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Abstract
We develop a Melnikov method for volume-preserving maps that have normally
hyperbolic invariant sets with codimension-one invariant manifolds. The
Melnikov function is shown to be related to the flux of the perturbation through
the unperturbed invariant surface. As an example, we compute the Melnikov
function for a perturbation of a three-dimensional map that has a heteroclinic
connection between a pair of invariant circles. The intersection curves of the
manifolds are shown to undergo bifurcations in homology.
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1. Introduction

Volume-preserving maps on R
3 provide an interesting and nontrivial class of dynamical systems

and give perhaps the simplest, natural generalization to higher dimensions of the much-studied
class of area-preserving maps. They also arise in a number of applications such as the study
of the motion of Lagrangian tracers in incompressible fluids or of the structure of magnetic
field lines [1, 2]. Experimental methods have only recently been developed that allow the
visualization of particle trajectories in three-dimensional fluids [3,4]. The infinite dimensional
group of volume-preserving diffeomorphisms is also at the core of the ambitious program to
reformulate hydrodynamics [5].

While some of the results for area-preserving maps generalize to the volume-preserving
case, the study of transport in such systems is still in its infancy [6–10]. The theory of transport
is based on dividing phase space into regions separated by partial barriers through which flux
can be measured. For the area-preserving case, the natural partial barriers are formed from
the stable and unstable manifolds of periodic orbits or cantori [11, 12]. Primary intersections
can be used to form resonance zones [13, 14]—regions of phase space that are bounded by
alternating stable and unstable segments joined at primary intersection points. Because the
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intersection points are primary, a resonance zone is bounded by a Jordan curve and has an exit
and an entry set [15]. The area of each of these sets is the geometric flux, the area leaving
the resonance zone each iteration of the map. The images of the exit and entry sets and their
intersections completely define the transport properties of the resonance zone [16].

Thus, the beginning of a generalization of this theory to higher dimensions is the study
of the intersections of codimension-one stable and unstable manifolds for volume-preserving
maps.

As is well-known, a transversal intersection of stable and unstable manifolds is associated
with the onset of chaos, giving rise to the construction of Smale horseshoes. A widely used
technique for detecting such intersections is the Melnikov method. Given a system with a
pair of saddles, and a heteroclinic or saddle connection between them, the Melnikov function
computes the rate at which the distance between the manifolds changes with a perturbation.
The integral of the Melnikov function between two neighbouring primary intersection points
is the first-order term in the geometric flux [17, 18].

Most applications of the method are for two-dimensional maps and flows [19–21], though
Melnikov methods were developed for three-dimensional incompressible flows in [22], for
symplectic maps in [23], and for general n-dimension diffeomorphisms in [24]. In this latter
case the invariant sets may be any normally hyperbolic sets.

For the case of maps, the analogue of the Melnikov integral is an infinite sum whose
domain is the unperturbed connection. As usual, a simple zero of this function corresponds to
a transverse intersection of the manifolds for the perturbed map. We developed a Melnikov
method for three-dimensional maps in [25] to study and classify intersections of stable and
unstable manifolds for fixed points.

In this paper, we generalize this method to the problem of detecting heteroclinic orbits
between a pair of normally hyperbolic invariant sets in volume-preserving maps on R

n. Our
application is to the case of invariant circles for a three-dimensional map.

To obtain a Melnikov function, we must define an appropriate measure of the distance
between a manifold and its perturbation. In [25], we used the cross product of a pair of tangent
vector fields to obtain this distance. Different versions of Melnikov’s method have used other
ways of measuring the splitting between the unperturbed separatrix and the perturbed one,
though naturally only the normal distance is well-defined in the codimension-one case. This is
appropriately measured using an adapted normal vector field or differential form. An adapted
normal is a normal field to the saddle connection that is invariant under the dynamics. If the
map is integrable, then the gradient of an integral can be used to construct the adapted normal,
but the concept applies more generally to nonintegrable systems.

We use the Melnikov function to construct the first-order flux-form, an (n−1)-form whose
integral over a fundamental domain on the connection measures the first-order flux through the
connection. The fundamental domain is an annulus that generates the entire manifold upon
iteration. Since the map is volume-preserving, the net (algebraic) flux always vanishes, but
the one-way (geometric) flux gives a measure of the transport.

In [25], we introduced a family of volume-preserving maps that have a saddle connection
between a pair of fixed points. This family is obtained from a family of planar twist maps
with a saddle connection [26]. This family can be modified so that it has a pair of invariant
circles with a corresponding saddle connection. We perturb this family by composing it with
a near-identity, volume-preserving map, thus producing examples of volume-preserving maps
with transverse heteroclinic orbits.

We study the curves of zeros of the Melnikov function on a fundamental domain of
the unperturbed manifold. Using the map to identify the two boundaries, the fundamental
domain becomes a torus. Thus, the zeros of the Melnikov function can be characterized
by their homology on this torus. We show that as the parameters of the map are varied, the
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homology of these curves undergoes bifurcations, and that these bifurcations strongly influence
the geometric flux.

2. Basic definitions and properties

Suppose f0 : R
n → R

n is a diffeomorphism on n-dimensional Euclidean space. Often, we
will assume that f preserves a volume-form �, for example, the standard volume

� = dx1 ∧ dx2 ∧ · · · ∧ dxn.

For this form, f is volume-preserving when it has unit Jacobian, det(Df ) = 1.
A smooth perturbation of f0 is a family of functions fε ≡ f (·, ε) such that f (·, 0) = f0

and f (x, ε) is smooth in both variables. We first define a vector field on R
n that will be used

to measure the motion of an invariant manifold.

Definition (perturbation vector field). Given a perturbation fε of f0, define the vector field
Xε for any point x ∈ R

n by

Xε(x) ≡
[

∂

∂ε
fε(y)

]
y=f −1

ε (x)

. (1)

Perturbation vector fields have some special properties. First, it is easy to see that Xε is
independent of f0. Second, if one regards Xε as a time dependent vector field (where time is
ε), then y(ε) = fε(x) is the solution of the initial value problem

dy

dε
≡ Xε(y), y(0) = f0(x).

