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Abstract
We obtain normal forms for symmetric and reversible polynomial
automorphisms (polynomial maps that have polynomial inverses) of the
complex and real planes. Our normal forms are based on the Hénon normal
form of Friedland and Milnor. We restrict ourselves to the case where the
symmetries and reversors are also polynomial automorphisms. We show that
each such reversor has finite order and that for nontrivial, real maps, the reversor
has order 2 or 4. The normal forms are shown to be unique up to finitely many
choices. We investigate some of the dynamical consequences of reversibility,
especially for the case where the reversor is not an involution.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Polynomial maps provide one of the simplest, nontrivial classes of nonlinear dynamical
systems. A subset of these, called polynomial automorphisms, have polynomial inverses—thus
these maps are diffeomorphisms. Since this subset is closed under composition, polynomial
automorphisms form a group; for the case of automorphisms on C

2 that we consider in this
paper, we will denote this group by G. These maps can have quite complicated dynamics,
as exemplified by the renowned Hénon quadratic map [1, 2], which is in G. The family of
generalized Hénon maps [3], h : C

2 → C
2, defined by

h(x, y) = (y, p(y) − δx) (1)

for any polynomial p, is also in G whenever δ �= 0 since

h−1(x, y) = (δ−1(p(x) − y), x)

3 Also at: Departamento de Matemáticas, Universidad del Valle, Cali Colombia.
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is also polynomial. These maps are area preserving when δ = ±1, and orientation preserving
when δ > 0.

The structure of G is well understood, thanks to a classic result of Jung [4] for two-
dimensional maps. In this paper we will make use of Jung’s theorem to investigate polynomial
automorphisms that have symmetries or reversing symmetries in G. Our results also use
extensively the Hénon normal form for polynomial automorphisms as compositions of
generalized Hénon maps obtained by Friedland and Milnor [3].

In general, a diffeomorphism g has a symmetry if it is conjugate to itself; that is, there
exists a diffeomorphism S such that

g = S−1gS. (2)

Similarly, g has a reversing symmetry, or is ‘reversible’, if it is conjugate to its inverse [5–8];
that is, there exists a diffeomorphism R such that

g−1 = R−1gR. (3)

For example, generalized Hénon maps are reversible when δ = 1, and they have a nontrivial
symmetry when there is an ω �= 1 such that p(ωy) = ωp(y). Reversible maps occur often
in applications. For example, reversibility often arises for Hamiltonian systems because their
phase spaces consist of coordinates q and momenta p, and a transformation that reverses the
momenta, R(q, p) = (q, −p), often corresponds to reversal of time. Our goal in this paper is
to classify the polynomial automorphisms that satisfy (2) or (3) with S, R ∈ G.

The basic properties of symmetries and reversors are discussed in [9] and reviewed in [8].
The set of symmetries is a group, denoted as

Sym(g) = {S ∈ G : S−1gS = g}. (4)

In group theory terminology, Sym(g) is the centralizer of g in G. Note that Sym(g) always
includes the subgroup {gj : j ∈ Z}. We will say that S is a nontrivial symmetry of g in the
case where S �= gj . If all the symmetries of g are trivial, then Sym(g) is isomorphic to Z

(or to Zn if g has finite order).
Similarly, whenever R is a reversor for g, then so are each of the members of the family

{Rj,k = gjR2k+1 : j, k ∈ Z}. (5)

Thus, if R is a reversor, then its inverse is one as well. On the other hand, the composition of
any two reversors is a symmetry of g (and is not a reversor unless g is an involution). Thus,
for example, if R is a reversor, then R2 is a symmetry. The set of all symmetries and reversing
symmetries of g is a group, usually referred as the reversing symmetry group of g

Rev(g) = {f ∈ G : f −1gf = g±1}. (6)

The group Sym(g) is a normal subgroup of Rev(g), and if there are nontrivial reversors, then
Rev(g)/Sym(g) is isomorphic to Z2, the cyclic group with two elements. The properties of
the group of reversing symmetries have been investigated in several recent papers [10–13] as
well as the papers in the collection [14].

Reversors that arise in classical physics examples often are involutions, R2 = id , so that
R generates a group 〈R〉 = {id, R} � Z2. If g possesses an involutory reversing symmetry
R, then Rev(g) = Sym(g) � 〈R〉 [10]4.

However, reversors need not be involutions; examples of maps with noninvolutory
reversors (called weakly reversible by Sevryuk [6]) were given by Lamb [9]. As we will

4 The semidirect product of two groups G = N �φ M, with homomorphism φ : M → Aut(N ), is defined as the
set of pairs (n, m) with product (n1, m1)(n2, m2) = (n1φm1 (n2), m1m2). The product depends on N , M as well as
φ. For the cases we consider, G = MN with M ∩ N = {id} and N normal. Then a homomorphism is given by
φm(n) = mnm−1.
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see in section 4, if g ∈ G, then any reversor in Rev(g) has finite order, Rk = id . Note that if k

were odd, then g would itself be an involution and thus is dynamically trivial; so if we restrict
ourselves to nontrivial maps in G, then their reversors have even order. Moreover, for the
special case of maps and reversors on R

2, we will show that the order must be 2 or 4. After we
submitted this paper, we learned that Roberts and Baake have also announced this particular
result for the special case of real maps in G [13], though we have not seen their proof.

We will also demonstrate that if g has a nontrivial symmetry, then there is a subgroup of
Sym(g) generated by a finite-order map and a ‘root’ of g. In particular, we will show

Theorem 1. Suppose g is a polynomial automorphism of C
2 that possesses nontrivial

symmetries. Then g is conjugate to a map of the form

G = sj (H)q,

where H is a composition of generalized Hénon maps (1), s is a diagonal linear map with finite
order, sk = id , j is an integer, and either s �= id or q �= 1. The normal form has commuting
symmetries s and H , and Sym(G) ⊃ 〈H 〉 × 〈s〉 � Z × Zk .

This theorem is stated in a more detailed way in section 3 as theorem 7 and corollary 9.
Note that for the real case, s has order at most 2 (this result was also announced in [13]).

In a previous paper we obtained normal forms for the automorphisms that are reversible by
an involution in G [15]. Just as in [3], these normal forms are constructed from compositions
of generalized Hénon maps; however, in this case the reversors are introduced by including
two involutions in this composition. We showed there that the involutions can be normalized
to be either ‘elementary’ involutions or the simple affine permutation

t (x, y) = (y, x). (7)

The second major result of this paper is that in the general case, reversible automorphisms also
have at least two basic reversors that are also either elementary or affine. In particular we will
prove

Theorem 2. Suppose g is a nontrivial reversible automorphism of C
2. Then g possesses a

reversor of order 2n in G and is conjugate to one of the following classes:

RAA τ−1
ω H−1τωH,

RAE τ−1
ω H−1e2H,

REE e−1
1 tH−1e2Ht,

where

• the map H is a composition of generalized Hénon transformations (1),
• τω is the affine reversor, τω(x, y) = (ωy, x), such that ω is a primitive nth root of unity,

and
• the maps e1, e2 are elementary reversors,

ei(x, y) = (pi(y) − δix, εiy),

where pi(εiy) = δipi(y) and ε2
i , δ

2
i are primitive nth roots of unity.

As we will see in section 4, the reversor is an involution (n = 1) unless the polynomials in the
Hénon maps and the elementary transformations satisfy a common scaling condition. In this
case we will see that ω, ε2

i and δ2
i lie in subsets of the nth roots of unity that we will construct

explicitly.
We also show in section 4 that the maps in theorem 2 can be normalized and that once this

is done the normal forms are unique up to finitely many choices. These details are contained
in the more complete statement, theorem 12.

We finish the paper with a discussion of some examples and their dynamics.
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2. Background

We start by giving some definitions and basic results concerning the algebraic structure of the
group G, presenting our notation and reviewing the work of Friedland and Milnor [3].

2.1. Jung’s theorem

The group G is the group of polynomial automorphisms of the complex plane, the set of
bijective maps

g : (x, y) → (X(x, y), Y (x, y)), X, Y ∈ C[x, y],

having a polynomial inverse. Here, C[x, y] is the ring of polynomials in the variables x and
y, with coefficients in C. In general, we consider the complex case, but in some instances we
will restrict to the case of real maps. The degree of g is defined as the largest of the degrees of
X and Y .

The subgroup E ⊂ G of elementary (or triangular) maps consists of maps of the form

e : (x, y) → (αx + p(y), βy + η), (8)

where αβ �= 0 and p(y) is any polynomial. The subgroup of affine automorphisms is denoted
by A. The affine-elementary maps will be denoted by S = A ∩ E .

We let Ŝ denote the group of diagonal affine automorphisms

ŝ : (x, y) → (αx + ξ, βy + η). (9)

The group Ŝ is the largest subgroup of S normalized by the permutation t (7), i.e. such that
t Ŝt = Ŝ. On the other hand, the centralizer of t in S is the subgroup of maps that commute
with t ,

CS(t) = {s ∈ S : sts−1 = t}.
These are the diagonal automorphisms (9) with α = β and ξ = η. Conjugacy by t will be
denoted by φ,

φ(g) = tgt. (10)

Thus, if s ∈ CS(t), then φ(s) = s.
According to Jung’s theorem [4], every polynomial automorphism g /∈ S can be written as

g = gmgm−1 · · · g2g1, gi ∈ (E ∪ A) \ S, i = 1, . . . m (11)

with consecutive terms belonging to different subgroups A or E . An expression of the
form (11) is called a reduced word of length m. An important property of a map written
in this form is that its degree is the product of the degrees of the terms in the composition
[3, theorem 2.1]. A consequence of this fact is that the identity cannot be expressed as a
reduced word [3, corollary 2.1]. This means that G is the free product of E and A amalgamated
along S. The structure of G as an amalgamated free product determines the way in which
reduced words that correspond to the same polynomial automorphism are related.

