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Abstract

We consider finite point-set approximations of a manifold or fractal with the goal of determining topological properties of the
underlying set. We use the minimal spanning tree of the finite set of points to compute the number and size of itsε-connected
components. By extrapolating the limiting behavior of these quantities asε → 0 we can say whether the underlying set
appears to be connected, totally disconnected, or perfect. We demonstrate the effectiveness of our techniques for a number
of examples, including a family of fractals related to the Sierpinski triangle, Cantor subsets of the plane, the Hénon attractor,
and cantori from four-dimensional symplectic sawtooth maps. For zero-measure Cantor sets, we conjecture that the growth
rate of the number ofε-components asε → 0 is equivalent to the box-counting dimension. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

One of the primary tasks of experimental science is the extraction of qualitative and quantitative information
from data. Data are typically represented as subsets of metric spaces, either naturally, or through the process of
phase space embedding [1–3]. The qualitative information obtained from data is most often geometric; common
examples are fractal dimensions [4] or Lyapunov exponents [5]. Topological properties, although more fundamental
than metric ones, are more difficult to determine computationally. Examples of topological techniques in the study
of dynamical systems include the calculation of symbolic dynamics of a flow (when the attractor can be embedded
in R3) by using knot theory to create a template [6–8], the computation of homology from flows that lie on smooth
manifolds [9], and the application of Conley index theory to time-series data [10,11].

There is a growing literature on the formalization and representation of topological questions for computer
applications and on the study of appropriate algorithms; see [12] for a survey of the field. By “computational
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topology” we mean the study of topological properties of an object (such as the number of connected components)
that can be computed to some finite accuracy. Our computational techniques are tailored to finite point-set data,
but as we derived in [13], the underlying concepts apply in general to compact subsets of metric spaces. Often we
can improve the accuracy of the computations at the expense of increased computer or experimental effort, and our
algorithms lead to topology by extrapolation.

This notion can be distinguished from “digital topology” [14], which deals with the topological features of digital
images, given by discrete values (typically binary) on a regular grid (typically two-or three-dimensional). This field
has many applications, including algorithmic pattern recognition, which plays an important role in computer vision
(e.g., determining whether a robot-width corridor exists between two obstacles [15]) and remote sensing (e.g.,
computing the boundaries of a drainage basin from satellite data [16]). The fundamental concept in this field is that
of adjacency, the definition of which depends upon the lattice. Much work in this area has focused on algorithms
for the labeling of components [14], boundaries [17], and other features of digital images. Basic results include
consistent notions for connectedness [14], simple connectedness [18], a digital Jordan curve theorem [19], and
algorithms for the Euler characteristic [20,21] of digital sets.

Section 2 briefly reviews the results we first described in [13]. The fundamental step of that paper is to formulate
definitions of connectedness and disconnectedness at a resolutionε. We can then deduce the topological properties
of connectedness, total disconnectedness, and perfectness by examining the limiting behavior of the number,C(ε),
and size,D(ε), of ε-connected components of the set asε → 0. We characterize the limiting behavior of these two
quantities by a power law, and compute the corresponding disconnectedness and discreteness indices. In Section
3, we give a new algorithm based on theminimal spanning tree(MST) that implements these ideas numerically
for arbitrary finite point-set data. An important step is to determine a “cutoff” resolution,ρ, so that the computed
results are a good representation of the true set forε > ρ. When the underlying set is perfect,ρ is simply the
resolution at which the data first appears to have an isolated point. We show that the MST is an ideal data structure
for representingε-components of a finite point-set. Essentially, this is because the MST always joins two subsets
by the smallest possible edge.

The main purpose of this paper is to demonstrate the effectiveness of our techniques by applying them to a variety
of examples. We present data that exhibit different types of scaling in the number and size of theirε-components.
We also investigate the dependence of the cutoff resolutionρ on the number of data points and on the uniformity of
their distribution over the attractor. The first three examples are fractals generated by closely related iterated function
systems. Each has a distinct topology but all have the same Hausdorff dimension. We show that the disconnectedness
and discreteness indices classify the sets according to their topology. We next analyze five Cantor sets to demonstrate
the different types of scaling that can occur in the functionsC(ε) andD(ε) asε → 0. These examples lead us to
conjecture that Cantor sets with zero Lebesgue measure have disconnectedness index equal to their box-counting
dimension. Finally, we examine data from two dynamical systems. Our analysis of the Hénon attractor gives strong
support to the common intuitive description that it has Cantor set cross-sections. We find that two cantori from
symplectic sawtooth maps have subpolynomial growth of the number ofε-components, demonstrating yet another
type of scaling. We anticipate that our techniques will be of even greater utility in identifying the structure of sets
in higher dimensions where visualization is more difficult.

2. Review of theory

In [13], we reformulated the classical definition of connectedness in a way that relies on extrapolation, making it
possible to implement the ideas numerically. The basic approach is to look at the set with a finite resolutionε, see
how certain properties change asε → 0, and infer information about the topology.
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The standard definition is that a setX is connectedif it is in one piece, i.e., if there do not exist two closed disjoint
subsets,U andV with U ∪ V = X. When such subsets do exist, the set is disconnected. Given a subsetX of a
metric space, we say it isε-disconnectedif it can be written as the union of two sets that are separated by a distance
of at leastε, i.e., there are two closed subsets,U andV with U ∪ V = X and d(U, V ) ≡ inf x∈U,y∈V d(x, y) ≥ ε.
Otherwise,X is ε-connected. Our definition is equivalent to an early formulation of connectedness, due to Cantor
[22], which uses the concept of anε-chain: a finite sequence of pointsx0, . . . , xn that satisfy d(xi, xi+1) < ε for
i = 1, . . . , n. A setX is Cantor-connected if and only if given anyε > 0, for allx, y ∈ X, there is anε-chain with
x0 = x andxn = y. Cantor’s definition agrees with the now standard one only in the special case of compact metric
spaces. For example, the rational numbers are Cantor-connected but disconnected in the regular sense. Restricting
our attention to compact sets is not unreasonable, since we are primarily interested in sets that are well approximated
on a computer as finite point-sets.