Thus, if we let Ft,s = ft ◦ f −1
s , then F represents the flow of the nonautonomous vector

field Xε [27, theorem 2.2.23]. When F is volume-preserving, the vector field Xε has zero
divergence with respect to the volume-form � [27, theorem 2.2.24].

It is often convenient to define a perturbed family by composing f0 with an ε dependent
perturbation:

fε = (id + εPε) ◦ f0 = f0 + εPε ◦ f0. (2)

In this case, the vector field is the first-order approximation to the perturbation, X0(x) = P0(x).

2.1. Invariant manifolds

Suppose that fε has a family of invariant manifolds Wε ↪→ R
n. In this paper, we will assume

that Wε is codimension-one, that is a surface. Our goal is to understand, at least to first-order,
the relation between the perturbation vector field and the way these invariant manifolds evolve
with ε. Later, we will restrict ourselves to the case in which Wε consists of pieces of stable
and unstable manifolds of some invariant set. When Wε is a smooth graph over W0, we can
define a map that is adapted to the ε parametrization.

Definition (adapted deformation). A map φ : W0 × (−ε0, ε0) → R
n, is adapted to Wε, if

there is an ε0 > 0 such that

• φε = φ(·, ε) is a diffeomorphism φε : W0 → Wε, ∀ε ∈ (−ε0, ε0);
• φ0 = φ(·, 0) = idW0 .

There is quite a bit of freedom in the choice of φ; however, only the normal behaviour
is important for our application, since it measures the actual motion of Wε with ε, and this is
unique to lowest order.
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Proposition 1. Suppose φε and φ̃ε are two adapted deformations for a family of invariant
manifolds Wε. Then[

∂

∂ε
φ̃ε(x) − ∂

∂ε
φε(x)

]
ε=0

∈ TxW0.

Proof. Since both φε(x) and φ̃ε(x) are points in Wε, the curve Cε(x) = φ−1
ε (φ̃ε(x)) is a curve

in W0 parametrized by ε, and C0(x) = x. Thus, its derivative at zero is a tangent vector to W0:[
∂

∂ε
Cε

]
ε=0

∈ TxW0.

Thus, since φ̃ε(x) = φε(Cε(x)),

∂

∂ε
φ̃ε(x)

∣∣∣∣
ε=0

= ∂

∂ε
φε(Cε(x))

∣∣∣∣
ε=0

= ∂

∂ε
φε(x)

∣∣∣∣
ε=0

+ Dφ0(x)

[
∂

∂ε
Cε(x)

]
ε=0

.

Since Dφ0(x) = I , the identity matrix, this gives the promised result. �

We use this proposition to compute the Melnikov function in section 3. For this, we need to
measure the rate of change of an invariant manifold with respect to a perturbation—changes in
the tangent direction are unimportant. In order to measure the change in the normal direction,
we introduce the concepts of adapted normal vector fields and adapted forms.

2.2. Adapted normals

We measure the splitting by using a normal to the invariant manifold W0, that throughout this
paper will be a codimension-one submanifold, i.e. a surface. To be useful, the normal field
should evolve in a precise way under the unperturbed map or, as we say, be ‘adapted’ to the
dynamics.

First, we recall some notation. Let v be a vector field, ω a differential k-form, and f a
diffeomorphism. The pull-back operator f ∗ acts on v to give

(f ∗v)(x) = (Df (x))−1v(f (x))

and on ω to give

(f ∗ω)x(v1, v2, . . . , vk) = ωf (x)(Df (x)v1, . . . , Df (x)vk).

The map f is volume-preserving with volume-form � when f ∗� = �. Finally, the inner
product of v with ω is defined as the (k − 1)-form ivω = ω(v, ·, . . . , ·).
Definition (adapted normal field). Suppose that f : R

n → R
n is a diffeomorphism with a

codimension-one invariant surface W , and there is given an inner product 〈 , 〉 for vectors on
R

n. An adapted normal field is a smooth function η : W → R
n such that

• η(x) 
= 0 for all x ∈ W;
• η(x) is normal to the surface for all x ∈ W , that is η(x) ∈ TxW⊥;
• for all vector fields Y : W → R

n we have that

f ∗〈η, Y 〉 = 〈η, f ∗Y 〉. (3)

The geometry is shown in figure 1. Note that the pullback of a scalar function g : R
n → R

is f ∗g(x) = g(f (x)); thus if we define Z(x) = f ∗Y (x), (3) is equivalent to

〈η(x), Z(x)〉 = 〈η(f (x)), Df (x)Z(x)〉.
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Figure 1. η is an adapted normal if the two rectangles shown have the same area.

Adapted normals can be thought of as a generalization of the gradient normal that one
gets from a first integral. Recall that the gradient of a smooth function J : R

n → R is the
unique vector field, ∇J , such that for all vector fields Y on R

n,

iY dJ ≡ dJ (Y ) = 〈∇J, Y 〉. (4)

If f has a nondegenerate first integral, J = J ◦f , then equation (4) implies that f ∗〈∇J, Y 〉 =
〈∇(J ◦ f ), f ∗Y 〉. Therefore, if the diffeomorphism f has a first integral J , then ∇J is an
adapted vector field, provided it does not vanish on W .

If we are using the standard inner product on R
n, then we can characterize adapted normals

more concretely.

Proposition 2. Let η : W → R
n be a smooth function defined on the invariant surface W ,

and suppose 〈u, v〉 = ut · v is the standard inner product on R
n. Then η satisfies (3) for all

vector fields Y : W → R
n if and only if, for all x ∈ W

Df (x)tη(f (x)) = η(x).

In the general case W is not defined as the level set of an invariant, and it is not easy to
show that an adapted normal field exists. However, when the map is volume-preserving and
we are given an appropriate parametrization of the invariant surface, an adapted normal vector
field can easily be constructed.

Lemma 3. Suppose that f : R
n → R

n preserves the volume-form �, and has a smooth
codimension-one invariant surface W . Suppose k : R

n−1 → R
n is a nondegenerate

parametrization of W with the property

f (k(u)) = k(u + δ) , (5)

for some constant δ ∈ R
n−1. Then the vector field η : W → R

n restricted to W defined by

〈η, ·〉 = �(·, ∂u1k, ∂u2k, . . . , ∂un−1k) (6)

is an adapted vector field on W .