Theorem 3 (cf [3, corollary 2.3], or [16, theorem 4.4]). Two reduced words gm · · · g1 and
g̃n · · · g̃1 represent the same polynomial automorphism g if and only if n = m and there
exist maps si ∈ S, i = 0, . . . , m such that s0 = sm = id and g̃i = sigis

−1
i−1.

From this theorem it follows that the length of a reduced word (11) as well as the degrees
of its terms are uniquely determined by g. The sequence of degrees (l1, . . . , ln) corresponding
to the maps (g1, . . . , gm), after eliminating the 1s coming from affine terms, is referred to as
the polydegree of g.

A map is said to be cyclically reduced in the trivial case where it belongs to A ∪ E or
when it can be written as a reduced word (11) with m � 2 and gm, g1 not in the same subgroup
E or A.
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2.2. Conjugacies of polynomial autormorphims

Two maps g, g̃ ∈ G are conjugate in G if there exists f ∈ G such that g = f g̃f −1. If f

belongs to some subgroup F of G, we say that g and g̃ are F-conjugate. It can be seen easily
that every g ∈ G is conjugate to a cyclically reduced map. Moreover, an explicit calculation
shows that every affine map a can be written as a = st s̃, where t is given by (7) and s, s̃ are
affine-elementary maps. From these facts it follows that every polynomial automorphism is
either trivial (i.e. conjugate to an elementary or an affine map) or is conjugate to a reduced
word of the form

g = tem · · · te2te1, ei ∈ E \ S, i = 1, . . . , m, m � 1. (12)

Moreover, this representative of the conjugacy class is unique up to modifications of the maps
ei by diagonal affine automorphisms and cyclic reordering. More precisely, we have the
following theorem (following [16, theorem 4.6]).

Theorem 4. Two nontrivial, cyclically reduced words g = gm · · · g1 and g̃ = g̃n · · · g̃1 are
G-conjugate if and only if m = n and there exist automorphisms si ∈ S, i = 0, . . . , m with
sm ≡ s0 and a cyclic permutation

(ĝm, . . . , ĝ1) = (g̃k, . . . , g̃1, g̃m, . . . , g̃k+1)

such that ĝi = sigis
−1
i−1. In that case,

s0gs−1
0 = ĝm · · · ĝ1.

In particular, if g = tem · · · te1 and g̃ = t ẽm · · · t ẽ1 are conjugate, there exist diagonal
automorphisms si ∈ Ŝ, sm ≡ s0, and a cyclic reordering

(êm, . . . , ê1) = (ẽk, . . . , ẽ1, ẽm . . . , ẽk+1)

such that t êi = si teis
−1
i−1 and

s0gs−1
0 = t êm · · · t ê1.

Proof. Let g = gm · · · g1 and g̃ = g̃n · · · g̃1 be two nontrivial, cyclically reduced conjugate
words. By assumption, there is a reduced word f = fk · · · f1 ∈ G such that g = f g̃f −1. Then,

gm · · · g1 = fk · · · f1g̃n · · · g̃1f
−1
1 · · · f −1

k . (13)

However, the word on the right-hand side of (13) is not reduced. Since g̃ is cyclically reduced,
we can suppose, with no loss of generality, that f1 and g̃1 belong to the same subgroup A or
E , so that f1 and g̃n lie in different subgroups. Taking into account theorem 3 and the fact that
(13) represents a cyclically reduced map, we can reduce (13) to obtain

g̃n · · · g̃1f
−1
1 · · · f −1

k =
{
g̃n · · · g̃k+1s̃k if n � k,

s̃nf
−1
n+1 · · · f −1

k if n < k,
(14)

where s̃n, s̃k ∈ S. Moreover, there exist s̃i ∈ S, s̃0 = id such that g̃i s̃i−1f
−1
i = s̃i , for

i = 1, . . . , min(n, k).
For the case n � k,

gm · · · g1 = fk · · · f1g̃n · · · g̃k+1s̃k

= (s̃−1
k g̃k)g̃k−1 · · · g̃1g̃n · · · g̃k+2(g̃k+1s̃k)

and applying theorem 3, we have the result. The case n < k follows analogously.
To prove the second statement of this theorem, it is enough to recall that given s ∈ S, tst

stays in S if and only if s is diagonal. �
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This implies that the length of a cyclically reduced word is an invariant of the conjugacy
class. Since a nontrivial, cyclically reduced word has the same number of elementary and
affine terms, we refer to this number as the semilength of the word. Theorem 4 also implies
that two cyclically reduced maps that are conjugate have the same polydegree up to cyclic
permutations. We will call this sequence the polydegree of the conjugacy class.

2.3. Generalized Hénon transformations

A generalized Hénon transformation is any map of the form (1) where δ �= 0 and p(y) is a
polynomial of degree l � 2. Note that a generalized Hénon transformation can be written as
the composition

h = te, e(x, y) = (p(y) − δx, y).

If p(y) has leading coefficient equal to 1 (±1 in the case of real automorphisms) and centre
of mass at 0,

p(y) = yl + O(yl−2), (15)

we say that the polynomial is normal and consequently that the Hénon transformation is
normalized. Friedland and Milnor [3] obtained normal forms for conjugacy classes of elements
in G in terms of generalized Hénon transformations; we will call this a Hénon normal form.

Theorem 5 ([3], theorem 2.6). Every nontrivial g ∈ G is conjugate to a Hénon normal form
that is a composition of generalized Hénon transformations, hm · · · h1. Additionally it can be
required that each of the terms hi be normalized and in that case the resulting normal form is
unique, up to finitely many choices.

To prove this result, it is enough to take theorem 4 into account and check that, given a
map g = tem · · · te1, it is possible to choose diagonal affine automorphisms si , i = 1, . . . , m,
in such a way that sm coincides with s0, and for every i, si teis

−1
i−1 is a normalized Hénon

transformation. In the next section we will use the following generalization of theorem 5.

Lemma 6. Given a cyclically reduced map of the form (12), there exist diagonal affine
automorphisms sm, s0 ∈ CS(t), such that

smgs−1
0 = hm · · · h1,

where every term hi is a normal Hénon transformation. The Hénon maps are unique up to
finitely many choices.

Proof. Consider a cyclically reduced map (12), with

tei : (x, y) → (βiy + ηi, αix + pi(y)), i = 1, . . . , m.

We look first for diagonal affine maps si , i = 0, . . . , m, with s0, sm ∈ CS(t) and such that the
maps t êi = si teis

−1
i−1 are Hénon transformations. If we denote

si(x, y) = (u, v) = (aix + bi, ciy + di),

the problem reduces to the set of equations

a0 = c0, b0 = d0, am = cm, bm = dm

and

βiai = ci−1, bi = di−1 − ηiai, i = 1, . . . , m.
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This system can be solved easily in terms of 2m parameters; a particular solution is obtained
by choosing c0 = · · · = cm−1 = 1 and d0 = · · · = dm−1 = 0. We can assume now that the
terms tei in (12) are already Hénon maps but not necessarily in normal form. In that case,

tei : (xi−1, xi) → (xi, xi+1), xi+1 = pi(xi) − δixi−1.

Setting si(xi, xi+1) = (yi, yi+1), yi = aixi + bi , and t êi = si(tei)s
−1
i−1, we have,

t êi : (yi−1, yi) → (yi, yi+1), yi+1 = p̂i(yi) − δ̂iyi−1,

p̂i(y) = ai+1pi

(
y − bi

ai

)
+ const, δ̂i = ai+1

ai−1
δi .

In order to have leading coefficients equal to 1, we need

κiai+1 = a
li
i , i = 1, . . . , m,

where κi is the leading coefficient of pi(y). On the other hand, we require am+1 = am, a1 = a0,
since by assumption sm, s0 ∈ CS(t). It is easy to see that these conditions yield a1 up to lth
roots of unity, where l = l1 · · · lm−1(lm − 1). All other ai are then uniquely determined.
Finally, the coefficients bi , i = 1, . . . , m, can be chosen so that the next to highest order
terms are equal to zero, and we set b0 = b1 and bm+1 = bm to ensure that s0, sm are in the
centralizer of t .

The above arguments also show that the terms t êi are unique up to replacing the
polynomials p̂i(y) and parameters δ̂i with ζ li ···l0 p̂i(y/ζ li−1···l0) and ζ li li−1 δ̂i , respectively, where
ζ is any lth root of unity and l0 = 1. �

2.4. Roots of unity

As the proof of lemma 6 shows, the normal forms for polynomial automorphisms are unique
only up to a scaling by certain roots of unity. In subsequent sections, we will see that symmetric
and reversible automorphisms are associated with several subgroups of the roots of unity. In
anticipation of these results, we provide some notation for these subgroups.

Let U be the group of all roots of unity in C (the points with rational angles on the unit
circle) and Un be the group of nth roots of unity:

Un ≡ {z ∈ C : zn = 1}. (16)

Given a sequence of normal (15) (nonlinear) polynomials p1(y), . . . , pm(y) and some
root of unity ζ , define the set R(ζ ) = R(ζ ; p1(y), . . . , pm(y)) by

R(ζ ) ≡ {ω ∈ C : ωp2i+1(ωy) = ζp2i+1(y), ωp2i (ωy) = p2i (ζy), 1 � 2i, 2i + 1 � m}.
(17)

It can be observed that if ω ∈ R(ζ ), then ω−1 ∈ R(ζ−1), while if ω1 ∈ R(ζ1) and ω2 ∈ R(ζ2),
it follows that ω1ω2 ∈ R(ζ1ζ2). Thus, the set

RE ≡
⋃
ζ∈U

R(ζ ) (18)

is a subgroup of U . Moreover, unless the sequence of polynomials reduces to one monomial,
there are only finitely many ζ ∈ U such that R(ζ ) is nonempty. In this case RE has finite
order; hence it coincides with one of the groups Un. On the other hand, given any ω ∈ RE , the
definition (17) implies that there is a unique

ζ(ω) = ζ such that ω ∈ R(ζ ). (19)
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Now we define the set

RA ≡ {ω ∈ U : pi(ωy) = ωpi(y), i = 1, . . . , m}. (20)

It can be seen that RA is a subgroup of the group of roots of unity U . Moreover, ω ∈ RA iff
ζ(ω) = ω2, i.e. iff ω ∈ R(ω2), so that RA is a subgroup of RE . Note that RA has finite order
for any nonempty sequence of (nonlinear) polynomials.

