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HAMILTONIAN SYSTEMS
A system of 2n, first order, ordinary differential
equations

ż = J∇H(z, t), J =
(

0 I

−I 0

)
(1)

is a Hamiltonian system with n degrees of freedom.
(When this system is non-autonomous, it has n + 1/2
degrees of freedom.) Here H is the Hamiltonian, a
smooth scalar function of the extended phase space
variables z and time t , the 2n×2n matrix J is called the
“Poisson matrix”, and I is the n×n identity matrix. The
equations naturally split into two sets of n equations for
canonically conjugate variables, z = (q, p), as follows.

q̇ = ∂H/∂p, ṗ = −∂H/∂q .

Here the n coordinates q represent the configuration
variables of the system (positions of the component
parts) and their canonically conjugate momenta p

represent the impetus associated with movement.
These equations generalize Newton’s third law:
F = ma = dp/dt , to systems (like particles in magnetic
fields, or motion in non-inertial reference frames)
where the momentum is not simply mass times velocity.
The Hamiltonian usually represents the total energy of
the system; thus if H(q, p) does not depend explicitly
upon t, then its value is invariant, and Equations (1)
are a conservative system. More generally, however,
Hamiltonian systems need not be conservative.

William Rowan Hamilton first gave this reformula-
tion of Lagrangian dynamics in 1834 (Hamilton, 1835).
However, Hamiltonian dynamics is much more than
just a reformulation. It leads, for example, to Poincaré’s
geometrical insight that gave rise to symplectic geom-
etry, and it provides a compact notation in which the

concept of integrability is most naturally expressed
and in which perturbation theory can be efficiently
carried out. Moreover, nearly integrable Hamiltonian
systems exhibit a remarkable stability expressed by the
famous results of Kolmogorov–Arnold–Moser (KAM)
theory and also Nekhoroshev theory. The Hamiltonian
formulation also provides the foundation of both
statistical and quantum mechanics.

Importantly, virtually all of the dynamical laws
of physics—from the motion of a point particle,
to the interaction of complex quantum fields—have
a formulation based on Equations 1. For example,
frictionless mechanical systems are described by a
Hamiltonian H(q, p) = K(p) + V (q), where K is the
kinetic energy (which is often quadratic in p), and V

is the potential energy. For example, an ideal planar
pendulum consists of a point particle of massm attached
to a massless rigid rod of length L whose other end is
attached to a frictionless pivot. The most convenient
configuration variable for the pendulum is q = θ , the
angle of the rod from the vertical. The gravitational
potential energy of the system is then V = −mgL cos θ ,
and its kinetic energy is K = p2/(2mL2), where p is
the angular momentum about the pivot. For this case
Equations (1) become

θ̇ = ∂H

∂p
= p

mL2 , ṗ = −∂H

∂q
= −mgL sin θ. (2)

The point (0, 0) is a stable (elliptic) equilibrium
corresponding to the pendulum hanging down, at rest.
The point (±π, 0) is also an equilibrium but is an
unstable (saddle) point. The unstable eigenvector of
the saddle is the beginning of the unstable manifold,
W u, a trajectory that is backwards asymptotic to
the saddle. By energy conservation, the unstable
manifold corresponds to a branch of the energy contour
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E = mgL, which again joins the saddle point (after
the pendulum has undergone one full rotation). Thus,
this trajectory is forward asymptotic to the saddle as
well, that is, it lies on the stable manifold, W s, of the
saddle. Orbits of this kind are called “homoclinic”.
In this case the homoclinic orbit separates the
trajectories oscillating about the elliptic equilibrium
from those in which the pendulum undergoes complete
rotations, thus it is called a separatrix. Orbits near
the elliptic equilibrium oscillate with the frequency
of the linearized, harmonic oscillator, ω = √

g/L. The
frequency of oscillation decreases monotonically as the
amplitude increases, approaching zero logarithmically
at the separatrix. The frequency of rotation of the
solution grows again from zero as the energy is further
increased.