Proof. The nondegeneracy of the parametrization implies that η 
= 0 on the surface W .
Condition (5) implies that

Duk(u + δ) = Du(f ◦ k)(u) = Dxf (k(u))Duk(u),
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therefore, since f ∗� = �, we have

f ∗〈η(k), Y (k)〉 = 〈η(f (k)), Y (f (k))〉
= �f (k)(Y (f (k)), ∂u1k(u + δ), . . . , ∂un−1k(u + δ))

= �f (k)(Y (f (k)), Df (k)∂u1k(u), . . . , Df (k)∂un−1k(u))

= �x(Df (x)−1Y (f (k)), ∂u1k(u), . . . , ∂un−1k(u))

= 〈η(k), f ∗Y )〉. �

Note that, in the previous lemma, a parametrization does not need to be a diffeomorphism,
we might use a covering map as well.

2.3. Adapted one-forms

An alternative concept to that of adapted vectors is that of adapted forms. The use of one
versus the other is mainly a question of taste, though differential forms can be used without
assuming an inner product.

Definition (adapted one-form). Suppose that f : R
n → R

n is a diffeomorphism. An adapted
one-form on an invariant surface W is a smooth function ν : TWR

n → R such that

• νx is nondegenerate for all x ∈ W .
• νx(v) = 0 for all v ∈ TxW .
• f ∗ν = ν

Note that when ν is an adapted one-form then for each x ∈ W , ker(νx) = TxW , but that
since ν is nondegenerate, it will not be zero for vectors that are not tangent to W . As before, we
note that if W is given as the level surface of an invariant function J , i.e. if J (f (x)) = J (x),
then an adapted one-form is easy to obtain: the one-form dJ is adapted provided only that J

has no critical points on W . This follows because f ∗dJ = d(J ◦ f ) = dJ .
Given an inner product, 〈·, ·〉, we can always associate a unique vector field, η, with a

form ν, through iXν = ν(X) = 〈η, X〉. Here η : W → R
n is a smooth function. It is easy to

see that, if η is adapted, then ν is also adapted. The converse is also true.

Proposition 4. Let η and ν be related through

iXν = 〈η, X〉. (7)

Then η is an adapted normal if and only if ν is an adapted form.

Using this with lemma 3 immediately implies the following corollary.

Corollary 5. Under the hypotheses of lemma 3,

ν = �(·, ∂u1k, . . . , ∂un−1k) (8)

is an adapted one-form on W .

2.4. Example

Let f : R
3 → R

3 be the two parameter family of diffeomorphisms

f (x, y, z) =

eτ (x cos θ − y sin θ)

eτ (x sin θ + y cos θ)
1
2 (x2 + y2) + e−2τ z


 ,
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where τ and θ are constants. It is easy to see that f preserves the standard volume-form
� = dx ∧ dy ∧ dz. In addition, f has an invariant surface given by

W = {(x, y, z) ∈ R
n\{0} : x2 + y2 = 4z sinh(2τ)},

however, the ‘obvious’ function x2 +y2 −4z sinh(2τ) is not invariant. Instead, we parametrize
W with the function k : R

2 → R
3 given by

k(u, v) =

 eu τ cos v

eu τ sin v

(4 sinh 2τ)−1e2 u τ


 .

The function k is nondegenerate and satisfies

f (k(u, v)) = k(u + 1, v + θ),

so that lemmas 3 and 5 apply. Using (8), we find that ν = −2τz(x dx + y dy − 2 sinh(2τ) dz)

an adapted form on W . In other words f ∗ν = ν and ker νp = TpW , as can be explicitly
verified. Also using (6), it is possible to show that

η(x, y, z) =

 −2τxz

−2τyz

4τz sinh 2τ




is an adapted normal field on W . In other words, it satisfies Df (x)tη(f (x)) = η(x), for each
x ∈ W . Note that ν and η are related through iXν = 〈η, X〉.

3. Melnikov function

Suppose that the diffeomorphism f0 has two compact, normally hyperbolic invariant sets p

and q with codimension-one manifolds Wu(p) and Ws(q). We will suppose that p and q have
a saddle connection W: a component of the set Wu(p)\p that coincides with a component
of Ws(q)\q. The topology of the saddle connection might be very complicated. We restrict
our attention to the cases in which the invariant manifolds are completely doubled (using the
terminology of [23]).

Upon perturbation, suppose that the corresponding invariant sets pε and qε of fε have a
stable manifold Ws

ε and unstable manifold Wu
ε . Then in our notation, the classical Melnikov

function is the smooth function Mν : W → R on the saddle connection defined by

Mν ≡ ν

(
∂

∂ε

∣∣∣∣
ε=0

(φu
ε − φs

ε)

)
(9)

for a given adapted form ν on W , and a given pair of adapted perturbations φs
ε and φu

ε

corresponding to the stable and unstable manifolds, respectively. Thus, Mν measures the
relative ‘velocity’ of the manifolds as a function of ε. While Mν appears to depend on the
choice of adapted perturbations, we will show that it does not.

A function similar to Mν was used in [25], to study the topology of heteroclinic connections
of fixed points. Our purpose is to apply the method to the case of invariant circles, as illustrated
in figure 2.

3.1. The fundamental iterative relation

The fundamental relation used in deriving the Melnikov function is an iteration formula
obtained by combining the definition of adapted one-form and proposition 1.
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Figure 2. Two normally hyperbolic invariant circles C1 and C2 with a saddle connection W .

Theorem 6. Suppose fε is a family of diffeomorphisms with invariant surfaces Wε. Let ν be
an adapted one-form and φε be an adapted deformation on W0. Define µ : W → R by

µ(x) = ν(∂εφ(x, ε)|ε=0).

Then

µ − µ ◦ f −1
0 = ν(X0), (10)

where X0 is the perturbation vector field, (1). Moreover, if φ̃ε is another adapted deformation
and µ̃ is defined similarly to µ, then µ = µ̃.