Finally, we define the subgroup N of RE by

N ≡ {ω ∈ C : ωpi(ωy) = ζpi(y), for some ζ ∈ RA} =
⋃

ζ∈RA

R(ζ ) (21)

and the subgroup of RA defined by

N ′ ≡ {ζ ∈ RA : R(ζ ) �= ∅}. (22)

These groups have the ordering

N ′ ⊆ RA ⊆ N ⊆ RE ⊆ U . (23)

Example 2.1. Given the three normal polynomials

p1(y) = y5, p2(y) = y13 + ay5, p3(y) = y21,

if a �= 0, we find that R(ζ ) is nonempty only for ζ ∈ U4 and that

N ′ = RA = U4 ⊂ N = RE = U8.

On the other hand, if a = 0, then

N ′ = RA = U4 ⊂ N = U8 ⊂ RE = U16.

3. Symmetric automorphisms

In this section we investigate the structure of cyclically reduced words that represent polynomial
automorphisms possessing nontrivial symmetries. We will show that if g is a nontrivial
polynomial automorphism with nontrivial symmetries, then g is conjugate to a map of the
form sjHq . In this form, s is a finite order, affine-elementary symmetry and H is a cyclically
reduced symmetry. This decomposition of g gives rise to a subgroup of Sym(g) isomorphic
to Z × Zn where n is the order of s. Similar subgroups have been found for the particular case
of polynomial mappings of generalized standard form [13].

Using theorem 5, we can, with no loss of generality, assume that g is in Hénon
normal form.

Theorem 7. Suppose that g = hmhm−1 · · · h1 is a polynomial automorphism in Hénon normal
form with a nontrivial symmetry in G. Then there exist diagonal linear transformations s, s̃

such that s has finite order and some integer j such that

g = sj (g̃)q, where g̃ = s̃hr · · · h1, (24)

where s, g̃ are commuting symmetries of g, m = qr , and either s �= id or q �= 1.

Proof. By assumption, there is a nontrivial symmetry f , and by the condition (2), since g

is cyclically reduced, f must be either an affine-elementary map or a nontrivial cyclically
reduced word. The set {gjf n : j, n ∈ Z} is a subgroup of Sym(g). By replacing f with some
convenient element in that subgroup if necessary and using theorem 4, we may assume that
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f = smhk · · · h1, with sm a diagonal affine map, and 0 < k � m. In this case the relation
fgf −1 = g becomes

smhk · · · h1hm · · · hk+1s
−1
m = hm · · · h1.

Since hi = tei , theorem 3 then implies the existence of diagonal affine maps si, i = 0 · · · m−1,
with s0 = sm such that

hi+k = s−1
i hisi−1, (25)

where the indices should be understood mod m.
Let r = gcd(m, k) the greatest common divisor of m and k, and define integers q, p such

that m = qr, k = pr . In this case, there exist integers j and a such that r = jk − am,
where we may assume j, a > 0 [17]. It then follows that r ≡ jk mod m, so that hr+i = hjk+i .
Iterating (25), we obtain

hi+r = s−1
i+(j−1)k · · · s−1

i+ks
−1
i (hi)si−1si−1+k · · · si−1+(j−1)k.

Defining g̃n = hnrhnr−1 · · · h(n−1)r+1, we then obtain

g̃n+1 = s̃−1
n g̃ns̃n−1, for n = 1, . . . , q − 1, (26)

where s̃n = snrsnr+k · · · snr+(j−1)k . Since m = qr , we can use induction on (26) to obtain

g = s̃−1
q−1 · · · s̃−1

1 s̃−1
0 g̃q , (27)

where

g̃ = s̃0hr · · · h1 = s̃0g̃1. (28)

The leading affine-elementary map in (27) is actually the j th power of a simpler map since
r ≡ jk mod m implies that s̃n = snjks(nj+1)k · · · s((n+1)j−1)k . Using this we regroup the q groups
of j terms as j groups of q to obtain

s̃0s̃1 · · · s̃q−1 = (s0sk · · · s(j−1)k)(sjk · · · s(2j−1)k) · · · (s(q−1)jk · · · s(jq−1)k)

= (s0sk · · · s(q−1)k)(sqk · · · s(2q−1)k) · · · (s(j−1)qk · · · s(jq−1)k)

= (s0sk · · · s(q−1)k)
j ,

since qk ≡ 0 mod m. Thus, we have shown that whenever g has a symmetry it has the
form (24), with

s ≡ s−1
(q−1)k · · · s−1

k s−1
0 .

We still have to prove that s ∈ Sym(g). Using (25) and the fact that hm+i = hi allows us
to obtain

hi = s−1
m+i−k · · · s−1

m+i−qk(hm+i−qk)sm+i−1−qk · · · sm+i−1−k.

As qk ≡ 0 mod m, the above relations imply

sm+r−qk · · · sm+r−k(hr · · · h1) = (hr · · · h1)sm−qk · · · sm−k,

which readily yields sg̃ = g̃s. To see that s must be of finite order, note that since g is assumed
to be in Hénon normal form, the relation

shm · · · h1s
−1 = hm · · · h1

means that s is a diagonal linear transformation

s : (x, y) → (a0x, a1y),

which conjugates a normal form to itself. Then, as in lemma 6, the scaling factors a0, a1 must
be roots of unity, so that s has finite order. Similarly, since each of the si are diagonal, so is s̃0.
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To finish, we show that if f is a nontrivial symmetry, then either s �= id or q �= 1. To see
this, we observe that (26) gives

f = smhk · · · h1

= sm(s̃−1
p−1 · · · s̃−1

0 )(s̃0hr · · · h1)
p

= sag̃p,

where we used k = pr and jk ≡ r mod m. Therefore if q = 1, then m = r = k and p = 1,
so that when s = id then f = g̃ = g is a trivial symmetry. �

Note that since s has finite order and is a diagonal linear map, then if it is real it must be
an involution.

From this theorem we see that every polynomial automorphism that possesses nontrivial
symmetries and is not the q-fold iteration of a nontrivial automorphism must have nontrivial
symmetries conjugate to affine-elementary maps. In the case of a map given in Hénon
normal form, it is not difficult to establish the conditions under which the group of such
symmetries is nontrivial.

Proposition 8. If s is an affine-elementary symmetry of the Hénon normal form map g =
hm · · · h1, then s = sω, where

sω(x, y) =
(

ζ(ω)

ω
x, ωy

)
, ω ∈ Uk, (29)

where Uk = RE if m is even and Uk = RA if m is odd. Thus, the set of affine-elementary
symmetries is a cyclic group isomorphic to Uk .

Proof. According to theorem 3, s ∈ S is a symmetry if and only if there exist maps si ∈ Ŝ,

i = 0, . . . , m, s0 = sm = s, such that

sihis
−1
i−1 = hi. (30)

Moreover, given that g is in normal form, each of the maps si must be of the form
si(x, y) = (aix, ai+1y). In that case (30) translates into the conditions

ai−1 = ai+1, a0 = am,

pi(aix) = ai+1pi(x).

When m is even, we must have a2k+1 = ω and a2k = ζ(ω)/ω for ω ∈ RE , and ζ(ω) is defined
by (19). Thus, s = s0 has the promised form. Since ζ(ω2) = (ζ(ω))2, the set of symmetries
s ∈ S is a cyclic group isomorphic to RE .

In a similar way, if m is odd, all ai must be equal to some ω ∈ RA, (20), so that
s(x, y) = (ωx, ωy). Moreover, since ζ(ω) = ω2 for ω ∈ RA, the symmetries s ∈ S are
of the promised form, and they form a cyclic group isomorphic to RA. �

Finally, as a corollary to these results we can prove a more complete statement of theorem 1.

Corollary 9. Suppose g is a polynomial automorphism of the plane that possesses nontrivial
symmetries. Then g is conjugate to a map of the form

sj
ω(H)q,

where H = hnhn−1 · · · h1 is a composition of normal generalized Hénon maps (1), and sω is
given by (29), where ω ∈ RE(p1(y), . . . , pn(y)) if n is even and ω ∈ RA(p1(y), . . . , pn(y))

if n is odd, and j is an integer. The normal form has commuting symmetries sω and H , and
either ω �= 1 or q �= 1.
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Proof. According to theorem 7, g is conjugate to sj (s̃H)q , where s is a symmetry of H . Using
theorem 5, we can conjugate this map with a new diagonal-affine transformation to normalize
the map s̃H . The conjugacy commutes with s since both are diagonal, and according to
proposition 8, s has the promised form. �

4. Reversible automorphisms

In [15] we described conjugacy classes for polynomial automorphisms that are reversible by
involutions. Although the involution condition appears in a natural way in many cases and it
was originally one of the ingredients in the definition of reversible systems [5], this requirement
can be relaxed. Indeed, many of the features still hold in the more general case (see, e.g. [8] for
further discussion). Moreover, all maps with an involutory reversor are reversible in the more
general sense. Finally, it is certainly true that there exist reversible maps that do not possess any
involution as a reversor; see for example [9]. We begin by showing that the general reversor
in G is conjugate to one that is affine or elementary. Then we will show that every reversor in
G is of finite order. Finally we prove the main theorem.