Canonical Structure

The geometrical structure of Hamiltonian systems
arises from the preservation of the loop action, defined
by

A[γ ] =
∮

γ

p dq − H dt, (3)

where γ is any closed loop in (q, p, t)-space. A
consequence of Equations (1) is that if each point on a
loop γ0 is evolved with the flow to obtain a new loop
γt , then A[γ0] = A[γt ]: the loop action is known as the
Poincaré invariant.

The Hamiltonian form of Equations (1) is not
preserved under an arbitrary coordinate transformation
(unlike the Euler–Lagrange equations for a Lagrangian
system). A canonical transformation (q, p) → (q ′, p′)
preserves the form of the Equations (1). Canonical
transformations can be obtained by requiring that the
Poincaré invariant of Equation (3) be the same in the
new coordinate system, or locally that(

p′ dq ′ − H ′ dt
) − (p dq − H dt) = dF

is the total differential of a function F . If F is
represented as a function of a selection of half of
the variables (q, p) and the complementary half of
(q ′, p′), it is a “generating” function for the canonical
transformation. For example, a function F(q, q ′, t)
implicitly generates a canonical transformation through

p = −∂F

∂q
, p′ = ∂F

∂q ′ ,

H ′(q ′, p′, t) = H(q, p, t) − ∂F

∂t
. (4)

In order that this transformation be well defined, the
first equation must be inverted to find q ′(q, p); this

requires that the matrix ∂2F/∂q∂q ′ be nonsingular.
An autonomous canonical transformation is also called
a “symplectic map”. Canonical transformations are
often employed to simplify the equations of motion.
For example, Hamilton’s equations are especially
simple if the new Hamiltonian is a function of only
the momentum variables, H ′(p′). If we can find a
transformation to such a coordinate system then the
system is said to be integrable. In general, such
transformations do not exist; one of the consequences
is chaotic motion.

Integrability

Loosely speaking, a set of differential equations is
integrable if it can be explicitly solved for arbitrary
initial conditions (Zakharov, 1991). The explicit
solution, when inverted, yields the initial conditions
as invariant functions along the orbits of a system—
the initial conditions are constants of motion. A
Hamiltonian H(q, p) is said to be Liouville integrable
if it can be transformed to a canonical coordinate
system in which it depends only on new momenta.
When the energy surfaces are compact and the new
momenta are everywhere independent, Arnold showed
that it is always possible to choose the momentum
variables so that their conjugate configuration variables
are periodic angles ranging from 0 to 2� (Arnold, 1989).
These coordinates are called “action-angle variables”,
denoted (θ,J ).

As the Hamiltonian is a function only of the
actions, H(J ), Equation (1) becomes J̇ = 0, and
θ̇ = �(J ) = ∂H/∂J . A system is anharmonic when
the frequency vector � has a nontrivial dependence on
J . Thus for an integrable system, motion occurs on the
n-dimensional tori J = constant. Orbits helically wind
around the torus with frequencies � that depend upon
the torus chosen. When the frequency is nonresonant
(there is no integer vector m for which m ·� = 0), then
the motion is dense on the torus.

Any one degree-of-freedom, autonomous Hamilto-
nian system is locally integrable. A Hamiltonian with
more than one degree of freedom, such as pendulum
with an oscillating support, is typically not integrable.
Systems that are separable into non-interacting parts
are integrable, and there are also a number of classi-
cal integrable systems with arbitrarily many degrees of
freedom. These include the elliptical billiard, the rigid
body in free space, the Neumann problem of the mo-
tion of a particle on a sphere in a quadratic potential, the
Toda lattice, and the Calogero–Moser lattice (Arnold,
1988).
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Hamiltonian Chaos

The problem of understanding the motion of a slightly
perturbed integrable system originated with the desire
to understand the motion of the planets. The Kepler
problem corresponding to the gravitational interaction
of two spherical bodies is integrable; however, once
other effects (such as the mutual forces among planets)
are included, there appear to be no general, explicit
solutions. Poincaré in particular addressed the question
of the stability of the solar system, finally realizing
that the convergence of perturbation series for the
solutions could not be guaranteed, and discovering
the phenomenon of transverse homoclinic intersections
that is a harbinger of chaos (Poincaré, 1892).