The objects in which we are most interested are the connected components ofX. In ε-resolution terms, these are
defined as follows:A is anε-componentof X if A is ε-connected and d(A, X\A) ≥ ε. Given a resolution,ε, X
has a natural decomposition as the disjoint union of itsε-components. We can exploit this decomposition to deduce
topological properties of the set. For example, if the onlyε-component isX itself for all ε, then we can conclude
thatX is connected. We also know that at any fixed resolutionε, a compact set has a finite number ofε-components.
This motivates the introduction of a functionC(ε) that measures the number ofε-components at resolutionε. This
function is monotonic: ifε1 < ε2 thenC(ε1) ≥ C(ε2).

We can also deduce the topological properties of total disconnectedness and perfectness by looking at the size
of the ε-components. There are a number of ways to measure the size of a set; the quantity used depends on the
context. In [13] we used the diameter,1 since this is defined in any metric space. At a resolutionε, D(ε) represents
the set of diameter measurements of theε-components. For notational convenience, we writeD(ε) = maxD(ε)

for the function that describes how the largest diameter changes with resolution. A set istotally disconnectedif the
connected component of each point is only the point itself. So, a compact setX is totally disconnected if and only
if lim ε→0D(ε) = 0. Any finite set of points is totally disconnected; so are all Cantor sets.

Any compact set that is both totally disconnected and perfect is a Cantor set. Recall that a set isperfectif it is equal
to the set of its accumulation points. In other words, every point has arbitrarily small neighborhoods containing
infinitely many other points, so no point is isolated. Inε-resolution terms, a compact setX is perfect if and only if
minD(ε) > 0 for all ε > 0. Another way to determine whether or not a set is perfect is to look for isolated points.
These are straightforward to detect numerically, since a point is isolated at resolutionε if and only if its nearest
neighbor is at least distanceε away. The number of isolated points as a function of resolution,I (ε), must be zero
for all ε > 0 if the set is perfect.

Given the above results, it is clear that the limiting behavior ofC(ε) andD(ε) will tell us about the connectedness
properties of a set. In some situations of interest, e.g., Cantor sets, it is expected thatC(ε) → ∞ andD(ε) → 0
asε → 0. An effective way to evaluate this behavior is to assume an asymptotic form and compute appropriate
indices. We use a general power law: nearε = 0, C(ε) ∼ ε−γ andD(ε) ∼ εδ. The exponents may be found as the
following limits:

γ = lim inf
ε→0

logC(ε)

log(1/ε)
,

δ = lim inf
ε→0

logD(ε)

logε
.

1 Recall that the diameter of a setA is the largest distance between any two points in the set: diam(A) = supx,y∈A d(x, y).
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The component growth rate,γ , is called thedisconnectednessindex. A positive value ofγ implies that the set has
infinitely many components. We callδ thediscretenessindex. If δ is positive, the set must be totally disconnected.
The functionD(ε) relates the size of theε-components to the distance between them, soδ can be thought of as
measuring how sparse the set is. If the set is connected or has a finite number of components, thenγ andδ are both
zero.

For many of the Cantor set examples presented in Section 4, we find thatγ is approximately equal to the
box-counting dimension, dimB , and thatδ is close to one. This leads us to conjecture that

Conjecture 1. Cantor sets with zero Lebesgue measure haveγ = dimB andδ = 1.

We can prove this in the special case that the Cantor set is generated by an iterated function system of similarity
transformations. These results are the topic of a forthcoming paper.

3. Implementation

The type of data we want to analyze are finite sets of points in a finite dimensional metric space (usuallyR
n).

This is a more general setting than digital data, which are restricted to a predefined, finite grid, so we need a more
general implementation. Although many of the examples in Section 4 are attractors of iterated function systems,
our algorithm is also more general than those developed specifically for that context [23,24]. We are most interested
in the situation where the data represent an underlying infinite set, similar to the way floating point numbers in a
computer approximate the real numbers. This situation occurs naturally in the study of dynamical systems, where
a finite sequence of points (an orbit) on an attractor is used to represent the true attractor. Similar data sets arise in
time-series analysis when sample measurements are recorded from a continuous process. If the data are embedded
using time-delay techniques [1,2], the result is a finite point-set inRn. Knowing the topological and geometric
properties of this set assists qualitative understanding of the dynamics and such properties have been used in
mathematical modeling [7–9,25].

The theory outlined in Section 2 applies to arbitrary compact sets. Recall that compactness is the property that
any covering of the set by open subsets can also be accomplished by a finite number of those subsets. This makes it
possible to represent a compact set by a finite number of points. One way to do this is to take a covering of the set by
open balls, choose a finite subcover, and let the centers of the balls be the finite point-set approximation. Suppose each
point in the compact set,X, is within a maximum distanceρ/2 of some point in the approximating set,S. The original
set and its finite point-set approximation therefore exhibit essentially the same behavior ofC(ε), D(ε) andI (ε)

whenε > ρ. For example, if the original set,X, is connected and perfect, then examiningS with resolutionε > ρ

we should seeCS(ε) = 1, DS(ε) close to the diameter ofX, andIS(ε) = 0. Forε < ρ, S has many components
and the majority of these are isolated points. In general, we have the boundCS(ε − ρ) ≥ CX(ε) ≥ CS(ε + ρ) for
ε > ρ.

In practice, we are given only the finite point-set approximation and wish to determine the connectedness prop-
erties of the underlying set. To do this, we need to estimate the minimum resolution,ρ, from the point-set itself.
We can then attempt to deduce the limiting behavior ofC(ε) andD(ε) from the data withε > ρ. The ques-
tion that naturally arises is: how confident can we be that the limiting topology is that implied by the data for
ε > ρ? It is possible to construct examples that appear to be connected down to a given resolution, but are in fact
Cantor sets. Conversely, there are connected sets whose finite point-set approximations appear to be totally discon-
nected. Both these problems can be addressed to some extent by checking the effect onC(ε), D(ε) andI (ε) of
increasing the number of points approximating the underlying set. Ultimately, though, we are restricted by machine
precision.
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Fig. 1. A finite set of points and its minimal spanning tree. The weight of an edge is the Euclidean distance between the points it joins.

In order to computeC(ε), D(ε) andI (ε) numerically, we need an appropriate way to organize the finite point-set
data. The structure we use is a graph — the MST [26]. This choice was inspired by Yip’s [27] work on computer
recognition of orbit structures in two-dimensional area-preserving maps. Section 3.1 describes why the edge lengths
of the MST naturally define the resolutions at which one should see a change in the number of components. In fact,
the MST of a data set contains all the information we need about theε-components.