4.1. Affine and elementary reversors

Lemma 10. If g ∈ G is nontrivial and reversible, then it is conjugate to an automorphism g̃

that has an elementary or an affine reversor. If the semilength of g is odd, then g̃ has an affine
reversor.

Proof. Following (12), we may assume that g = tem · · · te1 is written as a cyclically reduced
word. Similarly let R be the reduced word for a reversing symmetry of g. Since both g and
g−1 = R−1gR are cyclically reduced, then unless R is in A ∪ E , it cannot be a cyclically
reduced map. Recall that if R is a reversor for g so are the maps Rgj and that they have the
same order as R if this order is even. Thus without loss of generality, we can assume that
R is shorter than g; otherwise as in the proof of theorem 4, there is an R̃ = Rgj for some
j ∈ Z such that R̃ is shorter than g and is also a reversor. Moreover, by replacing R with Rg

if necessary, we can assume that

R = s−1
0 ekt · · · te1, s0 ∈ Ŝ, k < m, s0 ∈ Ŝ. (31)

Following theorem 4 and given that g = Rg−1R−1, there must exist maps si ∈ Ŝ such that
te−1

i∗ = si teis
−1
i−1 for i∗ = k − i + 1 and i = 1, . . . , m, where the indices are taken modulus m.

Consider then the map ĝ = fgf −1, where f = teν · · · te1, and k = 2ν or k = 2ν + 1. Then a
simple calculation shows that ĝ has a reversor R̂ = f Rf −1 that is either s−1

ν t when k is even
or s−1

ν eν+1 when k is odd. Thus ĝ is conjugate to g and has a reversor in A ∪ E .
Now suppose that the semilength of the conjugacy class is odd and that g = te2k+1 · · · te1

has an elementary reversor, R = s−1
0 e1. Reordering terms, we see that the map

ĝ = tek+1 · · · te2te1te2k+1 · · · tek+2

has an affine reversing symmetry R̂, conjugate to some reversor in the family Rgj .
Therefore in the case of conjugacy classes of odd semilength we may always assume affine
reversors. �
Remark. Along the same lines of the proof of the previous lemma, it can be seen that if R

is any reversor of a cyclically reduced, nontrivial automorphism g, then R can be written as
R0g

j for some j ∈ Z and R0 shorter than g. Since (R0g
j )2µ+1gl = R

2µ+1
0 gj+l , it follows that

the reversors generated by R0g
j form a subset of the family generated by R0.
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We can go further by conjugating with maps in S and replacing g by its inverse if necessary,
so that g can be taken to have the form (12), and R0 the form (31). Then, a short calculation
shows that the reversors generated by R0 are of the form

R = R
2µ+1
0 gj = (s−1

0 ts
−2µ

k ts−1
0 )ekt · · · te1g

j , s0, sk ∈ Ŝ,

whenever the index µ � 0. For negative µ, a similar result follows; however, if the reversor has
finite order, it is enough to consider only one of these possibilities. Now, since s0, sk ∈ Ŝ, the
term inside the parenthesis in the above expression reduces to an elementary-affine map. When
j � 0, no further simplifications are possible, so that the reduced word that represents R has
length 2k − 1 if the length is considered modulus 2m. For j < 0, an additional simplification
yields

R = (s−1
0 ts

−2µ

k ts−1
0 )te−1

k+1 · · · e−1
m tgj+1,

so that, modulus 2m, the length of the word becomes 2(m − k) + 1. We can conclude that
if any two reversors of a nontrivial, cyclically reduced map belong to a common family, then
their modulus 2m lengths must coincide or be complementary (i.e. their sum is equal to 2m).

4.2. Finite-order reversors

We now show that reversors in G have finite order. Recall that when R is a reversing symmetry
for g, each of the maps (5) is also a reversor and that whenever that R has finite order, the order
must be even, unless g is an involution.

Theorem 11. Every polynomial reversor of a nontrivial, polynomial automorphism has finite
even order. In the case of real transformations the order is 2 or 4.

Proof. Following theorem 5, we may assume that g is in Hénon normal form and from
lemma 10 that R is an affine or an elementary reversing symmetry for g. Now, it is easy to
see that if R is affine, R = s−1

0 t , and if R is elementary, R = s−1
0 e1, for some s0 ∈ Ŝ and

e1(x, y) = (p1(y) − δ1x, y) a normalized elementary map. The condition g = Rg−1R−1 is
then equivalent to the existence of diagonal linear maps, si(x, y) = (aix, ai+1y), sm = s0,
such that

te−1
i∗ = si teis

−1
i−1, where

{
i∗ = m − i + 1, R affine,
i∗ = m − i + 2, R elementary.

(32)

Here the indices are understood modulus m. This in turn means that

δiδi∗ = ai−1

ai+1
= a(i+1)∗

a(i−1)∗
, pi∗(aiy) = δi∗ai+1pi(y), i = 1, . . . , m.

(33)

Defining ωi = aiai∗ , then (33) implies

ωi = ωi∗ , ωi−1 = ωi+1, pi(ωiy) = ωi−1pi(y), i = 1, . . . , m.
(34)

Thus all the odd ωi are equal, as are all the even ωi . Furthermore ωm ≡ ω0. It follows that
when R is affine or when the semilength of g is odd, all the ωi coincide. Then (34) implies
that all ωi are primitive roots of unity of the same order. The proof is complete upon noting
that R2(x, y) = (x/ω0, y/ω1), which means that R has order 2n, where n is the order of ωi .
It can be observed that (34) implies that 2n must be a factor of 2(li li−1 − 1), for all indices i.
Finally we see that R is real only if ω0, ω1 = ±1, so that the order of R is 2 or 4. �

It is not hard to find normal forms for elementary and affine reversors.
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Definition (normalized elementary reversor). An elementary map of the form

e : (x, y) → (p(y) − δx, εy), p(εy) = δp(y) (35)

with p(y) a normal polynomial and ε2, δ2 some primitive nth roots of unity, will be called a
normalized elementary reversor of order 2n. Note that e2 = (δ2x, ε2y).

Definition (normalized affine reversor). Given any primitive nth root of unity ω, the map

τω : (x, y) → (ωy, x) (36)

is a normalized affine reversor of order 2n. Note that τ 2
ω = (ωx, ωy).

These normal forms will form the building blocks of the conjugacy classes of reversible
automorphisms.

Let us suppose now that the map g = hm · · · h1 is in Hénon normal form and that it has
either an elementary or an affine reversing symmetry of order 2n. In that case the proof of
theorem 11 implies there exist some primitive nth roots of unity, ω0 and ω1, that solve (34).
Comparing this with (17), we see that ω1 ∈ R(ζ ) for ζ = ω0ω1. Since ω1 generates Un, and
RE (18) is a group containing R(ζ ), this implies that Un ⊆ RE . If in addition the reversor is
affine, then ω0 = ω1, so that ω1 ∈ RA (20), which implies that Un ⊆ RA.

Reversibility imposes stronger conditions than are apparent in (34) for some cases. This
occurs for words with even semilength that have an elementary reversor and for words with
odd semilength (in this case, as we noted in lemma 10 we can assume that there is an affine
reversor). We note that i∗ = i for i = k + 1 if the reversor is affine and m = 2k + 1, while this
identity follows for i = 1, k + 1 if the reversor is elementary and m = 2k. For such indices,
(33) implies the existence of some constants ε̂i and δ̂i such that

pi(ε̂iy) = δ̂ipi(y), ε̂2
i = ωi, δ̂2

i = ωi−1, (37)

where the constants ωi also satisfy (34) for the corresponding indices.
We can use (34) and (37) to construct reversible maps. Let us suppose, for example, that

we have k normalized Hénon transformations, h1(y), . . . , hk(y), a normal polynomial pk+1(y),
and a nth root of unity ω ∈ RA(p1(y), . . . , pk+1(y)) such that (37) holds for i = k + 1 if we
set ωk = ωk+1 = ω. Then it is possible to choose the coefficient δk+1 and the remaining Hénon
transformations in such a way that the map g = h2k+1 · · · h1 has an affine reversing symmetry
of order 2n. Furthermore, the number of possible choices is finite. As similar statements
follow in the other cases, we have a way of generating all conjugacy classes for reversible
automorphisms. These conditions also enables us to give an explicit description of conjugacy
classes for reversible automorphisms as well as to provide normal forms, as we show next.

4.3. Normal form theorem

We are now ready to prove the main result, which was given in the introduction as theorem 2.
Given the previous lemmas, we can now restate the result here in more detail.

Theorem 12. Let g be a nontrivial automorphism that possesses a reversor of order 2n, and
ω be any primitive nth root of unity. Then g is conjugate to a cyclically reduced map of one of
the following classes:

RAA τ−1
ω (h−1

1 · · · h−1
k )τω(hk · · · h1), ω ∈ RA(p1(y), . . . , pk(y)),

RAE τ−1
ω (h−1

1 · · · h−1
k )ek+1(hk · · · h1), ω ∈ RA(p1(y), . . . , pk+1(y)),

REE e−1
1 (th−1

2 · · · h−1
k )ek+1(hk · · · h2t), ω ∈ RE(p1(y), . . . , pk+1(y)),
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where

• the maps hi are normalized Hénon transformations,
• τω is the normalized affine reversor (36), and
• if (ωi) is the sequence defined by ω1 = ω, ω2 = ζ(ω)/ω, ωi+1 = ωi−1, then the maps

e1, ek+1 are normal elementary reversors (35), with ε2
i = ωi , δ2

i = ωi−1.

Furthermore, these normal forms are unique up to finitely many choices.
Conversely, τω is a reversing symmetry for any map having normal form RAA or RAE,

while e1 is an elementary reversor for any map of the form REE.