Proof. By proposition 1 the difference between the derivatives of two adapted diffeomorphisms
is tangent to W , and by definition, ν vanishes on any tangent vector. Thus, µ = µ̃. To compute
the second relation, use f ∗

0 ν = ν to find

µ = f ∗
0 νx(∂εφε(x))

= νf0(x)(Df0(x)∂εφε(x))

= νf0(x)(∂εfε(φε(x)) − ∂εfε(x)),

where we suppress the ε = 0 expressions for simplicity. Using (1) X0 = ∂εfε(f
−1
0 (x)), we

have µ ◦ f −1
0 = νx(∂εfε(φε(f

−1
0 (x)))) − νx(X0), and therefore

µ − µ ◦ f −1
0 = ν(∂εφ − ∂εfε(φε(f

−1
0 (x)))) + ν(X0).

Noting that φ̃ε = fε(φε(f
−1
0 (x)) is also an adapted diffeomorphism, we see that the first term

on the right-hand side of this equation vanishes by proposition 1. �

Equation (10) gives us a recursive formula to compute the normal component of the change
in the manifold Wε.
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Corollary 7. Under the assumptions of theorem 6, for all n ∈ N

µ = µ ◦ f −n
0 +

n−1∑
k=0

ν(X0) ◦ f −k
0 .

In addition, if limn→∞ µ ◦ f −n
0 (x) = 0, then

µ(x) =
∞∑

k=0

ν(X0) ◦ f −k
0 =

∞∑
k=0

ν((f −k
0 )∗X0). (11)

These statements can be directly transcribed for adapted normals using proposition 4.

3.2. Transversal intersections

According to theorem 6 and corollary 7, we can compute the Melnikov function (9) in terms
of the first-order perturbation vector field X0. For simplicity, we assume that the perturbation
vanishes on the invariant sets.

Proposition 8. Suppose f has a codimension-one saddle connection W between two compact,
normally hyperbolic invariant sets p and q. Assume that for all x ∈ p ∪ q, the perturbation
vector field X0(x) = 0. Let ν be an adapted form and η the corresponding adapted normal
defined on W . Then the Melnikov function is given by

Mν =
∞∑

k=−∞
ν(X0) ◦ f k

0 =
∞∑

k=−∞
〈η, X0〉 ◦ f k

0 . (12)

Moreover if a point x0 ∈ W is a nondegenerate zero of Mν , the stable and unstable manifolds
Wu

ε (q) and Ws
ε (p) intersect transversally near x0 for ε small enough.

Proof. For each point x in the saddle connection W , there is a neighbourhood N0 ⊂ W , such
that all the iterates f k(N0) are disjoint. Moreover, since p and q are normally hyperbolic,
the stable manifold theorem implies that there is an ε0 > 0 such that there exist adapted
deformations φu : N0 × (−ε0, ε0) → Wu

ε (q), and φs : N0 × (−ε0, ε0) → Ws
ε (p).

Consider first the unstable part. Let V = ⋃∞
k=0 f −k

0 (N0). Clearly, V is a immersed
manifold. Moreover, we can extend the domain of φu to all of V , by defining

φu(x, ε) = f −k
ε (φu(f k

0 (x), ε)),

providing that x ∈ f −k
0 (N0). It is clear that for each ε ∈ (−ε0, ε0) and x ∈ V , we have that

φu(x, ε) ∈ Wu
ε (q).

For each x in W , we are interested in estimating φ(x, ε) to first order in ε. Using φu

in corollary 7 gives (11) providing µu ◦ f −n
0 (x) → 0. This is the case because as n → ∞,

φu(f −n
0 (x), ε) − f −n

0 (x) → 0 so that ∂εφ
u is bounded, and νf −n

0 (x) → 0 since it is an adapted
form.

Similar analysis applies to the stable adapted deformation, and again corollary 7 applies,
though we iterate in the opposite direction, to obtain

µs = −
∞∑

k=1

ν(X0) ◦ f k
0 .

According to (9), the difference between µu and µs gives the Melnikov function, which
yields (12).
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Following a standard Melnikov argument based on the implicit function theorem [28], we
conclude that if x0 is a nondegenerate zero Mν then near x0, the two manifolds Wu

ε (p) and
Ws

ε (q) intersect transversely. �

In a more general version of proposition 8, we would need to drop the condition that
X0 vanishes on p and q. However, since these are normally hyperbolic and compact, it is
reasonable to expect that only a small modification of Melnikov’s formula would be necessary.
In such a case, we would need to do this in such a way that the series is convergent for all
perturbations. For simplicity, we avoid these technicalities (see [29]).

4. Flux

The flux across a surface is the volume that crosses the surface each iterate of a map; it is an
important measure of transport. Recall that for area-preserving maps, the Melnikov function
is a measure of the distance between the stable and unstable manifolds, and that its integral
between two successive zeros is the first-order approximation to the geometric flux that crosses
the ‘separatrix’ each iteration of the map [17,18]. The outgoing flux is exactly balanced by an
ingoing flux, so that the net, or algebraic, flux crossing the separatrix is zero.

Here, we will obtain an analogous formula for volume-preserving maps (see also [8]). We
start by constructing a first-order flux-form on an invariant set. We will see that the algebraic
flux crossing the separatrix is zero. This implies, for example, that the Melnikov function has
zeros in the separatrix.

4.1. Flux-form

It is well-known that a volume-preserving map with an invariant J can be restricted to a
measure preserving map on any surface J = c on which ∇J is nonzero. That is, the form
ω = |∇J |−2i∇J � is an invariant n − 1 form for the map f |J=c. We show here that a similar
preserved measure also exists if we can find an adapted normal for an invariant surface W . We
will then use this to construct a flux-form on W .

As before, we assume that f is a diffeomorphism with an invariant volume-form �, W is
an invariant codimension-one hypersurface, and 〈 , 〉 is an inner product on R

n.

Proposition 9. Suppose η is an adapted normal field on W . Then

ωη = iη�

〈η, η〉
is a nondegenerate (n − 1)-form on T W that is invariant under the restricted map f |W .