3.1. Minimal spanning trees

A graph is a structure consisting of a finite set of points calledverticesand a list of pairs of these points called
edges. A weighted graphhas a weight or cost assigned to each edge. A graph isconnectedif there is a sequence of
edges (apath) joining any point to any other point. When it contains no closed paths, a connected graph is called a
tree. Given a graph, aspanning treeis a subgraph that is a tree and contains all the vertices from the original graph.
For our purposes, the vertices are data points in a metric space (usuallyR

n), the edges are lines joining two points,
and the weight of an edge is just the metric distance between the two points joined by that edge.

The MST of a graph is a spanning tree of that graph that has minimal total weight. It is unique when all the
edge weights are distinct. For our application, the original graph has an edge between every pair of points, i.e., the
complete graph. The intuitive way to construct the MST from the complete graph of a set of points is to delete edges
as follows. Start with the longest edge (largest weight), and then remove successively shorter ones, provided that
doing so leaves the subgraph connected. The algorithm ceases when removing any edge would leave a disconnected
graph. An alternative constructive algorithm, due to Prim [28], is more readily implemented on a computer. The
initial subtree consists of any point, its nearest neighbor, and the edge between them. The subtree grows by adding
the point that has the shortest edge connecting it to the subtree. This step is repeated until all points are in the tree.
The cost of this algorithm is O(n2) wheren is the number of points in the set. It is also possible to construct the
MST from a special graph called the Delaunay triangulation. For sets in the plane, this results in an algorithm with
cost O(n logn) (see [26] for details).

The property of connecting closest points makes the MST a natural structure for our analysis. This is illustrated
by the data set and MST presented in Fig. 1. Notice that the MST bridges the “gap” between two subsets with the
shortest edge possible, organizing the point-set in a way that corresponds closely toε-connected components of the
set. The following results formalize this intuition.

First, we show that edge lengths in the MST have a close correspondence withε-connectedness and the
ε-components.

Lemma 2. If X is a finite set of points that isε-connected for allε ≥ ε0 > 0, then the longest edge in the MST has
lengthl < ε0.
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Conversely, if the MST of a finite set of points, X, has largest edge lengthl < ε0 , then X isε-connected for all
ε ≥ ε0.

Proof. Recall from Section 2 thatX is ε-connected if and only if there is anε-chain joining every pair of points in
X. This implies that in the complete graph over the points ofX, it is possible to move from one vertex to any other
along edges of length less thanε. Therefore, in the intuitive construction of the MST, all edges of length greater
thanε0 are removed, since they could not disconnect the graph. It follows that the MST ofX can have no edge
longer thanε0.

Conversely, the MST is a connected graph, so given any pointsx, y ∈ X, we can find anε0-chain: x0 =
x, . . . , xn = y, with d(xi, xi+1) < ε0. This implies thatX is ε-connected for allε ≥ ε0. �

The next result shows that the MST is a suitable structure for representingε-components. First we note that every
edge in a MST defines a partition ofX (the point-set) into two subsetsP andQ containing the points from the two
subtrees generated by removing the edge [29]. This results in the following lemma.

Lemma 3. Removing an edge from an MST generates two subgraphs, each of which is an MST of its points.

Suppose that we remove the longest edge, of lengthl, and that this edge length is unique.2 Then we are left
with two subsetsP andQ that areε-connected for someε < l. These subsets genuinely areε-components since
d(P, Q) = l > ε.

We now have a straightforward way to find the number ofε-components by counting edges of the MST. Clearly
C(ε) is just one more than the number of edges with lengths,l ≥ ε. Theε-components of the setX correspond
directly to the connected components of the subgraph that is generated by removing edges from the MST of lengths,
l ≥ ε. Also, the edge lengths of the MST automatically give the resolutions at which one should see a change in
the number of components.

3.2. Some practicalities

The MST, once constructed, holds all the information we need to deduce connectedness properties from
ε-components. The next task is to extract this information. Trees are frequently used in computation for orga-
nizing data effectively. While the MST is a tree, its root is arbitrary and little can be said in general about its
branching structure, so it does not lend itself to efficient searches. There is, however, a natural binary structure to
the MST, since each edge defines a partition of the MST into two components. This fact can be used to construct a
binary tree from the MST, which is then much faster to search.

The binary tree represents information about the MST in the following way. Nodes (vertices) of the binary tree
represent edges from the MST, ordered by length; the root is the longest edge. The two children of an edge node
are the longest edges of the two sub-MSTs generated by removing that edge. The leaves (nodes with no children)
of the binary tree represent the data points; the parent node of a leaf is the shortest edge incident to that point in the
MST. In essence, each edge node in the binary tree represents a connected component of the MST. Given a value
of ε, eachε-connected component is represented by an edge node with length less thanε, but whose parent has
length greater thanε. The points in anε-component can be found by listing the leaves “under” its representative
node. This binary tree can be built so that each edge node has information about the component it represents and
can therefore be searched more quickly than the MST, although it is not necessarily balanced.

As mentioned above, the number ofε-components,C(ε), is found by adding one to the number of edges that are
longer thanε. The diameters of theε-components are computed by listing the elements of anε-component and then

2 If there are two or more edges of lengthl, then the ideas follow through in the obvious way.
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finding the diameter of that set of points. Finding the diameter of a set ofn points in the plane is an order O(n logn)

algorithm, since the computations can be restricted to points lying on the boundary of the convex hull. For subsets
of higher-dimensional spaces, this restriction does not necessarily help and the algorithm we use is the brute-force
comparison of distances between all pairs of points, which is O(n2) [26].

Finally, we must address the problem of how to determine the finest appropriate resolution,ρ, as discussed at
the beginning of Section 3. To do this, we examine how the number of isolated points in theε-decomposition of
the setX varies with resolution, i.e., the functionI (ε). A point, x, is isolated at resolutionε if d(x, X\x) ≥ ε. In
terms of the MST, a point is isolated at resolutionε if all edges incident to it have length longer thanε. In all of the
examples below, the underlying sets are perfect, so the finite point-set approximation is “bad” at any resolution for
which there are isolated points. It follows that the resolution at which we start to see isolated points is one way to
estimateρ, i.e.,ρ = inf {ε : I (ε) = 0}. The validity of this approach is supported by the numerical evidence given
in Section 4; the data forC(ε) andD(ε) blur at the resolution at which isolated points are first detected.