Proof. We consider the conjugacy class of a polynomial automorphism g = tem · · · te1,
having a reversing symmetry R0, of order 2n. We may assume that g is given in Hénon normal
form and according to lemma 10 that R0 is affine or elementary. Moreover, when m is odd
it may be assumed that R0 is affine. Then R0 is of the form s−1

0 t or s−1
0 e1 for some scaling

s0 : (x, y) → (a0x, a1y). Throughout the present discussion we continue using the notation
introduced in theorem 11. In particular we know that the polynomials pi(y) satisfy (34).
Moreover, if R0 is affine and m = 2k + 1, the polynomial pk+1(y) also satisfies (37), while if
R0 is elementary and m = 2k, this condition is satisfied by p1(y) and pk+1(y).

We discuss the case R0 affine; the case that R0 is elementary follows in a similar way.
Note that if R0 is affine then R0 = ŝ0τ

−1
ω ŝ−1

0 for ω = a0a1 and some diagonal linear map ŝ0.
Letting m = 2k or m = 2k + 1, then (32) implies that

g = (s−1
0 t)(e−1

1 t · · · te−1
k [te−1

k+1]sktek · · · te1) = R0R1,

where the term in brackets is absent if m = 2k. Note that R1 is also a reversing symmetry of
order 2n, conjugate to either skt ifm is even or to e−1

k+1sk = φ(sk+1)ek+1 whenm is odd. In the first
of these cases we also note that there exists a diagonal linear map ŝk such that skt = ŝkφ(τω)ŝ−1

k .
In the second case, note that the map ẽk+1 = e−1

k+1sk is an elementary reversor of the form (35),
except that the polynomial pk+1(y) may not be normalized. Therefore g is S-conjugate to a
map of the form

τ−1
ω e−1

1 t · · · te−1
k t[ek+1][τω]tek · · · te1, (38)

where some of the maps tei have been modified, but only by scalings of their variables, so that
the polynomials pi(y) still have centre of mass at 0. Furthermore, ek+1 is a (not necessarily
normalized) elementary reversor of the form (35), with ε2

k+1 = δ2
k+1 = ω. Finally, the brackets

indicate the terms that may be omitted, depending on m odd or even.
We can now replace each of the maps tei , i = 1, . . . , k, with normalized Hénon

transformations, as well as the maps e−1
i t with the corresponding inverses, by applying lemma 6

to f = tek · · · te1. In this case, the conjugating maps turn out to be linear transformations.
Note that the diagonal linear maps that commute with t also commute with any τω and that the
only effect of the conjugacies we apply on ek+1 is to rescale the polynomial pk+1(y). In this way
we obtain a map of the form (38), conjugate to g, where each of the terms tei , i = 1, . . . , k, is
a normalized Hénon transformation. For the even semilength case, this already shows that g

is conjugate to a map of the form RAA for some nth root of unity ω ∈ RA(p1(y), . . . , pk(y)).
When m is odd, we still have to normalize ek+1 to make the leading coefficient of

pk+1(y) = 1. This can be achieved by choosing some convenient scalings

si : (x, y) → (aix, ai+1y), i = 0, . . . , k, (39)

φ(s0) = s0, to replace tek+1 with φ(sk)tek+1s
−1
k and then each of the terms tei with si teis

−1
i−1,

while the corresponding te−1
i are replaced by φ(si−1)te

−1
i φ(s−1

i ) = φ(si teis
−1
i−1)

−1. It is not
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hard to see that appropriate coefficients ai can be chosen to give the normal form and that they
are unique up to lth roots of unity, with l = l1 · · · lk−1(lklk+1 − 1).

We still need to show that we can replace ω in these expressions with any given root of
unity of order n and that the forms thus obtained are uniquely determined up to finitely many
possibilities.

Let us consider the case of normal form RAA. Using theorem 4, we see that the terms tei

can be modified only by scalings of the variables since we require these terms to stay normal.
If we apply to the terms te−1

i the images under the isomorphism φ of the transformations we
use to modify tei as we did to obtain the normal forms, the structure of the word is preserved
and the parameter ω does not change either. In the more general case we may replace tei

with t êi = si teis
−1
i−1, si given by (39), while for i = 2, . . . , k − 1, te−1

i is replaced by
t ê−1

i = s̃i−1te
−1
i s̃−1

i ,

s̃i : (x, y) → (ãi+1x, ãiy), i = 1, . . . , k − 1.

In this case, and if k � 2, it follows that t (e−1
k tτω) must be replaced by t (ê−1

k tτω̂) =
s̃k−1te

−1
k tτωs−1

k , while τ−1
ω e−1

1 becomes replaced with τ−1
ω̂

ê−1
1 = s0τ

−1
ω e−1

1 s̃−1
1 . If k = 1

we have to replace τ−1
ω e−1

1 tτω with τ−1
ω̂

e−1
1 tτω̂ = s0τ

−1
ω e−1

1 tτωs−1
1 .

For the structure of the word to remain unchanged, we need

ã1 = a0, λi−1 = λi+1, and pi(λiy) = λi+1pi(y), (40)

where i runs from 1 to k, ãk+1 is defined to be equal to ak , and λi = ãi/ai for i = 1, . . . , k + 1,
while λ0 is just defined to be equal to λ2. We also note that then ω̂ = λ1λ2ω. Now,
for the map ĝ obtained in this way, to be in normal form, it is also necessary that ω̂

lies in RA = RA(p̂1(y), . . . , p̂k(y)) = RA(p1(y), . . . , pk(y)). It follows that if we set
ζ = λ1λ2 = ω̂/ω, ζ is also an element of the group RA.

We thus have the result that the solutions (λ1, λ2) of (40), yielding alternative normal
forms for g, are of the form (λ, ζ/λ), for some ζ ∈ RA and λ ∈ R(ζ ). Therefore to obtain
all possible normal forms it suffices to consider all λ ∈ N (21) and set λ1 = λ, λ2 = ζ(λ)/λ.
The requirement that the polynomials p̂i(y) have leading coefficients equal to 1 allows us to
determine the coefficients ai, ãi up to lth roots of unity for l = l1 · · · lk−1(lk − 1). If N = Ud

(23), all possible normal forms arise by taking a1 as any (ld)th root of unity, and λ as al
1.

We show now that ω̂ can be chosen as any primitive nth root of unity. Note that the
possible ω̂ are of the form ζω for some ζ ∈ N ′. We know that for any ω ∈ RA, R(ω2) is a
nonempty set since it contains ω. Let us denote by R2

A the subgroup of RA that consists of
elements of the form ω2, ω ∈ RA. It then follows that R2

A is a subgroup of N ′. Now, given
that RA = Ur for some r , it is not difficult to see that R2

A is a maximal subgroup of RA if r is
even, while RA = R2

A if r is odd. In the last case, and in general whenever N ′ = RA, we see
that g can be written in normal form with ω replaced by any rth root of unity and in particular
by any primitive nth root of unity.

However, if RA has even order, it is possible that N ′ reduces to R2
A �= RA, and then it is

no longer clear that ω̂ can be chosen as an arbitrary nth root of unity. A short calculation shows
that ω̂ can still be taken as any nth root of unity as long as the number r/n is even. When
r/n is odd, the only admissible nth roots of unity are the numbers exp (i2πν/n), with ν odd.
In particular all primitive nth roots of unity are still possible, but ω̂ cannot be taken as equal
to 1, i.e. g lacks involutory reversing symmetries associated to this normal form. It is still
possible that there exist involutory reversors, though corresponding to a different reordering
of the terms, in the case where the map has other families of reversing symmetries.

In the case of normal form RAE, condition (40) should hold for i = 1, . . . , k + 1 (although
ãk+1 is not necessarily equal to ak) if λk+2 is defined to be equal to λk . We still have ω̂ = λ1λ2ω,
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but we need in addition that

ε̂k+1 = λk+1εk+1, δ̂k+1 = λkδk+1, ε̂2
k+1 = δ̂2

k+1 = ω̂.

These conditions imply that the solutions (λ1, λ2) for (40) yielding normal forms for g must
be of the form λ1 = λ2 = λ for some λ ∈ RA. In other words, the set N becomes RA, while
N ′ becomes R2

A. The statements about admissible ω̂ then follows, basically unchanged.
We can make analogous considerations for normal form REE. The possible normal forms

are obtained in this case by considering any λ ∈ RE . If we set λ1 = λ and λ2 = ζ(λ)/λ,
the remaining λi become determined by λi+1 = λi−1. Once λ is fixed, the requirement that
all polynomials pi(y) be normal determines the coefficients ai, ãi up to lth roots of unity,
l = l1 · · · lk−1(lklk+1 − 1). Additionally, we have

ε̂i = λiεi, δ̂i = λi−1δi, ε̂2
i = ω̂i , δ̂2

i = ω̂i−1, i = 1, k + 1.

In that case ω̂1 = λ2
1ω1. Therefore, the possible ω̂1 are of the form ζω1, with ζ ∈ R2

E . With
respect to which ω̂ are allowed, there follow conclusions similar to those obtained in the case
of normal form RAA after replacing N with RE and N ′ with R2

E .
Finally, the last assertion of the theorem follows by direct calculation. �

Corollary 13. A map f ∈ A ∪ E is a reversing symmetry for some nontrivial, cyclically
reduced automorphism g ∈ G if and only if f is S-conjugate to either a normalized affine
reversor or to a normalized elementary reversor.

Corollary 14. Every polynomial involution is conjugate to one of the normal involutions
(i) (x, y) → (p(y) − x, y), p(y) a normal polynomial, (ii) (x, y) → (p(y) − x, −y), p(y)

normal and even, (iii) (x, y) → (p(y)+x, −y), p(y) normal and odd, and (iv) (x, y) → (y, x).