Proof. It is clear that ωη is nondegenerate for vectors in T W . We need to show that f ∗
0 ωη = ωη

for vectors in T W . With some manipulations we have

f ∗ωη − ωη = if ∗ηf
∗�

f ∗〈η, η〉 − iη�

〈η, η〉
= if ∗η�

〈η, f ∗η〉 − iη�

〈η, η〉 = iv�,

where we define the vector field:

v = f ∗η
〈η, f ∗η〉 − η

〈η, η〉 .
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Since 〈η, v〉 = 0 on W for each point x ∈ W , and η defines the normal direction, then
v(x) ∈ TxW . Since v is tangent to W , the form iv� restricted to W has to vanish. Thus, we
conclude that (f ∗ωη − ωη)W = 0. �

From now on assume that W has an adapted vector field η so that the Melnikov sum (12)
exists. We then give the following definition.

Definition (first-order flux-form). The first-order flux-form � ≡ Mηωη is an (n − 1)-form
on W .

Note that � might be degenerate (it has zeros), and since the space of (n − 1)-forms on
the (n − 1)-dimensional manifold W is one-dimensional, it might not be unique. However,
this is not the case.

Lemma 10. The first-order flux-form � is independent of the choice of η.

Proof. The projection of X0 onto T W is the vector w = X0 − (〈η, X0〉/〈η, η〉)η. Note that

iX0� − 〈η, X0〉ωη = iw�.

Since w ∈ T W , we conclude that iw� = 0, as an (n − 1)-form in the surface W , and so
we have

〈η, X0〉ωη = iX0�

for all vectors in T W . This implies that the summand of Mηωη, recall (12), can be rewritten

(f k
0 )∗〈η, X0〉ωη = (f k

0 )∗iX0�,

which is independent of η. �
Thus we have

� = Mηωη =
∞∑

k=−∞
(f k

0 )∗iX0�. (13)

Since ωη is nondegenerate, the degenerate points of the flux-form correspond to zeros of the
Melnikov function. As we see in section 4.3, the integral of the flux-form over a subset of W
gives flux through that surface to first order in ε.

The form iXε
� has some interesting properties.

Proposition 11. Let Xε be a perturbation vector field (1). Then the form iXε
� is exact.

Proof. As we already noted, theorem 2.2.24 in [27] implies that the divergence of Xε vanishes.
Since this is defined by (div�Xε)� ≡ LXε

�, the Lie derivative vanishes as well. Since d� = 0
and LXε

� ≡ d(iXε
�) + iXε

d�, this implies that d(iXε
�) = 0. Thus the form is closed. Since

iXε
� is globally defined in R

n, the form is exact. �
Using this result we can obtain an (n − 2)-form β on W such that

dβ ≡ iX0�. (14)

In this case, we will say that β represents the perturbation on W . Using lemma 10 and (14),
it is easy to see that the following (n − 2)-form is well-defined on W .

α =
∞∑

k=−∞
(f k

0 )∗β.

Note that α is invariant under f and is independent of η. Using this we can see the following
proposition.
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Proposition 12. The flux-form � is

� = dα.

Proof. This is a straightforward calculation using lemma 10 and proposition 9. �

4.2. Fundamental domains

Our goal in this section is to find a compact subset of the manifold—a fundamental domain—
that generates the entire manifold under iteration by f0. We will integrate the flux-form over the
fundamental domain to show that the algebraic flux crossing the separatrix is zero. From this
point on, we will concentrate on the three-dimensional case. To define the fundamental domain
we start with the concept of a proper loop.

Definition (proper loop). Let f0 : R
3 → R

3 be a diffeomorphism, and W a forward invariant
surface. We say that a smooth Jordan curve γ ⊂ W is a proper loop in W if γ bounds a
surface Wγ ⊂ int (W) that is a trapping region:

f (cl(Wγ )) ⊂ int (Wγ ).

Similarly, a loop is proper for a backward invariant surface if it is a proper loop for the
map f −1.

It is important to notice that not all invariant surfaces admit proper boundaries. A trivial
observation is the following proposition.

Proposition 13. If γ is a proper loop in W , then f (γ ) is also a proper loop. In addition,
Wf (γ ) = f (Wγ ).

The situation that we have in mind relates to the structure of stable and unstable manifolds.
Let a, b be compact, normally hyperbolic invariant sets of f , and W = Ws(a) = Wu(b) a
saddle connection between them. A proper loop γ ⊂ W is a submanifold of W that bounds a
local submanifold that is an isolating neighbourhood of a in Ws(a). In other words γ is proper
if it bounds an open local submanifold, Ws

loc(a) = Wγ , that maps inside itself.
If γ is proper, we can define the stable manifold starting at γ , denoted by Wγ = Ws

γ (a),
as the closure in Ws(a) of the local stable manifold bounded by γ . In the same way, for b, if we
have a proper loop σ for f −1, we define the unstable manifold up to σ , denoted Wu

σ (b), as the
interior of the local unstable manifold bounded by σ . We will see below why it is convenient
to use this slightly asymmetric definition.

Given a proper loop we can give the following definition.

Definition (fundamental domain). Let W be a forward invariant surface. A submanifold with
boundary, P , is a fundamental domain of W if there exists some proper loop γ in W , such that

P = Pγ = Wγ \Wf (γ ).

The fundamental domain is a manifold with the boundary

∂P = γ ∪ f (γ ),

(see figure 3). An immediate consequence of the definition is that all the forward iterations of a
fundamental domain are also fundamental and Pf (γ ) = f (Pγ ). It is easy to see that, if proper
boundaries exist, then the forward invariant manifold can be decomposed as the disjoint union
of fundamental domains.

W = (W\Wγ ) ∪
⋃
k�0

f k(Pγ ).



Heteroclinic intersections between invariant circles of volume-preserving maps 1585

Figure 3. Fundamental domain P on a stable manifold of an invariant circle a bounded by a loop
γ and its image f (γ ). The second part of the figure shows the annular fundamental domain itself,
together with an assigned orientation. Finally, if we identify the points on γ with their images,
then the fundamental domain is equivalent to a torus.