Consider the problem

H(θ,J ) = H0(J ) + εH1(θ,J ) + · · · ,
where the perturbation H1 depends periodically on the
angles, and can be expanded in a Fourier series. When
�(J ) is nonresonant, a formal sequence of canonical
transformations can be constructed to find a set of
coordinates in which H is independent of the angle.
The problem is the occurrence of denominators in
the coefficients proportional to resonance conditions
m · �(J ) for integer vectors m. Even for actions
where the frequencies are incommensurate, it is always
possible to make m·�(J ) arbitrarily small by choosing
large enough integers m. Thus, a priori bounds on the
convergence fail. This is called the “problem of small
denominators”.

Chirikov realized that small denominators signal the
creation of topologically distinct regions of motion
(Chirikov, 1979; MacKay & Meiss, 1987). Near a
typical resonance, one can use averaging methods to
approximate the motion by an integrable pendulum-
like Hamiltonian, effectively discarding all of the terms
in H1 except for those that are commensurate with
the resonance, that is, the Fourier modes Hm(J ) with
m·� = 0. Thus, orbits near to a resonance are trapped in
an effective potential well. The domain of the trapped
motion has the width in action of the corresponding
pendulum separatrix; it is typically proportional to the
square root of the mth Fourier amplitude of H1. If
we can treat the resonances independently, then each
gives rise to a corresponding separatrix. However, as the
perturbation amplitude grows, this approximation must
break down as it predicts the overlap of neighboring
separatrices. In 1959, Chirikov proposed this resonance
overlap condition as an estimate of the onset of global
chaos. Renormalization theory gives a more precise
criterion (See Standard map).

This picture, together with the fact that rational
numbers are dense, leads to the expectation that none of
the invariant tori of an integrable system persist when

it is perturbed with an arbitrarily small perturbation.
Surprisingly, the Fermi–Pasta–Ulam computational
experiment in 1955 (Fermi et al., 1965; Weissert,
1997) failed to find this behavior. Indeed, KAM theory,
initiated by Andrei Kolmogorov in the 1950s and
developed in the 1960s by Vladimir Arnold and Jürgen
Moser, proves persistence of most of the invariant tori
(de la Llave, 2001; Pöschel, 2001). This holds when the
perturbation is small enough, provided that the system
satisfies an anharmonicity or nondegeneracy condition,
is sufficiently differentiable, and the frequency of
the torus is sufficiently irrational. The irrationality
condition is that |m · �| > c/|m|τ for all nonzero
integer vectors m and some c > 0 and τ ≥ 1; this is a
“Diophantine condition”. Each of these conditions is
essential, though some systems (like the solar system
for which the frequencies are degenerate) can be
reformulated so that KAM theory applies.

Resonant tori and tori whose frequencies are
nearly commensurate lie between the Diophantine
tori. Generally, these tori are destroyed by a small
perturbation, and either form new, secondary tori
trapped in a resonance, or are replaced by a zone of
chaotic motion that is found in the neighborhood of
the stable and unstable manifolds of the resonance.
These generically intersect and give rise to a homoclinic
tangle or trellis that contains a Smale horseshoe. In the
case that the Hamiltonian is analytic, the size of the
chaotic region is exponentially small in ε, and thus can
be difficult to detect (Gelfreich & Lazutkin, 2001).

For small perturbations of an integrable Hamilto-
nian, it remains an open problem to show that a nonzero
volume of initial conditions behaves chaotically, in the
sense that they have positive Lyapunov exponents. Nu-
merical investigations indicate that orbits in the chaotic
zones do have positive Lyapunov exponents, and that
these domains form a “fat fractal” (a fractal with pos-
itive measure). There are also many examples of uni-
formly hyperbolic dynamics (especially for the case of
billiards (Bunimovich, 1989) which can also have prop-
erties such as mixing and ergodicity.

The problem of the nonlinear stability of a typical
system is also open (See Symplectic maps). However,
N.N. Nekhoroshev showed in 1977 that for an analytic
system, the actions drift very little for very long times
(at most by an amount that is proportional to a power
of ε for times that are exponentially long in ε (Lochak,
1993; Pöschel, 1993)). Thus, while it is possible that
a KAM torus is unstable, for most practical purposes,
they appear to be stable.