Proof. Every involution is a reversing symmetry for some nontrivial automorphism. �

Corollary 15. An elementary, nonaffine map

e : (x, y) → (p(y) − δx, εy + η) (41)

is a reversing symmetry of a nontrivial, cyclically reduced map in G if and only if it has finite
even order 2n, e2 ∈ S, and ε2, δ2 are primitive nth roots of unity.

On the other hand, an affine, nonelementary map

a : (x, y) → â(x, y) + (ξ, η), (42)

â a linear transformation, is a reversing symmetry of a nontrivial, cyclically reduced map in
G if and only if it has finite even order 2n and a2 ∈ S.

Proof. That these conditions are necessary follows easily from corollary 13. To
see the sufficiency, we prove that elementary (respectively affine) maps satisfying such
conditions are S-conjugate to normalized elementary reversors (respectively normalized affine
reversors).

Let us consider the case of an elementary map (41) of order 2n, such that ε2, δ2 are
primitive nth roots of unity and e2 is an affine transformation. It is not difficult to see that the
condition e2n = id implies that if η �= 0 then ε �= 1. This observation allows us to prove that e

can always be conjugated to an elementary map (41) having η = 0. Moreover, the conjugating
maps can be chosen in CS(t).
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Next, we see that when η = 0 the conditions e2 ∈ S, e2n = id reduce to the fact that
ε2n = δ2n = 1 plus the existence of some constants A and B such that

p(εy) − δp(y) = Ay + B,

A(δ2n−2 + δ2n−4ε2 + · · · + ε2n−2) = 0,

B(δ2n−2 + δ2n−4 + · · · + 1) = 0.

Straightforward calculations then show that it is possible to choose maps in S that conjugate e

to a normalized elementary reversor. It may be interesting to note that if ε2 �= δ2 the condition
e2n = id may be omitted and still it can be granted that e is an elementary reversor of order 2n.

The case of affine reversors can be worked out in a similar way. It is convenient to prove
first that, under the given conditions, an affine map is S-conjugate to its linear part. To obtain
this result it is useful to treat the cases n = 1 and n � 2 separately. If n � 2, the conditions
a2n = id , a2 ∈ S (a nonelementary) are equivalent to â2 = ω(id), where ω = − det â is
a root of unity of order n. When n = 1 we need, in addition, that the vector (ξ, η) be an
eigenvector of â with associated eigenvalue −1. Finally, it is not difficult to check that a linear,
nonelementary map â of order 2n that satisfies the hypothesis â2 ∈ S, is S-conjugate to τω for
ω = − det â. �

Corollary 16. A polynomial automorphism is reversible by involutions in G if and only if it
is conjugate to any of the normal forms RAA, RAE, and REE, with ω = 1, so that e1 and
ek+1 are normal elementary involutions and hi , i = 1, . . . , k, are arbitrary normal Hénon
transformations.

Corollary 17. A real polynomial automorphism has real reversors in G if and only if it is
reversible by involutions, so that it is conjugate to one of the (real) normal forms RAA, RAE,
and REE, with ω = 1, or if it has a reversing symmetry of order 4 and is conjugate to a
normal form map RAA, with ω = −1, so that the maps hi represent normal, real, Hénon
transformations whose respective polynomials pi(y) are odd.

Proof. We noted earlier that the only possible real, reversing symmetries are of order 2 or 4.
However, there are no elementary, real, reversing symmetries of order 4 since this would imply
that e is of the form (41), with ε2, δ2 primitive square roots of unity. Therefore the only possible
normal form for a real map with a real reversor of order 4 is RAA, with ω = −1. �

5. Examples

In this section we illustrate some of the concepts and results of sections 3 and 4. We present
several examples to illustrate the general theory. We do not assert that these examples are
necessarily new, they are merely illustrative—examples of maps with nontrivial symmetry
groups are well known (see, e.g. [18]). Examples of maps with noninvolutory reversors have
been presented before; for example, Lamb found ‘modified Townsville’ maps with a reversor
of order 4n + 2 for any n—these maps also have involutory reversors [9]. In addition, Roberts
and Baake have shown that ‘generalized standard maps’, a particular case of semilength-2
maps, can have fourth-order reversors [13].

For the case of semilength-1, i.e. a single generalized Hénon map on C
2, (1), the structure

of the reversing symmetry group is well known. As shown in proposition 8, there is an affine-
elementary symmetry S(x, y) = (ωx, ωy) for any ω ∈ RA = {ω : p(ωy) = ωp(y)}. Since
we can take ω to generate RA, and S and h commute, Sym(h) = 〈h〉 × 〈S〉 � Z × RA. For
example, when p(y) is odd, the Hénon map has the reflection symmetry S(x, y) = (−x, −y).
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Table 1. Conditions for a semilength-2 Hénon normal form map, g = h2h1, to have symmetries
or be reversible. Here, the symmetry sω(x, y) = ((ζ(ω)/ω)x, ωy) is order k, and the reversors τω

and ei are order 2k, where k is the order of ω.

Case Normal form Symmetries Conditions on δi Conditions on pi(y)

ω ∈ RE (p1(y), p2(y))

SE sωh2h1 sω Arbitrary Arbitrary

REE ê−1
1 t ê2t ê1, ê2 δ2

1 = δ2
2 = 1 p1(ε̂1y) = δ1ε̂2p1(y), ε̂2

1 = ω

p2(ε̂2y) = δ2 ε̂1p2(y)

ω ∈ RA(p1(y), p2(y))

SA sωh2 sω, h δ1 = δ2 cp2(cy) = ωp1(y)

RAA τ−1
ω h−1τωh τω δ1δ2 = 1 cp2(cy) = δ2ωp1(y)

The reversible cases of (1) can be obtained using (33). When δ �= ±1, there are no
reversors, so that Rev(h) = Sym(h). If δ = 1, then h has the involutory reversor t , which
commutes with S so that Rev(h) = Sym(h) � 〈t〉 = (〈h〉 � 〈t〉) × 〈S〉. The case δ = −1 is
reversible with reversor R(x, y) = (εy, εx), provided there is a solution of p(εy) = −εp(y).
There are two possibilities: if p(y) is even, then ε = −1 is such a solution, and there is an
involutory reversor R1(x, y) = −(y, x). In this case the group has the same structure as for
the case δ = 1, except that t should be replaced by R1 (for the real case this is the same as
table 5 of [13]). Otherwise the reversors, if they exist, are complex and noninvolutory. In this
case there is an ε such that the group 〈R〉 � Z2k gives all affine-elementary symmetries and
reversors, where k is the order of RA. Thus, we can write Rev(h) = 〈h〉 � 〈R〉 � Z � Z2k .

Thus, we conclude that the symmetries of the generalized Hénon map are:

(a) δ = 1 ⇒ Rev(h) = (〈h〉 � 〈t〉) × 〈S〉,
(b) δ = −1 and p(y) is even ⇒ Rev(h) = (〈h〉 � 〈R1〉) × 〈S〉,
(c) δ = −1, k is even, and there is a solution of p(εy) = −εp(y) ⇒ Rev(h) = 〈h〉 � 〈R〉,
(d) and in all other cases Rev(h) = Sym(h) = 〈h〉 × 〈S〉.
Here 〈h〉 � Z, 〈S〉 � RA � Zk , 〈t〉 � Z2, 〈R1〉 � Z2, and 〈R〉 � Z2k , where k is the
order of RA.

Similarly the symmetries for the complex, semilength-2 case, g = h2h1, are also easily
found; the results are given in table 1. There are two possible forms, SE and SA, corresponding
to the groups RE and RA, respectively. For example, in case SE, there is a symmetry
s(x, y) = (ζ(ω)x/ω, ωy) for any ω ∈ RE . If RA is trivial or δ1 �= δ2, then there are no
other nontrivial symmetries, so that Sym(g) � Z × RE . However, when δ1 = δ2, then there
can be additional nonaffine symmetries corresponding to case SA, provided the polynomials
p1(y) and p2(y) are related by the scaling shown in the table.

According to theorem 12, there are also two possible reversible cases of semilength-2,
corresponding to normal forms RAA and REE. The conditions for the existence of these can
by found by using (33); they are also given in table 1. Thus, for example, when there is a
normal form RAA, the polynomials in h1 and h2 must be identical up to a scaling. Moreover,
if there are noninvolutory reversors, then the group RA must be nontrivial, which implies that
pi(y) = yqi(y) for some polynomials qi(y) such that the degrees of their nonzero terms are
not coprime.

Whenever a reversible map has a noninvolutory reversor, then it also has nontrivial
symmetries. For example, for the case RAA in table 1, a noninvolutory reversor corresponds
to ω ∈ RA\{1}. In this case τ 2

ω = sω is a symmetry since ω ∈ RA ⊂ RE . If in addition
δ1 = δ2 = 1, then e−1 = e, and the map has a ‘square root’ and consequently a symmetry of
the form s̃h.
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For longer words the degrees of the terms can be useful as an indication of which terms
may be centres of symmetry since the normal forms in theorem 12 have polydegrees that are
symmetric about the centres and the polydegree of a cyclically reduced word is a conjugacy
invariant. However, explicit conditions analogous to those in table 1 are more difficult to write.

Finally, we give several examples to illustrate table 1.

Example 5.1. As an example, consider the composition of two cubic Hénon maps on C
2,

g = h2h1, where

h1(x, y) = (y, y3 + ay − δ1x), h2(x, y) = (y, y3 − ay − δ2x), (43)

for a �= 0. If all the coefficients in the maps are real, then the real plane is an invariant subspace
for g, otherwise g is fully complex. For (p1(y), p2(y)),

N ′ = R2
E = {1} ⊂ RA = RE = U2.