If the surface W is both forward and backward invariant, then this decomposition works
in both directions. In such a case we have

W =
⋃
k∈Z

f k(P).

4.3. Algebraic flux

For a vector field X, the differential form iX� represents the flux associated with X; that is given
a set of vectors v1, v2, . . . , vn−1, �(X, v1, v2, . . . , vn−1) is the volume of the parallelepiped
formed from these vectors and X, and thus measures the rate at which volume is swept out by
X through the parallelepiped defined by v1, v2, . . . , vn−1.

According to (13), the form � is the sum of iX0� along an orbit on W . Thus, � evaluated at
a point on a fundamental domain P measures the flux of X0 summed over the orbit of that point.

The algebraic flux through a surface is the integral of the flux over the surface. Since �

measures the flux along an orbit on W , the integral of � over a fundamental domain is the
algebraic flux through the entire surface W .

Proposition 14. The algebraic flux through a fundamental domain is zero:
∫

P � = 0.

Proof. The fundamental domain P = Pγ is a submanifold with boundary, such that
∂Pγ = γ ∪ f (γ ), where γ is a closed curve that does not intersect f (γ ). If we give an
orientation [P] to P , the induced orientation on the boundary satisfies [γ ] = −[f (γ )], recall
figure 3. Since � = dα by proposition 12, and α is invariant under f , Stokes’ theorem, implies∫

P
� =

∫
P

dα =
∫

∂P
α =

∫
γ

α +
∫

f (γ )

α =
∫

γ

α −
∫

γ

f ∗α = 0. �

Using this, we immediately have the following corollary.

Corollary 15. The Melnikov function must have zeros on P .



1586 H E Lomelı́ and J D Meiss

γ

f ( )γ

a

f( )a

b

f( )b

Figure 4. A pair of fundamental domains for two different circles C1 and C2 that intersect
transversally, forming three-dimensional lobes.

The importance of fundamental domains is that much of the information about the entire
manifold can be found by looking only at these submanifolds. In particular, if we have a
transversal intersection of two invariant surfaces, we can look at a pair of fundamental domains
and study primary intersections. In figure 4, we show a pair of fundamental domains of two
stable and unstable manifolds that intersect transversally.

The curves of zeros of the Melnikov function can be classified by their homology on P .
To do this, we identify two boundaries of the fundamental annulus by identifying γ with f (γ ).
With this identification the fundamental annulus becomes a torus, as sketched in figure 3. Since
the homology group of the torus is Z

2, we can label the curves by a pair of integers (m, n)

which represent the number of times the curves wrap around each circuit of the torus. For
example, when the identification is performed on figure 4 there are a pair of zero crossing
curves with homology type (3, 1)—they move once around the annulus in three vertical
transits.

5. Examples

In this section, we construct a family of volume-preserving maps that have a saddle connection
between a pair of invariant circles. We obtain this family by starting with an area-preserving
twist map that preserves an axis and extending it to a three-dimensional, volume-preserving
map by composing it with a sheared rotation about that axis. The twist map is defined in such
a way that it has a saddle connection between two fixed points, and so the resulting three-
dimensional map has a pair of invariant circles with a two-dimensional connection. Examples
similar to these were found by Lomelı́ [26] and are closely related to those in [25].
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We begin with an area-preserving map on R
2 in coordinates (r, z) that preserve the axis

r = 0, and has a fixed point at some nonzero r = r∗. For example, set

(r ′, z′) = G(r, z) = (h−1(r + h(z)) − z, h(z) + r − r∗),

where r∗ ∈ Z. Here, we assume that h : R → R is an increasing circle diffeomorphism of
period 1, i.e. h(z + 1) = h(z) + 1. Moreover, we can verify that det(DG) = 1, so that G is
area-preserving. Finally

G−1(r, z) = (z − h(h−1(z) − r), h−1(z) + r∗ − r),

so that G is a diffeomorphism.
It is easy to see that G(0, z) = (0, h(z) − r∗) so that the z-axis is preserved. The map

has fixed points at solutions of z = 1
2 (h−1(z) + h(z)), with r = r∗ + z − h(z). In particular,

any hyperbolic fixed point of h, z∗ = h(z∗), yields a saddle fixed point (r∗, z∗) of G whose
multipliers are λ = h′(z∗) and 1/λ. Between every pair of such fixed points of h there is at
least one other fixed point of G; it is typically elliptic.

The map G is not necessarily integrable (in section 5.1, we will choose an h that leads to
an integrable map). However, G always has a pair of invariant curves:

W0 = {(r, z): r = r∗},
W1 = {(r, z): r = h−1(z) − h(z) + r∗}. (15)

These curves intersect at any fixed point z∗ of h. Thus, they provide a saddle connection
between points (r∗, z∗

1) and (r∗, z∗
2), where z∗

i are neighbouring fixed points of h.
We show an example of the dynamics of G in figure 5 for the case that h(z) =

z − (k/2π) cos(2πz), and r∗ = 1.0. Here, one can see the saddle connection at r = r∗

as well as chaotic dynamics in other regions of phase space.
We can extend G to R

3 by introducing the cylindrical angle θ and using the volume-form
� = dr ∧ dθ ∧ dz. Defining r to be the ‘symplectic’ polar radius,

r = 1
2 (x2 + y2), (16)

the cylindrical coordinates are

(x, y, z) = P(r, θ, z) = (
√

2r cos θ,
√

2r sin θ, z)

so that � = dx ∧ dy ∧ dz. We define a three-dimensional map in these coordinates as
g = P ◦ G ◦ P −1:

g(x, y, z) = (ρ(r, z)x, ρ(r, z)y, r + h(z) − r∗),

where ρ = √
r ′/r is explicitly

ρ(r, z) =




√
h−1(r + h(z)) − z

r
, r 
= 0,

(h′(z))−1/2, r = 0.