Generalizations

Many partial differential equations (PDEs) also have
a Hamiltonian structure. For a PDE with independent
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variables (x, t), the canonical variables are replaced by
fields (q(x, t), p(x, t)) and the partial derivatives in (1)
by functional or Frechêt derivatives, so that

∂q

∂t
= δH

δp
,

∂p

∂t
= −δH

δq
.

The Hamiltonian functional H is the integral of an
energy density. For example, the wave equation has
the Hamiltonian H [q, p] = ∫

dx 1
2

(
p2 + c2(∂xq)2

)
.

Other nonlinear wave equations such as the integrable
nonlinear Schrödinger, Korteweg–de-Vries, and sine-
Gordon equations also have Hamiltonian formulations.

JAMES D. MEISS

See also Adiabatic invariants; Chaotic dynamics;
Constants of motion and conservation laws; Er-
godic theory; Euler–Lagrange equations; Fermi–
Pasta–Ulam (FPU) oscillator chain; Hénon–Heiles
system; Horseshoes and hyperbolicity in dynamical
systems; Lyapunov exponents; Melnikov method;
Pendulum; Phase space; Poisson brackets; Stan-
dard map; Symplectic maps; Toda lattice

Further Reading

Arnold, V.I. (editor). 1988. Dynamical Systems III, New York:
Springer

Arnold, V.I. 1989. Mathematical Methods of Classical
Mechanics, New York: Springer

Bunimovich, L.A. 1989. Dynamical systems of hyperbolic type
with singularities. In Sinai, Y., (editor), Dynamical Systems,
Berlin: Springer, p. 278

Chirikov, B.V. 1979. A universal instability of many–
dimensional oscillator systems. Physics Reports, 52:
265–379

de la Llave, R. 2001. A tutorial on KAM theory. In
Smooth Ergodic Theory and its Applications (Seattle, WA,
1999), Providence, RI: American Mathematical Society,
pp. 175–292

Fermi, E., Pasta, J. & Ulam, S. 1965. Studies of nonlinear
problems. In Collected Papers of Enrico Fermi, vol. 2, edited
by E.Segré, Chicago: University of Chicago Press; pp. 977–
988

Gelfreich, V.G. & Lazutkin, V.F. 2001. Separatrix splitting:
perturbation theory and exponential smallness. Russian
Mathematical Surveys, 56(3): 499–558

Hamilton, W.R. 1835. On the application to dynamics of a
general mathematical method previously applied to optics.
British Association Report, 1834, pp. 513–518

Lochak, P. 1993. Hamiltonian perturbation theory: Periodic
orbits, resonances and intermittancy. Nonlinearity, 6: 885–
904

MacKay, R.S. & Meiss, J.D. (editors). 1987. Hamiltonian
Dynamical Systems: A Reprint Selection, London: Adam
Hilger

Poincaré, H. 1892. Les Methodes Nouvelles de la Mechanique
Celeste, Paris: Gauthier–Villars

Pöschel, J. 1993. Nekhoroshev estimates for quasi–convex
Hamiltonian systems. Mathematische Zeitschrift, 213:
187–216

Pöschel, J. 2001. A lecture on the classical KAM theorem.
In Smooth Ergodic Theory and its Applications (Seattle,
WA1999), Providence, RI: American Mathematical Society,
pp. 707–732

Weissert, T.P. 1997. The Genesis of Simulation in Dynamics:
Pursuing the Fermi–Pasta–Ulam Problem, New York:
Springer

Zakharov, V.E. (editor). 1991. What is Integrability?, Berlin:
Springer

4

Alwyn Scott
Oval

Alwyn Scott
Pencil

Alwyn Scott
Rectangle

Alwyn Scott
Pencil



 

 

 
Manuscript Queries  
  
 
Title: Encyclopedia of Non-linear Sciences 
Alphabet H: Hamiltonian systems 
 
 
Page Query 

Number 
Query 

No Queries 
 


	chapter_3.pdf
	Manuscript Queries
	Title:	Encyclopedia of Non-linear Sciences
	Alphabet H: Hamiltonian systems
	Page
	Query Number