4. Examples

In this section we present some examples that illustrate the behavior of the number ofε-components,C(ε),
the largest diameter,D(ε), and the number of isolated points,I (ε), for fractals with different topology. The goal
is to show that these quantities give useful information about the topology. The first examples are relatives of
the Sierpinski triangle. These sets are generated from a family of iterated function systems (IFS). The Hausdorff
dimension of each set is identical, even though they have different topological structure, as the disconnectedness
and discreteness indices highlight. For these fractals, we show that the cutoff resolution decreases when the number
of data points is increased, which is not surprising since more points sampled from an attractor constitute a better
approximation of the underlying set. We also vary the way in which the data cover the set and find that for a fixed
number of points the cutoff resolution is a minimum when the data is uniformly distributed. Again, this is exactly
what we expect, since isolated points appear at larger values ofε when points are not evenly spaced.

We next present a number of Cantor set examples to illustrate different types of scaling behavior inC(ε) and
D(ε). We observe that, for Cantor sets with zero Lebesgue measure, the computed value ofγ is approximately equal
to the dimension of the set. For a Cantor set with positive measure, though,γ and the dimension are significantly
different. Cantor sets and other fractal structures are frequently observed in dynamical systems. We presentC(ε) and
D(ε) results for some representative examples, including the Hénon attractor and “cantori” from four-dimensional
symplectic sawtooth maps. We investigate three cross-sections of the Hénon attractor, and present numerical evidence
that the sections are Cantor sets, as is widely believed. Finally, we show that the cantori exhibit logarithmic rather
than polynomial growth in the number of components, implying that even thoughC(ε) → ∞ asε → 0, γ = 0. In
all cases, we use the Euclidean metric.

4.1. Relatives of the Sierpinski triangle

The Sierpinski triangle relatives are attracting fixed sets of a family of iterated function systems

S = f [S] = f1[S] ∪ f2[S] ∪ f3[S].

In each case, the functionsfi are similarity transformations3 of the unit square with contraction ratio12, as illustrated
by the template in Fig. 2. The functions that generate the Sierpinski triangle, Fig. 3, are simple contractions composed

3 A similarity transformation,S, is an affine transformation that contracts or dilates distance uniformly, i.e., for allx andy, there is a positive
numberr such that|S(x) − S(y)| = r|x − y|.
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Fig. 2. Template for the iterated function system that generates the Sierpinski triangle relatives.

with a translation; the generators of the examples in Figs. 8 and 10 involve additional rotation or reflection symmetries
of the square. There are 232 different fractals in this family [30]; their topology ranges from simply connected to
totally disconnected to a class of examples with infinitely many connected components of nonzero diameter [13].
This range of topologies makes them ideal test cases for our techniques.

It is easy to generate a finite number of points on the attractor of an iterated function system. One way is to chose
an initial pointx0 in the domain of the IFS and then record its trajectory under the iterationxn+1 = fin(xn) setting
in = 1, 2 or 3 with probabilityp1, p2 andp3, respectively. Ifx0 is in the attractor then its entire orbit is in the
attractor; if not, the iterates converge to it. In the examples below we choosex0 = (0, 0) which is in each of the
attractors. Thus, the orbit can be viewed as a random sampling of the attractor by a finite number of points. When
p1 = p2 = p3 = 1

3 the data cover the fractal uniformly; if the probabilities are not equal the distribution of points
is nonuniform and their density approximates a multifractal measure.

4.1.1. The Sierpinski triangle
The generating functions for the Sierpinski triangle are

f1(x, y) = 1
2(x, y),

f2(x, y) = 1
2(x + 1, y),

f3(x, y) = 1
2(x, y + 1).

(1)

Fig. 3. (a) 104 points uniformly distributed on the Sierpinski triangle, (b) the corresponding MST, and (c) a close-up of the bottom right corner
of the MST.
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Fig. 4.C(ε), D(ε) andI (ε) for the Sierpinski triangle. The top row gives results for 104 uniformly distributed points on the fractal and the
bottom row for 105 points. All axes are logarithmic. The horizontal axis range is 10−5 < ε < 1. The solid lines representC(ε) andD(ε) for
ideal data; the dots are the computed values.

A finite point-set approximation to the triangle and the corresponding minimal spanning tree are shown in Fig. 3.
The underlying set is connected and perfect, so we expect to seeC(ε) = 1, D(ε) = √

2, andI (ε) = 0 for ε > ρ.
This is reflected by the calculations ofC(ε) andD(ε) for 104 and 105 point approximations to the triangle, as shown
in Fig. 4. We see that forε above a threshold value, the computed values ofC(ε) andD(ε) are in exact agreement
with our expectations. The point at whichC(ε) andD(ε) deviate from the ideal values is the value ofε at which the
number of isolated points,I (ε), becomes positive. Thisε value is, of course, the cutoff resolutionρ discussed in
Section 3.2. At finer resolutions, i.e.,ε < ρ, we see a sharp transition in the number of connected components from
one to the number of points in the set; the diameters show a correspondingly sharp decrease. Both these effects are
due to the narrow distribution of edge lengths of the MST. Clearly, the value ofρ depends on the number of points,
N , covering the set. For the 104 point approximation,ρ ≈ 0.008 and forN = 105, ρ ≈ 0.0022; We expect the
relationship to beρ ≈ 1/

√
N , since the data is homogeneously distributed on a subset ofR

2. This is supported by
the data in Fig. 5a. Here, we plot cutoff resolution versus the number of points for 103 ≤ N ≤ 105; the slope of the
least-squares fit line is−0.58.

The results discussed so far are for uniformly distributed data; we now look at nonuniformly distributed data.
As described earlier, we change the way an orbit covers the IFS attractor by choosing the functionsf1, f2, andf3

with different probabilities. To generate Fig. 6a, we setp1 = 0.05 andp2 = p3 = 0.475. This highly nonuniform
distribution of points induces perceptible changes in theC(ε), D(ε) andI (ε) data, Fig. 7, but the graphs remain
qualitatively similar to those in Fig. 4. The cutoff resolution is significantly larger:ρ ≈ 0.04 compared with 0.008
for the uniform distribution with the same number of points. The growth in the number ofε-components forε < ρ
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Fig. 5. (a) Cutoff resolution,ρ, as a function of the number of points, 103 ≤ N ≤ 105, covering the Sierpinski triangle for two values ofp1; (d)

marks data for the nonuniform distribution withp1 = 0.05; (N) marks data forp1 = 1
3 , i.e., a uniform distribution, and (b) cutoff resolution as

a function ofp1 for 104 data points on the Sierpinski triangle. The error bars are the standard deviation about the mean of 20 calculations ofρ

for each value ofp1.

is also less rapid than that for the uniform data. Both these changes are due to a greater spread in the edge lengths
of the MST. The geometry of the distribution is reflected in the graph ofD(ε); the densely covered diagonal means
D(ε) = √

2 for ε-values significantly less thanρ. We can lower the cutoff resolution by increasing the number of
data points but, as shown in Fig. 5a, the rate at whichρ decreases is nowρ ≈ N−0.23, significantly slower than that
for the uniform data.