(17)

It was shown in [25] that if h is Cr , then ρ is Cr−1 so that, in this case g is a diffeomorphism.
To obtain fully three-dimensional dynamics, we introduce motion in the angle θ . To do

this, we compose the map with a rotation. Denote the rotation about the z-axis by angle ψ by

Rψ =

cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1


 . (18)

Introducing a rotation angle τ(r, z) that depends smoothly on (r, z), we define a diffeomorphism
f by

f = g ◦ Rτ . (19)
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z
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0.25

-0.25

r 1.00.5

Figure 5. Dynamics of G when h is given by the Arnold circle map with k = 0.9. The domain of
the figure is [0, 1.5] × [−0.5, 0.5].

Note that since Rτ and g both preserve �, so does f .
The map f still has a rotational symmetry

f ◦ Rψ = Rψ ◦ f (20)

for any constant ψ ∈ R. This implies that when G has a saddle connection, so does f .

Proposition 16. The surfaces (15) are invariant under (19). In addition, W0 and W1 intersect
on the invariant circles

C(z∗) = {(x, y, z): z = z∗, r = r∗},
where z∗ is any fixed point of h.

Every point on the circles C(z∗) is fixed under g. The derivative of g at such points is

Dg(x, y, z) =




1

2r∗ (λ−1x2 + y2)
1

2r∗ (λ−1 − 1)xy 0

1

2r∗ (λ−1 − 1)xy
1

2r∗ (x2 + λ−1y2) 0

x y λ




, (21)
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where λ = h′(z∗). More generally, we can compute the derivative of f n on the invariant circles
for the special case that the rotation angle is constant.

Proposition 17. Suppose f is given by (19), that τ is constant, z∗ = h(z∗), and C(z∗) is the
corresponding invariant circle. Then for all (x, y, z) ∈ C(z∗)

Df n(x, y, z) = Rnτ




1

2r∗ (λ−nx2 + y2)
1

2r∗ (λ−n − 1)xy 0

1

2r∗ (λ−n − 1)xy
1

2r∗ (x2 + λ−ny2) 0

(λ2n − 1) x

λn−1(λ2 − 1)

(λ2n − 1) y

λn−1(λ2 − 1)
λn




, (22)

where λ = h′(z∗). Moreover, if λ > 1 (<1) the invariant circle has a stable (unstable) manifold
contained in W1, and unstable (stable) manifold contained in W0.

Proof. Given the symmetry (20), it is enough to check (22) for points of the form

(
√

2r∗, 0, z∗).

Since (22) reduces to (21) when n = 1, it is enough to verify the induction step

Dg(
√

2r∗, 0, z∗)Dgn(
√

2r∗, 0, z∗) = Dgn+1(
√

2r∗, 0, z∗).

The vector (0, 0, 1)t is an eigenvector of Dg(x, y, z∗) with eigenvalue λ. Since this is
tangent to W0, this shows that it is the stable manifold when λ < 1. Similarly the vector
(x, y, 2r∗(λ/(1 − λ2)))t is an eigenvector with eigenvalue λ−1 that is tangent to W1. The final
eigenvector of Dg is (y, −x, 0)t which is tangent to C and has eigenvalue 1. �

5.1. Integrable case

In general, the maps g and f are not integrable, even though they have a saddle connection.
However, for a special choice of h there is an integral. This example is related to the work of
Suris [30, 31] on area-preserving integrable maps, but is distinct from the three-dimensional
maps found in [32] that have an invariant but which do not have a rotational symmetry.

Let m(w) = (aw + b)/(cw + d) be the Möbius transformation on R ∪ {∞} with
ad − bc = 1. A circle map conjugate to m is obtained by defining w = tan πz, giving h

hm(z) = 1

π
arctan(m(tan πz)). (23)

This map can be written more explicitly as a circle map using trigonometric identities:

hm(z) = z +
1

π
arctan

[
b − c + (b + c) cos(2πz) + (a − d) sin(2πz)

a + d − (a − d) cos(2πz) + (b + c) sin(2πz)

]
. (24)

An example is shown in figure 6.
Requiring ad − bc = 1, some useful properties of this family of circle maps follow easily

from its conjugacy to the Möbius transformation

• ht
m = hmt , for all t ∈ Z.

• If |a + d| > 2 then hm has two fixed points z∗
± ∈ [0, 1).

• The fixed points have multipliers Dh(z∗
±) = 4/(σ ± √

σ 2 − 4)2 > 0, where σ = a + d.
• Thus z∗

− is unstable and z∗
+ is stable.
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Figure 6. The circle map hm(z) and its inverse for (a, b, c, d) = (1, 1
2 , 2, 2).

For any hm, the resulting map G is integrable. To see this, we show how this map is related
to the Suris example. First, note that G can be rewritten as a second difference equation

zt+1 − 2zt + zt−1 = h(zt ) + h−1(zt ) − 2zt = F(zt ),

where rt = zt+1 − h(zt ) + r∗. Suris showed that this family is integrable when F is given by

F(z) = 1

π
arctan

[
A sin(2πx) + B cos(2πx) + C sin(4πx) + D cos(4πx)

1 − E − A cos(2πx) + B sin(2πx) − C cos(4πx) + D sin(4πx)

]

for any values of the parameters A, B, C, D, E. After some algebra one can see that our map
has this form with

A = b2 − c2, B = (a − d)(c − b), C = 1
2 (b + c)2 − 1

2 (a − d)2,

D = (d − a)(b + c), E = 1
2 (a2 + b2 + c2 + d2).

The map G with this h has the integral

J (z, z′) = (1 − E) cos(2π(z − z′)) − A(cos(2πz) + cos(2πz′))
+ B(sin(2πz) + sin(2πz′)) − C cos(2π(z + z′)) + D sin(2π(z + z′)).

For the examples, we will use the map (19) with hm given by (24) with

m(w) = (ν + 1)w + ν − 1

(ν − 1)w + ν + 1
. (25)

This corresponds to setting m to the hyperbolic rotation matrix a = d = cosh(ln(ν)),
b = c = sinh(ln(ν)). In this case mt is given by replacing ν with νt ; thus iteration of h

is extremely easy. This was also the example used in [25].
This gives a family of three-dimensional maps, f , with parameters ν and τ . Setting r∗ = 1,

there are invariant circles at (r∗, z∗) = (1, ± 1
4 ). For this case the invariant has the form

J (x, y, z) = 2ν cos(2πr) + (1 − ν2) cos(2πz) sin(2πr). (26)
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Figure 7. Level sets of J for ν = 0.3. Here, the maximum of J occurs at z = 0 near r = 1.1,
while a minimum occurs near r = 0.7.