Since RE is nontrivial, this system has symmetries of the form SE; indeed, since ζ(ω) = 1,
the affine transformation S1(x, y) = (−x, −y) is a symmetry. If δ1 �= δ2, all symmetries are
of the form Sa

1 gp, and so Sym(g) = 〈g〉 × 〈S1〉 � Z × Z2. If, however, δ1 = δ2 = δ, then
since ip2(iy) = p1(y), there are symmetries of the form SA. We find that g = (S2)

2, with the
symmetry S2(x, y) = (−iy, ip1(y) − iδx). As the group generated by S2 is still isomorphic
to Z, we have Sym(g) = 〈S2〉 × 〈S1〉 � Z × Z2.

There are two possible reversible cases for g. When δ2
i = 1, table 1 shows that g potentially

can be put in normal form REE. The scaling relations imply that δ1 = δ2 = δ = ±1 for this
to be the case. Then R1(x, y) = (p1(y) − δx, δy) is an involutory reversor and generates a
family (5) of reversors that contains all reversors with this ordering.

When δ1δ2 = 1, (43) potentially has a reversor with normal form RAA. In this case the
scaling relations also require δ1 = δ2 = δ = ±1, and there is a reversor R2(x, y) = (−iδy, ix).
When δ = 1, R2 is an involution; however, when δ = −1, it is order 4 and R2

2 = S1. In both
cases, δ = ±1, there is an involutory reversor, R1; therefore, every reversor can be written as
the composition of a symmetry and R1; for example, R2 = S2R1.

Thus, we conclude that there are three distinct cases:

(a) δ1 = δ2 ∈ U2 ⇒ Rev(g) = (〈S2〉 × 〈S1〉) � 〈R1〉,
(b) δ1 = δ2 �∈ U2 ⇒ Rev(g) = Sym(g) = 〈S2〉 × 〈S1〉,
(c) δ1 �= δ2 ⇒ Rev(g) = Sym(g) = 〈g〉 × 〈S1〉,

where 〈S2〉 � Z, 〈S1〉 � Z2, and 〈R1〉 � Z2.

Example 5.2. Let g = h2h1, where

h1(x, y) = (y, y3 + x), h2(x, y) = (y, y3 − x).

In this case the associated groups of roots of unity are larger:

N ′ = RA = U2 ⊂ R2
E = U4 ⊂ N = RE = U8

and ζ(ω) = ω4. Table 1 shows that the nontrivial symmetries are generated by S1 = (ω3x, ωy)

with ω = ei(π/4) a primitive, eighth root of unity and 〈S1〉 � U8. Since δ1 �= δ2, there are no
symmetries of the form SA. Thus Sym(g) = 〈g〉 × 〈S1〉 � Z × Z8.

Since δ1δ2 �= 1, g cannot be written in the form RAA; however, it can be written in the form
REE, for ε̂8

1 = −1. The reversors are generated by R1(x, y) = (ε̂1(y
3 + x), ε̂3

1y), a 16th order
reversor. Note that R2

1 = S1 and that R1 commutes with S1. Thus Rev(g) = 〈g〉 � 〈R1〉 �
Z � Z16.

Note that R2
E = U4, so that ω in the RAA normal form may be replaced only by primitive

eighth roots of unity. Thus, there are no real normal forms, and though g is reversible in the
group of complex automorphisms, it lacks real reversors.
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Example 5.3. Consider the case where g = h2, where h is a normal Hénon transformation.
Symmetries of the form SE correspond to maps Sjgp, with S a generator of the group of
affine-elementary symmetries of g, that is S = sω for ω of maximum order in RE .

Symmetries of the form SA correspond to maps sg̃p, where s is an affine-elementary
symmetry of g and g̃ = s̃h is a symmetry of g that commutes with s. It turns out that
s is also in Sym(h), so that s = sω for some ω ∈ RA. Moreover, since h ∈ Sym(g),
it follows that s̃ also belongs to Sym(g), so that s̃ = sω for some ω ∈ RE . Thus, we
can conclude that Sym(g) = 〈S, h〉. If RA = RE , then S is a symmetry of h, and so
Sym(g) = 〈S〉 × 〈h〉 � Zk × Z. On the other hand, if RA �= RE , S is not a symmetry of h,
and unlike the previous examples, Sym(g) is a nonAbelian group. In this case, however, 〈S〉
is a normal subgroup of Sym(g), so that Sym(g) = 〈S〉 � 〈h〉 � Zk � Z.

According to table 1, the existence of reversors of the form REE requires δ2 = 1 plus
some scaling conditions on the polynomial p(y). The associated reversors are in that case of
the form

R(x, y) =
(

1

ε̂2
(p(y) − δx),

1

ε̂1
y

)
,

ε̂1, ε̂2 as in table 1. For δ = 1, we see that the scaling conditions are trivially satisfied when
ε̂1 = ε̂2 = 1, so that R is an involution. On the other hand, when δ = −1 the scaling
conditions are satisfied only when p(y) is odd or even. In that case ε̂i ∈ {±1}, and again R is
an involution.

Reversors of the form RAA exist only if δ2 = 1 and p(y) satisfies the condition
cp(cy) = δωp(y) with ω ∈ RA for some constant c. The associated affine reversing symmetry
is then of the form R(x, y) = (cy/ω, x/c). Again it can be seen that when δ = 1 the scaling
relation is trivially satisfied, taking c = ω = 1, while when δ = −1 that relation is satisfied if
and only if p(y) is either an odd or an even polynomial.

We thus have the following two possible structures for the group of reversing
symmetries of g:

(a) δ �= ±1 or δ = −1 with p(−y) �= ±p(y) ⇒ Rev(g) = Sym(g) = 〈S〉 � 〈h〉,
(b) δ = 1 or δ = −1 with p(−y) = ±p(y) ⇒ Rev(g) = (〈S〉 � 〈h〉) � 〈R〉,
where 〈S〉 � Zk , 〈h〉 � Z, 〈R〉 � Z2, and k is the order of RE . If k is also the order of RA,
then Sym(g) = 〈S〉 × 〈h〉.

6. Dynamics

The dynamics of a map is affected in a number of ways by the existence of reversing symmetries.
In particular, those orbits that are invariant under a reversor share many of the typical properties
of the orbits of symplectic maps, i.e. their spectral and bifurcation properties. Although
our main interest is to discuss polynomial diffeomorphisms on C

2, we begin with a general
discussion and later focus on the polynomial case. We start by briefly reviewing some of the
well known implications of reversibility [18, 14].

Let O(x) denote the orbit of x under a diffeomorphism g. When R ∈ Rev(g), the
symmetry maps orbits into orbits R(O(x)) = O(R(x)). Thus orbits either come in symmetric
pairs or are themselves invariant under R. If R is a reversor, then an orbit and its reflection are
generated in reverse order. If O(R(x)) = O(x), the orbit is said to be symmetric with respect
to R. Observe then that the orbit is symmetric with respect to any of the reversing symmetries
in the subgroup 〈g, R〉 generated by g and R.

If R is a reversor, then for symmetric orbits forward stability implies backward stability.
Moreover, there can be no attractors (in the terminology of Conley) that are symmetric under
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R; indeed, if A is a symmetric omega-limit set, then it cannot be asymptotically stable [19]. By
contrast, an asymmetric orbit can be attracting just as long as its symmetric partner is repelling.

If R is a reversor and x is a point on a symmetric orbit of period n, then the matrix
Dgn(x) is conjugate to its inverse. Thus every multiplier of a periodic symmetric orbit must
be accompanied by its reciprocal. When g is real, it follows that eigenvalues other than
±1 must appear either in pairs (λ, λ−1), with λ real or on the unit circle, or in quadruplets,
(λ, λ̄, λ−1, λ̄−1). Unlike the symplectic case, 1 and −1 may have odd multiplicity. This
situation imposes severe restrictions on the motion of eigenvalues for parametrized families
of maps: thus if the multiplicity of 1 or −1 is odd, it must continue to remain so, as long as
reversibility is preserved. Therefore, whenever 1 and −1 have odd multiplicity, they should
persist as eigenvalues. In the plane this means that for families of reversible, orientation-
reversing maps, the spectrum is restricted to the set {1, −1}. In all the other cases families of
reversible maps must preserve orientation.

Though generally reversible maps need not be volume preserving, reversible polynomial
automorphisms are, since their Jacobians are necessarily constant. In addition, note that maps
with the normal form RAA are orientation preserving. Maps with the normal form RAE or REE

can either preserve or reverse orientation.
We denote the fixed set of a map R by

Fix(R) ≡ {x : R(x) = x}.
If S ∈ Sym(g), then its fixed set is an invariant set. In contrast, the fixed sets of reversors are
not invariant but contain points on symmetric orbits.

Indeed, as is well known, to look for symmetric periodic orbits it is enough to restrict
the search to the set Fix(R) ∪ Fix(gR) [5, 8, 18, 20]. Therefore if the reversing symmetry has
a nontrivial fixed set, it can be used to simplify the computation of periodic points. Indeed,
Devaney’s original definition of reversibility [5] required that the fixed set of the reversor
be a manifold with half the dimension of the phase space. This is the case for maps on the
plane that are reversible by orientation-reversing involutions [20]. From this point of view the
noninvolutory polynomial reversors we have described are not very interesting since for each
of them the associated symmetric orbits reduce to a single fixed point.

We will now show that this is always the case for order 4 reversing symmetries of R
2. In

addition, we will recall the result that in this case the symmetric fixed point is hyperbolic [21].
We start by showing that the fixed set of any order 4 transformation of the plane is a

point. This is a well known result of Brouwer, who showed that finite period transformations
of R

2 are topologically equivalent to either a rotation or to the composite of a rotation and a
reflection about a line through the origin [22]. Nevertheless, we present an elementary proof of
the local nature of the fixed set similar to that given by MacKay for the case of involutions [20]
because this proof provides additional information that we find useful later. To complete the
description of the fixed set, some general results on transformation groups due to Smith turn
out to be necessary.