Finally, the graph in Fig. 5b summarizes the data from a systematic study of the way cutoff resolution varies with
the distribution of the data. The measure of nonuniformity in the data isp1, the probability of choosingf1; we set
p2 = p3 = 1

2(1 − p1). Twenty data sets of 104 points were generated for values ofp1 in the range 0.05–0.9. The
cutoff resolution reaches a minimum at aboutp1 = 1

3, i.e., for uniformly distributed data, as we expect. The other
feature to note is that the standard deviation also depends on the distribution, and is greatest for highly nonuniform
data. This is because when one function in the IFS is chosen with very low probability, there is greater variability
in the way an orbit fills out the attractor; this in turn leads to greater variation in the edge lengths of the MST.

We conclude that for moderate amounts of nonuniformity (e.g., 0.2 ≤ p1 ≤ 0.5) the cutoff resolution is at a
level comparable to that for perfectly uniform data and that our techniques are not adversely affected. For highly
nonuniform coverings of an attractor, significantly more data points are needed to reach the same cutoff resolutions
as for uniform data. The only effect this has is to generate inconclusive, rather than incorrect, diagnoses of the
topology of the underlying set.

4.1.2. A Cantor set relative
Fig. 8 shows the attractor for the iterated function system generated by

f1(x, y) = 1
2(−y + 1, x),

f2(x, y) = 1
2(y + 1, x),

f3(x, y) = 1
2(y, −x + 2).

(2)

This fractal is a Cantor set, so we should seeC(ε) → ∞ andD(ε) → 0 asε → 0. As derived in [13], the functional
relationships are
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Fig. 6. (a) 104 points on the Sierpinski triangle generated by settingp1 = 0.05 andp2 = p3 = 0.475, and (b) the corresponding MST.

εn = ε0

2n
, C(εn) =

{
3n + 2 · 3(n−1)/2 if n is odd,

3n + 3n/2 if n is even,
D(εn) = D0

2n−1
for n ≥ 3.

These expressions giveγ = log 3/log 2 ≈ 1.585 andδ = 1.
We can see in Fig. 9 that the numerical calculations agree very well with the theory down to the cutoff resolution

ρ ≈ 0.003. Whenε < ρ, the computed values ofC(ε) are larger than the predicted values because isolated
points are counted as extra components. For still smaller values ofε, every point is resolved as an isolated point
and theC(ε) curve levels off. The meaningful portion of the data — between these extremes — shows a staircase
periodicity about a linear trend. The slope of the linear trend is an estimate ofγ . We determineγ numerically,
using a least-squares fit, to be 1.41± 0.05. This is lower than the true limiting value given above (1.58) because of
second-order effects at the relatively large values ofε for which theC(ε) data are valid. We estimate the slope of
the true curve over the same range to be 1.48, which is closer to the value computed above.

The numerically calculated values ofD(ε) also show a staircase periodicity about a linear trend. The data have
a systematic bias for the jumps at slightly larger values ofε than predicted by theory. This is due to finite data

Fig. 7.C(ε), D(ε) andI (ε) for the nonuniformly distributed data set in Fig. 6. All axes are logarithmic. The horizontal axis range is 10−5 < ε < 1.
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Fig. 8. (a) 104 points on the Cantor set generated by (2), and (b) the corresponding MST.

effects: the points are not filling out the corners, so edges in the MST are a little longer than the “true” gaps and
the diameters of theε-components are a little less. The data points fall below the true curve whenε < ρ because
interpoint distances are comparable to the intercomponent distances at these resolutions. SinceD(ε) measures the
largest diameter, the flat tails of theD(ε) data in Fig. 9 are due to the presence of at least one triple/pair combination
within a distanceε of each other, whilst almost all the other points have become isolated. The slope of the linear
trend ofD(ε) is an estimate ofδ. We estimate the slope over the rangeρ < ε < 0.06 because the first few steps
are shallower than the limiting trend. Using a least-squares fit, again, we calculateδ to be 1.00± 0.03, as predicted
above.

The cutoff resolution for data from this IFS varies with the number of data points and their distribution in exactly
the same manner as the data from the Sierpinski triangle. For moderately nonuniform data, estimates ofγ andδ

are the same as those given above. When the data is very unevenly distributedρ increases significantly and there
may be too small a range ofε to make an estimate of the slope. Again, this leads to inconclusive results rather than
incorrect ones.

Fig. 9.C(ε), D(ε) andI (ε) for 105 points uniformly distributed over the Cantor set triangle relative. All axes are logarithmic. The horizontal
axis range is 10−5 < ε < 1. The solid lines representC(ε) andD(ε) for ideal data; the dots are the computed values.
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Fig. 10. (a) 104 points on the fractal generated by (3), and (b) the corresponding MST.

4.1.3. A relative with infinitely many connected components
A third triangle relative, shown in Fig. 10, is generated by the following similarities:

f1(x, y) = 1
2(x, y),

f2(x, y) = 1
2(y + 1, −x + 1),

f3(x, y) = 1
2(x, y + 1).

(3)

The attractor for this system has infinitely many connected components, yet is not totally disconnected because the
components have positive diameters. We, therefore, expect to seeC(ε) → ∞ andD(ε) → 1 asε → 0. As we
derive in [13]

εn = ε0

2n
, C(εn) = 1

2(3n+1 + 1), D(εn) → 1.

