppose to the contrary that there are
two fixed points f 6= g. Then, ⇢(f, g) = ⇢ (T (f), T (g))  c⇢(f, g). Since c < 1, this is
impossible unless ⇢(f, g) = 0, but this contradicts the assumption f 6= g; thus, the fixed
point is unique.

Example: Consider the space C0

(S) of continuous functions on the circle with circumfer-
ence one, i.e., continuous functions that are periodic with period one: f(x + 1) = f(x).
For any f 2 C0

(S) define the operator

T (f)(x) =
1

2

f(2x).

Note that T (f) 2 C0

(S), and, using the sup-norm, that kT (f)� T (g)k =

1/
2

kf � gk;
therefore, T is a contraction map on C0

(S). What is its fixed point? According to the
theorem, any initial function will converge to the fixed point under iteration. For example,
let f

0

(x) = sin(2⇡x). Then f
1

(x) = 1/
2

sin(4⇡x), and aftern steps, fn =

1

2

n

sin(2

n+1⇡x).
A previous example showed that this sequence converges to f⇤

= 0 in the sup-norm. In
conclusion, f⇤

= 0 is the unique fixed point.

Example: As a slightly more interesting example, consider the same function space but let

T (f)(x) = cos(2⇡x) +
1

2

f(2x). (3.7)

Note that T decreases the sup-norm by a factor of 1/
2

as before, so it is still contracting. For
example, the sequence starting with the function f

0

(x) = sin(2⇡x) is

f
1

(x) = cos(2⇡x) +
1

2

sin(4⇡x),

f
2

(x) = cos(2⇡x) +
1

2

cos(4⇡x) +
1

4

sin(8⇡x),

fj(x) =
j�1X
n=0

cos(2

n+1⇡x)

2

n
+

1

2

j
sin(2

j+1⇡x).

The last term goes to zero in the sup-norm, and by the contraction-mapping theorem, the
result is guaranteed to be unique and continuous. The fixed point is not an elementary
function but is easy to graph; see Figure 3.1; it is an example of a Weierstrass function
(Falconer 1990).
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x 1.00.80.60.40.2

−1.0

1.0

2.0

0.0

Figure 3.1. The fixed point of the operator (3.7).

Lipschitz Functions
Another ingredient that we will need in the existence and uniqueness theorem is a notion
that is stronger than continuity but slightly less stringent than differentiability:

. Lipschitz: Suppose (X, ⇢X) and (Y, ⇢Y ) are metric spaces with the indicated
distance functions. A function f : X ! Y is Lipschitz if for all x

1

, x
2

2 X ,
there is a K such that

⇢Y (f(x1

), f(x
2

))  K⇢X(x
1

, x
2

). (3.8)

The smallest such K is called the Lipschitz constant for f on X .

For example ifX = Y = R2 and⇢X = ⇢Y is the Euclidean metric, then when f is Lipschitz,
the slope of the chord connecting (x, f(x)) and (y, f(y)) is at most K in absolute value.
More generally the graph of a Lipschitz function f : Rn ! Rn must be contained in the
cone {(⇠, ⌘) : |⌘ � f(x)|  K|⇠ � x|}, for each vertex (x, f(x)).

The Lipschitz property implies more than continuity, but less than differentiability.

Lemma 3.5. A Lipschitz function is uniformly continuous.

Proof. For each ", set � = "/K. Then whenever ⇢X(x
1

, x
2

)  �, (3.8) implies that
⇢Y (f(x1

), f(x
2

))  ". Consequently f is continuous atx
1

, say, and moreover, is uniformly
so because � is chosen independently of x

1

.
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If the space X is unbounded, then the assumption that f is Lipschitz is very strong.
For example, f = x2 is not Lipschitz on R, even though it is Lipschitz on every bounded
interval (a, b). A weaker notion is

. locally Lipschitz: f : X ! Y is locally Lipschitz if for every x 2 X , there
is a neighborhood N(x) such that f is Lipschitz on N(x).

Note that for a locally Lipschitz function, the constant K can vary with the point and indeed
may become arbitrarily large. Nevertheless, the restriction of any such function to a compact
set is (globally) Lipchitz.

Lemma 3.6. Suppose that f : X ! Y is locally Lipschitz and A ⇢ X is compact. Then f
is Lipschitz on A.