Lemma 18. If R is an order 4 diffeomorphism of R
2, then its fixed set is a point.

Proof. We start by proving a local result: the fixed points of R must be isolated. Consider
first the map f = R2; by assumption, it is an orientation-preserving involution. Suppose that
f has a fixed point; in particular, any fixed point of R is a fixed point of f . Without loss of
generality, we can choose coordinates so that this point is the origin. We now show that in such
a case f must be locally conjugate to −id . A simple calculation shows that Df (0, 0) = ±I ;
thus we can write

f : (x, y) → ±(x, y) + (f1(x, y), f2(x, y))
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with fk(x, y) = o(|(x, y)|). Define new variables u and v according to the local
diffeomorphism

(u, v) = ±(x, y) + 1
2 (f1(x, y), f2(x, y)),

where the sign is chosen in accordance with Df (0, 0). In these local variables the map f

reduces to (u, v) → ±(u, v). Moreover, as this condition holds at each of the fixed points of
f , we conclude that if f were locally the identity, then f = id on its domain as long as this
domain is connected. Thus if the fixed points of R were not isolated, then f = id . However,
since R is not an involution by assumption, we see that if R has a fixed point then f is locally
conjugate to −id . This implies that the Jacobian matrix of R at each fixed point has a (real)
normal form given by(

0 −1
1 0

)
. (44)

To prove that R actually has a unique fixed point, we require a classical, global result due
to Smith [23]. First extend the map R to S

2 by adding the point at infinity and making it a
fixed point. Smith’s theory of transformation groups implies that the fixed set of an order 4
map acting on S

2 is either empty or has the homology-mod 2 of S
0, S

1, or S
2. All cases except

S
0 can be ruled out, however, because we know that the fixed set of R acting on the sphere is

nonempty and that its fixed points (at least other than the fixed point at infinity) are isolated.
Therefore the fixed set of R on S

2 must consist exactly of two points. Restricted to the plane,
we see that R has exactly one fixed point. �

Note that whenever a reversing symmetry R for some map g has a single fixed point, this
point is a symmetric fixed point of g. It was shown by Lamb for the case where R is a rotation
by π/2 that this point cannot be elliptic [21]. Using the previous lemma and its proof, it is
easy to generalize this to arbitrary order 4 reversors.

Lemma 19. If g is a reversible map of R
2 with a real reversor R of order 4, then the associated

symmetric fixed point is not elliptic.

Proof. We may assume that the fixed point is the origin and the Jacobian matrix of R at (0, 0)

is given by (44). The reversibility condition implies that

DR(0, 0)Dg(0, 0) = Dg(0, 0)−1DR(0, 0).

This equation implies that Dg(0, 0) is a symmetric matrix with determinant equal to 1. As
symmetric real matrices have real eigenvalues, we conclude that the point (0, 0) cannot be
elliptic and that the map is orientation preserving. �

To illustrate some of these phenomena, we give two examples.

Example 6.1. Consider a normal form of type RAA:

g = τ−1
ω h−1τωh,

h(x, y) = (y, y3 − by − δx), ω = −1,

so that τω(x, y) = (−y, x) is an order 4 reversor for g. If we let p(y) = y2 − by and assume
b �= 0, then RA(p) = U2, while N ′ = {1}, and so the only reversing symmetries for this
ordering are order 4. Fixed points of this map must satisfy the equations

(1 − δ)x∗ = −p(y∗), (1 − δ)y∗ = p(x∗),

where p(x) = x3 − bx. Since the reversor τω has a fixed point at the origin, the origin is
always a symmetric fixed point. In general, the stability of a fixed point is determined by

Tr(Dg) = 1

δ
(p′(y∗)p′(x∗) + δ2 + 1).
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Figure 1. Bifurcation curves for the asymmetric fixed points of (43). The eight asymmetric
fixed points exist in the upper and lower quadrants of the cone. They undergo period-doubling
bifurcations on the dashed curves.

At the origin this becomes Tr(Dg(0, 0)) = δ−1(b2 + δ2 + 1), which implies, in accord with
lemma 19, that the origin is hyperbolic, since |Tr(Dg(0, 0)| > 2, except when (b, δ) = (0, ±1),
where it is parabolic.

The remaining eight fixed points are born together in four simultaneous saddle-node
bifurcations when

b = bsn± ≡ ±2
√

2|δ − 1|.
These lines are shown in figure 1; inside the cone bsn− � b � bsn+, the map g has only one
fixed point. The dynamics of this situation are depicted in figure 2 for the case where δ = 1.3.

Outside this cone the map has eight asymmetric fixed points. An example is shown in
figure 3; for this case four of the fixed points are elliptic and four are hyperbolic. Note that the
four islands surrounding the elliptic fixed points in this figure are mapped into one another by
τω. The elliptic fixed points undergo a period-doubling when Tr(Dg(x∗, y∗)) = −2, which
corresponds to the curve

b4 − (7 − 13δ + 7δ2)b2 − 2(2δ − 1)2(δ − 2)2 = 0.

This gives the dashed curves shown in figure 1. For example, if we fix δ = 1.3 and increase
b, then period-doubling occurs at b ≈ 1.6792. The four new period 2 orbits are stable up to
b ≈ 1.7885, when they too undergo a period-doubling bifurcation. Thus in figure 4, there are
four unstable period 2 orbits and four more corresponding period 4 orbits. In this case, the
stable and unstable manifolds of the saddles intersect, forming a complex trellis.

In contrast to lemma 19, real maps with order 4 complex reversors can have elliptic
symmetric fixed points.

Example 6.2. Consider for instance the polynomial map given in Hénon normal form

g = h2h1, with hk(x, y) = (y, pk(y) + x) (45)
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Figure 2. Stable and unstable manifolds of the origin for (43) for (b, δ) = (0.85, 1.3). The domain
of the figure is (−3, 3) × (−3, 3).

Figure 3. Some orbits of the map (43) for (b, δ) = (1.4, 1.3). There are elliptic fixed points at
(0.274 38, 1.211 6) and hyperbolic points at (1.001 0, 1.279 4) as well as the images of these points
under τω . The domain is the same as figure 2.

and assume that i ∈ RA(p1(y), p2(y)). According to table 1, g can be written in normal form
REE with associated order 4 reversors. Direct calculations show that g is conjugate to the map
ĝ = t ê−1

1 t ê2, where

ê1(x, y) = (p̂1(y) + ix, −iy) and ê2(x, y) = (p̂2(y) − ix, iy)

are elementary normal reversors and the p̂k are rescalings of pk . Therefore for some scaling
s the map s−1ê2s is an order 4 reversor for g and the origin is a symmetric fixed point.
Furthermore Tr(Dg(0, 0)) = 2 + p′

1(0)p′
2(0), so that whenever −4 < p′

1(0)p′
2(0) < 0, the

origin is an elliptic point. An example is shown in figure 5.

In this example, the map g also possesses involutory reversors. In fact this is always the
case for orientation-preserving, semilength 2 maps with normal form REE. That is, whenever
the map has order 4 reversors, there also exist involutory reversors, as can be readily obtained
using conditions in table 1.
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Figure 4. Some stable and unstable manifolds of the map (43) for (b, δ) = (1.8, 1.3). Here
the elliptic points (e.g. at (0.233 90, 1.3607)) have undergone a period-doubling bifurcation. The
domain is the same as figure 2.

Figure 5. A map of the form (45) with p1 = y5 − 0.5y and p2 = y5 + 1.5y so that the fixed point
at the origin is elliptic. The domain of the figure is (−1, 1) × (−1, 1).

7. Conclusions

We have shown that maps in G that have nontrivial symmetries have a normal form s
j
ω(H)q in

which either there is a finite order, linear symmetry sω or in which the map has a root H that is a
composite of normal Hénon maps. The symmetry sω (29) generates a group isomorphic to RE
(18) if the semilength of the map is even and RA (20) if it is odd. This result is encapsulated
in corollary 9.

Similarly, we have shown that reversors for automorphisms in G have normal forms that are
either affine or elementary. These can be further normalized, so that the reversors correspond
either to the simple affine map τω (36) or to an elementary reversor of the form (35). These
reversors have finite, even order. The case that the order is 2, i.e. involutory reversors, is typical
in the sense that the existence of reversors of higher order requires that the polynomials in the
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map satisfy extra conditions so that one of the groups RA and RE is nontrivial. If a map has
real reversors, then they must be order 2 or 4.

Using these, we obtained three possible normal forms for reversible polynomial
automorphisms of the plane, theorem 12. These correspond to having two affine reversors,
two elementary reversors, or one affine and one elementary reversor.

It would be interesting to generalize these results to higher-dimensional polynomial maps.
The main difficulty here is that Jung’s decomposition theorem has not been generalized to this
case. Nevertheless, one could study the class of polynomial maps generated by affine and
elementary maps.
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[15] Gómez A and Meiss J D 2003 Reversible polynomial automorphisms of the plane: the involutory case Phys.

Lett. A 312 49–58
[16] Magnus W, Karras A and Solitar D 1966 Combinatorial Group Theory (New York: Interscience) Pure Appl.

Math. 13
[17] Jacobson N 1985 Basic Algebra (New York: Freeman)
[18] Roberts J A G and Quispel G R W 1992 Chaos and time reversal symmetry. Order and chaos in reversible

dyanmical systems Phys. Rep. 216 63–1177
[19] Lamb J S W and Nicol M 1998 On symmetric attractors in reversible dynamical systems Physica D 112 281–97
[20] MacKay R S 1993 Renormalisation in Area-Preserving Maps (Advanced Series in Nonlinear Dynamics vol 6)

(Singapore: World Scientific)
[21] Lamb J S W 1993 Crystallographic symmetries of stochastic webs J. Phys. A: Math. Gen. 26 2921–33
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