The graphs ofC(ε) andD(ε) in Fig. 11 reflect this; the former has characteristics similar to those of the Cantor
set above, butD(ε) looks like that for the Sierpinski triangle. The slope of theC(ε) staircase is estimated from the

Fig. 11.C(ε), D(ε) andI (ε) for a triangle relative with infinitely many components. Again, the data is for 105 points uniformly distributed on
the set. All axes are logarithmic. The horizontal axis is 10−5 < ε < 1. The solid line representsC(ε) andD(ε) for ideal data; the dots are the
computed values.
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Table 1
This table summarizes values ofγ andδ for Cantor subsets of the planea

Data set dimB γ δ

Fig. 12a 1.262 1.23± 0.02 0.96± 0.04
Fig. 12b 1.126 1.11± 0.02 1.00± 0.03
Fig. 14a 1.131 1.13± 0.01 0.98± 0.03
Fig. 14b 2 0.80± 0.05 0.46± 0.05
Fig. 16 1.21 < dimB < 1.34 1.36± 0.03 0.95± 0.05

aThe numbers are estimated using a least-squares linear fit to logarithmic plots ofC(ε) and D(ε), respectively; the error margins are
estimated by varying the scaling range; the second column gives the box-counting dimension, dimB , for each set; these numbers are computed
using formulas from Falconer [32].

data for a 105 point approximation, giving a value ofγ = 1.55± 0.03. This is in very close agreement with the
theoretical value ofγ = log 3/log 2 ≈ 1.585.

4.2. Cantor sets in the plane

One of our objectives is to use our techniques to identify and characterize phase space structures in dynamical
systems. Cantor sets are often present in chaotic dynamical systems, so it is useful to examine some simple Cantor
set examples to gain a better understanding of the different types of scaling that can occur in theC(ε) andD(ε)

graphs. In Figs. 12, 14 and 16, we show five Cantor sets in the plane. In each case, the orbit has 50 000 points. Four
of these have zero Lebesgue measure and one (Fig. 14b) has positive measure, so it is termed a fat Cantor set (this
is analogous to the term “fat fractal” for fractals with positive measure [31]). All are attractors of iterated function
systems of the form

S = f [S] = f1[S] ∪ f2[S] ∪ f3[S] ∪ f4[S].

The generating functions,fi , become increasingly complex in this series of examples. The three simplest involve
only affine transformations and another uses conformal functions; the functions that generate the fat Cantor set
cannot be written in closed form. The geometric structure of each set is reflected in the type of staircase seen in
the graphs ofC(ε) andD(ε). For the four examples with zero Lebesgue measure, we expect to seeγ = dimB , the
box-counting dimension; this is supported by our results, summarized in Table 1. For the Cantor set with positive
measure, the value ofγ is significantly different from the dimension. We again observe, for all of the examples,
that the cutoff resolution,ρ, is well approximated by theε-value where the number of isolated points ceases to be
zero. Again, this is because all of the underlying sets are perfect.

We start with a simple example where eachfi is a similarity transformation with contraction ratio13, as shown
in Fig. 12a. The numerical calculations ofC(ε), D(ε), andI (ε) are presented in the top row of Fig. 13. These
graphs show staircase scaling behavior similar to the triangle relative Cantor set presented in Section 4; this makes
sense because both are generated by iterated function systems of similarity transformations. For this example, the
jumps inC(ε) andD(ε) are atεn = 1/3n; because there are four self-similar copies at one-third the size, we see
C(εn) = 4n andD(εn) = 1/3n, which gives the theoretically determined limits ofγ = log 4/log 3 ≈ 1.262 and
δ = 1. This is in close agreement with our numerical estimate ofγ = 1.23± 0.05 andδ = 0.97± 0.02.

The second example, Fig. 12b, is also generated by similarities. This time, the lower two have a contraction
ratio of 1

3 and the upper two have a ratio of1
4. As can be seen from the second row of Fig. 13, this leads to a more

complicated staircase pattern in theC(ε) andD(ε) graphs. Jumps in these graphs occur at values ofε corresponding
to edge lengths in the MST. The structure from the IFS means these edge lengths are of the forml(1

3)m(1
4)n, for all
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Fig. 12. Cantor sets generated by iterated function systems of four similarity transformations. Both sets have 50 000 points: (a) similarities with
contraction ratio1

3 , and (b) the upper two similarities have ratio1
4 and the lower two have ratio13 .

integersm andn, wherel is one of the two longest edges. Values ofγ andδ, presented in Table 1, are again very
close to the expected values.

To generate the set in Fig. 14a, more general affine transformations are used, each contracting by1
3 horizontally

and 1
4 vertically. The corresponding graphs ofC(ε) andD(ε) in Fig. 15 show the now familiar staircase scaling

Fig. 13.C(ε), D(ε) andI (ε) for the Cantor sets in Fig. 12. The top row is data for Fig. 12a; the second row is for Fig. 12b. All axes are
logarithmic. The horizontal axis range is 10−5 < ε < 1. The solid lines representC(ε) andD(ε) for ideal data; the dots are the computed values.
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Fig. 14. Two Cantor sets with largest gaps of1
2 and 1

3: (a) a set generated by an IFS of four affine transformations with horizontal contraction

of 1
3 and vertical contraction of14 , and (b) a fat Cantor set, generated as the cross product of two Cantor sets of positive measure in the real line.

pattern. Compared to the second Cantor set example, the larger steps in these graphs reflect the more regular
geometric structure of the set.

The fourth example is a Cantor set with positive Lebesgue measure and therefore a dimension of two. It is possible
to represent this set as the attractor of an iterated function system of the general form above. The functions involved,

Fig. 15.C(ε), D(ε) andI (ε) for the 2D Cantor sets in Fig. 14. The top row is data for Fig. 14a; the second row for Fig. 14b, the fat Cantor set.
All axes are logarithmic. The horizontal axis range is 10−5 < ε < 1.



292 V. Robins et al. / Physica D 139 (2000) 276–300

Fig. 16. A Cantor set generated by an IFS consisting of four nonlinear affine transformations, each mapping the unit circle into a circle of radius
1
3 : (a) the data set with circle boundaries, and (b) a close-up of one of the four clusters.

however, are limits of piecewise linear approximations and it is not possible to write them in closed form. Instead,
we generate the set as the cross product of two positive measure Cantor subsets of the unit interval. These sets
are constructed as follows: at each level,n ≥ 1, 2n−1 gaps of lengtha/2pn−1 are removed from the center of an
interval remaining from leveln − 1. The sum of the gap lengths isa/(2p−1 − 1); choosingp anda to make this
length less than one ensures the Cantor set has positive measure. It is easy to recursively generate the end points
of the gaps (down to some level) and these points are used as the finite point-set approximation. For the set in
Fig. 14b, we seta = 2

3 andp = 2 for the horizontal cross-section, anda = 2, p = 3 for the vertical one. The
behavior ofC(ε) andD(ε), shown in the bottom row of Fig. 15, is not unlike that of the previous example. The
slopes are significantly shallower, however, because the gaps are decreasing at a faster rate than the component
diameters, givingδ ≈ 0.46. The component growth rate,γ , is approximately 0.80, which is clearly distinct from
the box-counting (and Hausdorff) dimension of two.