The level sets corresponding to J = 2ν give the invariant manifolds W0, W1, and the circles
C(z∗). The level sets of J are shown in figure 7 for the case ν = 0.3. Though the level sets
of J make it appear that ( 1

2 , ± 1
4 ) are also invariant, G( 1

2 , 1
4 ) = ( 1

2 , − 1
4 ), so these points move

downward. Moreover the curve {r = 1
2 } has image {r = h−1

ν (z) − hν(z) + 1
2 }, and this latter

curve has the image again of r = 1
2 .

5.2. Perturbed map

We break the invariant surfaces by choosing a perturbation of the form (2). For the first
example, we choose a composition of two simple perturbations:

P1(x, y, z) = ((1 + y2)(z∗2 − z2), 0, 0),

P2(x, y, z) = (0, x(z∗2 − z2), 0).
(27)

Each of these maps has a nilpotent Jacobian, which implies that the maps id + εPi are volume-
preserving for all ε. The complete perturbation is then defined as

id + εPε = (id + εP2) ◦ (id + εP1).

Substituting the perturbation into the computation (1) for the vector field Xε gives

X0 = P2 + P1.

Fundamental domains Pi on Wi are given by the annuli bounded by the circles γi =
{z = 0} ∩ Wi and their images, f (γ0) = {z = h(0)} ∩ W0 or f (γ1) = {z = h−1(0)} ∩ W1,
respectively. These can be projected onto (z, θ) coordinates for visualization. Calculation
of the Melnikov sum (12) is straightforward using the adapted form dJ associated with the
invariant (26).
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ν=0.275, τ=0.325

z

θ θ ν=0.25, τ=0.425

z

θ ν=0.3, τ=0.375

z

θ ν=0.3, τ=0.425

z

Figure 8. Contours of the Melnikov function for W0 with the perturbation (27). Shown are four
values of the parameters (ν, τ ). Ranges for the figures are z ∈ [0, h−1(0)] and θ ∈ [0, 2π ]. The
arrow at the top of each panel shows the translation by τ .

We show several representative contour plots of MdJ in figure 8. In the figure, positive
values of MdJ are shown as dashed lines and negative as dotted lines, while the zero contour
is the solid line. For example, in the bottom-left panel (ν = 0.275 and τ = 0.325) there are
two zero contours, corresponding to the unstable and stable manifolds crossing with opposite
signatures (since the algebraic flux through the fundamental annulus is zero, the zero contours
must come in pairs). Since the unperturbed map takes the circle γ1 to the circle f (γ1) shifting
each point by τ , the lower boundary of P can be identified with the upper boundary after
shifting the latter to the right by τ (we show this shift by the arrows in figure 8). After this
identification the fundamental annulus becomes a torus, and the zero contours correspond to
a pair of circles that wrap once vertically. Thus, these contours have homology type (1, 0).
The bottom right panel also has this homology type, though the curves are very close to a
bifurcation.
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There are several such bifurcations in homology type of the zero contours as we vary the
parameters. For example, in the upper left panel, the homology type is (3, 1)— as each zero
contour moves from the bottom to the top of P , it lags the maps translation of θ by a full circuit
in three vertical transits. In the top-right panel there are two zero contours with the homology
(2, 1). To elucidate these changes in homology, we show a bifurcation diagram in the space of
the parameters in figure 9. We have only found the three homology classes already mentioned.

Also shown in figure 9 are contours of the first-order geometric flux

Flux = 1

2

∫
P

|�|

as a function of ν and τ . The flux is largest when ν and τ are both small, and it appears to
get extremely small as ν approaches one. Note that there is a ‘valley’ in the flux contours near
both homology bifurcations.

Finally, we have also studied the perturbation

P1(x, y, z) = ((1 + y2)(z∗2 − z2), 0, 0),

P2(x, y, z) = (0, x2(z∗2 − z2), 0),

P3(x, y, z) = (0, 0, r − r∗),
(28)

giving a perturbation vector field X0 = P1 + P2 + P3. We show the bifurcation diagram for the
zero contours of MdJ for W0 in figure 10. For this case, there appear to be only two homology
types, (1, 0) and (3, 1). Again there is a ‘valley’ in the flux near the bifurcation curve.

We have also computed the Melnikov function for the second invariant set, W1, but do not
show the curves since they are very similar to those for W0.

ν

τ

(1,0)

(3,1)

(2,1)

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

Figure 9. Contours of the geometric flux through W0 as a function of ν and τ for the perturbation
(27). The nine contours are at equally spaced levels ranging from a flux of 0.09 at the lower left to
0.01 at the top. Also shown are bifurcation curves corresponding to the change in homology types
of the zero contours of MdJ .
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Figure 10. Contours of the geometric flux through W0 as a function of ν and τ for the perturbation
(28). Also shown are bifurcation curves corresponding to the change in homology types of
the zero contours of MdJ . In this case there is only one curve of bifurcation, corresponding to
(1, 0) ←→ (3, 1).

6. Conclusion

We have shown that the flux-form � is the unique (n − 1)-form on a codimension-one saddle
connection that describes the lowest order splitting of the manifolds upon perturbation. The
integral of the one-way flux over a fundamental domain characterizes the transport across the
manifolds in the perturbed system. For our example, the magnitude of the flux is strongly
correlated with bifurcations in the homology of the crossing curves—near a bifurcation the
flux is small. It would be nice to understand if this is a general feature of transport for
volume-preserving maps.

In future, we also hope to study the evolution of the full manifolds numerically, to compare
with our Melnikov results. We would also like to develop a nonperturbative method to compute
the geometric flux, analogous to the action techniques for symplectic maps [12]. With this,
we would like to verify that the geometric flux quantifies the transport observed numerically.
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