Proof. By assumption, for each xj 2 A, there is a ball Br
j

(xj) on which f is Lipschitz
with constant Kj . Since A is compact, there is a finite collection of these balls—even if
we decrease their radii by a factor of two—that covers A, i.e., A ⇢

Sn
j=1

Br
j

/2(xj). Since
n is finite, there exist positive constants K = maxj Kj and � =

1

2

minj rj . To show f is
Lipschitz on A, consider two points ⇠, x 2 A.

First, if ⇢X(⇠, x)  � then there is j such that ⇠, x 2 Br
j

(xj); indeed there is a j for
which x 2 Br

j

/2(xj) since these balls cover A, and the triangle inequality then implies

⇢X(⇠, xj)  ⇢X(⇠, x) + ⇢X(x, xj)  � +
rj
2

+  rj .

In this case, we have ⇢Y (f(⇠), f(x))  K⇢X(⇠, x), by the local Lipschitz assumption.
On the other hand, if ⇢X(⇠, x) > �, then we argue as follows. Since A is compact and

f is continuous, there is anM such that ⇢Y (f(⇠), f(x))  M . Setting ˆK = max(K,M/�),
we now have ⇢Y (f(⇠), f(x))  ˆK�  ˆK⇢X(⇠, x). Thus f is Lipschitz on A with constant
ˆK.

When a function is differentiable on an open set in Rn, it is locally Lipschitz. This is
a simple consequence of the following lemma.

Lemma 3.7. Suppose that A ⇢ Rn is compact and convex and f 2 C1

(A,Rn
). Then f is

Lipschitz with constant K = maxx2A kDfk.

Proof. Since A is convex, the points on a line between any two points x, y 2 A, are also in
A. Accordingly, ⇠(s) = x+ s(y � x) 2 A when 0  s  1. Therefore

f(y)� f(x) =

Z
1

0

d

ds
(f(⇠(s))) ds =

Z
1

0

Df (⇠(s)) (y � x)ds,

which amounts to a mean value theorem. Since A is compact and the norm of the Jacobian
kDfk is continuous, it has a maximum value K, as defined in the lemma. Thus

|f(y)� f(x)| 
Z

1

0

kDf(⇠(s))k |y � x| ds  K |y � x| . (3.9)
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Continuous

Uniformly
ContinuousLocally Lipschitz

LipschitzC1

Figure 3.2. Venn diagram relating continuity, differentiability and the Lipschitz property.

This is exactly the promised condition.

Corollary 3.8. If E ⇢ Rn is open and f 2 C1

(E,Rn), then f is locally Lipschitz.

Proof. For any x 2 E, there is an r such that Br(x) ⇢ E. Since Br(x) is compact and
convex, then Lemma 3.7 applies.

Some of the relationships between continuous, Lipschitz, and smooth functions are
summarized in Figure 3.2.

Example: The function f(x) = |x| is continuous and Lipschitz on R. It is obviously C1

on R+ and R�, and if x and y have the same sign, then |f(x)� f(y)| = |x� y|. So
the only thing to be checked is the Lipschitz condition when the points have the opposite
sign. Although this is obvious geometrically, let us be formal: let x > 0 > y; then
|f(x)� f(y)| = ||x|� |y||  x+ |y| = |x� y|. So f is Lipschitz with K = 1.

However, the function f(x) = x1/2 is not Lipschitz on [0, 1] even though it is uni-
formly continuous. For example, choosing x = 4", y = ", we then have

|f(x)� f(y)| =
p
x�p

y =

p
" =

"p
"
=

1p
"

4"� "

3

=

1

3

p
"
|x� y| ,

so that as " becomes small, the needed value of K ! 1.

All these formal definitions have been given to provide us with the tools to prove that
solutions to certain ODEs exist and, if the initial values are given, are unique. We are finally
ready to begin this analysis.

3.3 Existence and Uniqueness Theorem
Before we can begin to study properties of the solutions of differential equations, we must
discover if there are solutions in the first place: do solutions exist? The foundation of the
theory of differential equations is the theorem proved by the French analyst Charles Emile
Picard in 1890 and the Finnish topologist Ernst Leonard Lindelöf in 1894 that guarantees