The final IFS example uses nonlinear, conformal transformations. A function,F , is conformal if its derivative
matrix at each point, DF(x) is a similarity transformation. For the set illustrated in Fig. 16, the functions are

Fig. 17.C(ε), D(ε) andI (ε) for the nonlinear Cantor set of Fig. 16. All axes are logarithmic. The horizontal axis range is 10−5 < ε < 1.
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Fig. 18. An orbit on the H́enon attractor.

of the formfk(z) = 1
3z2 + ck, wherez = x + iy, and the translations,ck for k = 1, . . . , 4, take the values

{±1
2, ±1

2i}. Notice that although we choosefi with equal probability, the nonlinearity introduces a nonuniformity
to the distribution of points over the Cantor set. The cutoff resolutionρ ≈ 5 × 10−4 is nevertheless comparable
to the previous examples with uniformly distributed data. Scaling in the graphs ofC(ε) andD(ε) occurs in two
distinctε intervals, see Fig. 17. For 0.005< ε < 1, there are three shallow steps reflecting the large-scale structure
that is visible in Fig. 16a. The second portion of the data, forρ < ε < 0.005, has a steeper slope, corresponding
to the limiting small-scale structure of the set. The values ofγ andδ given in Table 1 are slopes of theC(ε) and
D(ε) over the intervalρ < ε < 0.005. We find, as for the previous zero-measure Cantor sets, thatγ is close to the
box-counting dimension andδ ≈ 1.

4.3. Examples from dynamical systems

Our last two examples are Cantor sets from iterated maps.

Fig. 19.C(ε), D(ε) andI (ε) data for two orbits on the H́enon attractor. The crosses(+) represent calculations for the orbit of 104 iterates and
the circles(s) are for an orbit with 5× 104 points. All axes are logarithmic. The horizontal axis range is 10−5 < ε < 1.
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Fig. 20. (a) A close-up of the H́enon attractor. The dark spots are points in the three cross-sections considered in the text: slices at
x = 0.302435, x = 0.5 andy = 0, and (b) a small part of the slice atx = 0.302435,y = 0.22 that shows the folding of the attractor.
The pairs of vertical lines are the boundaries of the different subslices of widths 2× 10−5, 2 × 10−6 and 2× 10−7.

4.3.1. The Hénon attractor
Fig. 18 shows the well-known Hénon attractor, generated by iterating the map

x̃ = y + 1 − ax2, ỹ = bx, (4)

with parameter valuesa = 1.4 andb = 0.3.
This attractor is the closure of the unstable manifold of a fixed point [33]. It follows that the set has a topo-

logical dimension of one and must be connected. This is exactly what theC(ε), D(ε) and I (ε) data in
Fig. 19 reflects. The attractor has fractal structure nonetheless, and is often described as having a Cantor set
cross-section [33]. To confirm this intuition, in Fig. 21 we presentC(ε), D(ε) and I (ε) data for thin slices
taken through the attractor at three different places:x = 0.302435, x = 0.5 andy = 0 (the dark spots in
Fig. 20a).

A common technique for visualizing the structure of attractors fromflows is the Poincaré section. A surface
of codimension one is chosen and points on the section are recorded whenever the trajectory pierces the surface.
The Hénon attractor is generated by iterating a map, so it is not possible to find many points on a given section.
Instead, the sections are generated by recording points that fall within an interval of the given section coordinate.
This means that the slices have a finite width and the data are still two-dimensional. To be confident that the
observed scaling behavior is approximating that of a one-dimensional Cantor set, we computeC(ε), D(ε) and
I (ε) for four successively narrower slices at each cross-section. The thinnest slice in each case has a width of
2 × 10−7.

The section atx = 0.302435 is interesting because it cuts through a fold in the attractor. The folding of the
Hénon attractor is the source of its nonhyperbolicity and complexity. A close-up of the fold is shown in Fig. 20b.
This figure shows that slices of different widths taken at thisx value capture different folding structure. This is
reflected in theC(ε) data in Fig. 21. The data for different slices atx = 0.302435 does not coincide exactly for
ε > ρ, as it does for the other two sections atx = 0.5 andy = 0, which show no folding at these resolutions.
Note that we can reverse this observation and use it to detect cross-sections that touch a fold. The folding of the
attractor presents a slight problem for the description of the set as having Cantor set cross-section. If a genuine
one-dimensional cross-section touches a fold, then the point of tangency must be an isolated point. It follows that the
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Fig. 21. Top row:C(ε), middle:D(ε), and bottom:I (ε) data for three sections of the Hénon attractor. The circles(s) represent calculations for
a section of width 2× 10−4, the crosses (+) for one of width 2× 10−5, the squares(h) of width 2× 10−6, and the stars(∗) width 2× 10−7.
All axes are logarithmic. The horizontal axis range is 10−8 < ε < 1.

cross-section can therefore not be a Cantor set; though of course, removing any fold-tangency points does leave a
Cantor set.

The sections atx = 0.5 andy = 0 have simpler structure. The graphs ofD(ε) show the now familiar staircase
structure of a Cantor set. The flat segments in each graph ofD(ε) are due to the finite width of each slice, making
the data appear like a Cantor set of lines. Values ofγ andδ are calculated from theC(ε) andD(ε) data for the
thinnest slice at each section. The results are summarized in Table 2. The multifractal nature of the Hénon attractor
[34] means that we expect to see the value of the dimension vary for different cross-sections. For the three examples
given here, though, the variation is not significant.

The above results give strong numerical support for the common belief that cross-sections of the Hénon attractor
are Cantor sets. The box-counting dimension of the Hénon attractor is estimated to be about 1.27 [34,35]. Results
about the dimension of intersections of sets [32] imply that the dimension of a cross-section through the Hénon
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Table 2
Values ofγ andδ for the three sections of the Hénon attractor shown in Fig. 20

Section γ δ

x = 0.302435 0.25± 0.01 0.9 ± 0.1
x = 0.5 0.26± 0.01 0.85± 0.04
y = 0 0.27± 0.01 0.88± 0.02

attractor should be 1.27 − 1 = 0.27. The values ofγ given in Table 2 are in close agreement with this value,
providing further support for our conjecture that Cantor sets of zero-measure haveγ equal to the box-counting
dimension.

4.3.2. Cantori
The final set of examples we examine in this paper are orbits from symplectic sawtooth maps. A cantorus is an

invariant set of a symplectic mapping that is semi-conjugate to an incommensurate rotation, and is topologically a
Cantor set. It is known that close enough to an “anti-integrable” limit, symplectic maps have cantori for all such
rotations [36]. In the case of nearly-integrable area-preserving twist maps, cantori arise from the destruction of
invariant circles, but it is not known, however, if this always occurs in higher dimensions. Thus, it is useful to
develop numerical techniques that can distinguish the topological properties of such sets.

A simple model for which cantori are analytically computable is the following piecewise linear map, called a
sawtooth map:

p̃ = p + ∇V (x), x̃ = x + p̃ mod 1.

Herex ∈ T2 andp ∈ R2 andV = 1
2xtAx is a quadratic potential. Choosing an incommensurate pair of irrational

rotation numbers, e.g.,ω = 1
2((

√
5− 1),

√
2), we can find an orbit analytically by looking for the semi-conjugacy,

xt = X(θ + ωt). In Fig. 22, we show the projection of the cantorus onto the configuration plane for two choices of
ω: for Fig. 22a,ω = 1

2((
√

5 − 1),
√

2), and for Fig. 22b,ω = (τ−1, τ−2), whereτ is the real root ofτ3 − τ − 1.
In both cases, the matrix for the quadratic form is

Fig. 22. Two examples of cantori generated by symplectic sawtooth maps. Each orbit has 104 points.
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Fig. 23.C(ε), D(ε) andI (ε) data for the two cantori: (top row) data for the cantorus in Fig. 22a, and (bottom row) data for the cantorus in Fig.
22b. All axes are logarithmic. The horizontal axis range is 10−15 < ε < 1.

A ≈
(

1.9152 −2.0358

0.5214 0.0847

)
.

The graphs ofD(ε) in Fig. 23 are similar to those for previous Cantor sets. These graphs tell us that the
cantori are totally disconnected, becauseD(ε) → 0. Again, we estimateδ to be very close to one: for the
cantorus of Fig. 22aδ = 1.09 ± 0.05; for that of Fig. 22bδ = 1.01 ± 0.02. The graphs ofC(ε),

Fig. 24. C(ε) versus log(ε) for the two cantori of Fig. 22a and 22b, respectively. All axes are logarithmic. The horizontal range is
−20 < log(ε) < −0.1.
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however, exhibit very different behavior from that of the other Cantor set examples. There is no linear scal-
ing region from which to determineγ , and this suggests that our assumption thatC(ε) ∼ ε−γ does not hold
here. Since the underlying sets are Cantor sets, we must still seeC(ε) → ∞ as ε → 0, but the growth rate
is possibly logarithmic, rather than polynomial, inε. To test this hypothesis, we plotC(ε) versus log(ε) on
logarithmic axes in Fig. 24. The observed linear relationship tells us thatC(ε) ∼ (logε)−ν nearε = 0. We
estimate the value ofν using a least-squares fit of the slope of the line and find thatν = 2.30 ± 0.05 for
both cases. This also implies thatγ = 0. A result due to Fathi [37] implies that these cantori have Haus-
dorff dimension equal to zero; so again we see thatγ and the dimension are equal for a zero-measure Cantor
set.

5. Conclusions

Our results demonstrate that the minimal spanning tree of a finite set of points can provide accurate information
about the topology of the underlying set, down to a numerically computable resolutionρ > 0. In particular, we
are able to identify sets that are connected, totally disconnected, or have infinitely many connected components
with nonzero diameter. Confidence in the extrapolation can be increased by sampling more points in order to get a
better approximation to the underlying set, but of course we are still ultimately restricted by the machine precision.
Connected sets have disconnectedness indexγ = 0, and discreteness indexδ = 0. We conjecture that Cantor
sets with zero Lebesgue measure haveγ equal to the box-counting dimension andδ = 1. There are some results
in this direction for subsets of the real line [38] and for Cantor sets generated by iterated function systems [39].
The fat Cantor set example shows thatγ and dimension are not the same when the set has positive Lebesgue
measure.

From the dynamical systems perspective, our techniques allow a quantitative analysis of the topology of attractors
and other structures in phase space. Our analysis of some sections of the Hénon attractor provides strong evidence
for the intuition that they have Cantor set structure. The cantori of Section 4.3 have subpolynomial growth in the
number of components, i.e.,γ = 0, even though they are Cantor sets. We resolved this problem by showing that
the number of components grew logarithmically.

Most of the examples in this paper have points fairly evenly distributed over the underlying set. However,
it is often the case that orbits cover an attractor in a highly nonuniform way. Previous work on characterizing
fractals has dealt with this by introducing a concept of dimension for measures, and developing a theory of mul-
tifractals [38]. The results of Section 4.1 show that our techniques are most effective for uniformly distributed
data because for a fixed number of data points, the cutoff resolution,ρ, is minimal when the points are evenly
spread over the attractor. Our techniques still give valid results for highly nonuniform data; the difference is that
ρ may be too high in these cases to make strong statements about the topology of the underlying set. It may
be possible to weight the edges of the MST by the density of the data distribution and thereby lowerρ in these
situations.

A natural question that arises from studying the Sierpinski triangle relatives is how to distinguish between
simply connected sets and ones with holes. This involves reformulating concepts from homology theory by in-
troducing a resolution parameter, similar to the way we treat the definition of connectedness. There are already
a number of algorithms for computing homological invariants, such as Betti numbers, from data [9,40,41]. We
are currently investigating ways to formalize the relationship between the homology of a set and the homology
of a finite point-set approximation to it. The ability to characterize the connectedness properties of a set from
finite data will give a deeper understanding of the structure of attractors, and therefore assist the modeling of the
dynamics.
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