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Abstract 

Transport times for a chaotic system are highly sensitive to initial conditions and parameter values. In a previous paper, 
we presented a technique to find rough orbits (epsilon chains) that achieve a desired transport rapidly. The strategy is to 
build the epsilon chain from segments of a long orbit - the point is that long orbits have recurrences in neighborhoods where 
faster orbits must also pass. If a local hyperbolicity condition is satisfied, then a nearby shadow orbit may be constructed 
with significantly smaller errors. In this paper, we modify the technique to find real orbits, in configuration space, of the 
restricted three body problem. We find a chaotic Earth-Moon transfer orbit that achieves ballistic capture and that requires 
38% less total velocity boost than a comparable Hohmann transfer orbit. 

Chaos in a physical system can be exploited to make 

accessible a wide range of system behaviors with- 

out requiring large perturbations. Transport times for 
a chaotic system are highly sensitive to initial condi- 

tions and parameter values. “Targeting” is the process 
of finding a nearby short path using only available 
dynamics. In our recent paper [ 11, we demonstrated 

an algorithm to reduce transport time for the standard 

map by a typical factor of 104. It was previously con- 

sidered particularly difficult to navigate the Hamilto- 

nian dynamics of the standard map [ 21, due to diffi- 
culty in finding short paths between the barriers be- 

tween resonances in the phase space. In this paper, we 
apply the algorithm to find short orbits of the restricted 
three body problem, for parameter values pertaining 
to the Earth-Moon system. 

The algorithm relies on searching for recurrences 

along the orbit of a dynamical system. We describe 
the technique for a two-dimensional map, 

zi+1 = T(Zi), 
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(1) 

which we will derive from the flow of the restricted 

three body problem by Poincar6 section. 
Previous targeting algorithms have attempted to find 

short paths through chaos by looking for them using a 

straightforward search. The search for example in Ref. 
[ 31 is analogous to casting out a web of paths leading 
to the target. Difficulty can arise in searching for paths 

when the transport from near a starting point a to near 

the target point b is so slow that the fraction of points 

which get substantially far from a in a &art amount 
of time is so small as to make it virtually invisible to a 

computer search. In such a case, the web will not leave 
the region near a. This is exactly the situation typified 

by the layered resonance and barrier structures found 
in Hamiltonian maps of the plane [ 2,4]. 

By contrast our algorithm [l] lets a shorter path 
reveal itself as the “shadow” of an easily found slow 
orbit which nonetheless makes the desired transport. 
In brief, suppose that a point on the orbit zi recurs with 
Zi+s, s steps later, i.e. JIzi - zi+s)I < S, in this case we 
can attempt to exploit instability to find a patch that 
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Fig. 1. Construction of a patch. When the point zi recurs with z;.+~, 
the point of principal inte~ction p between W (z;) the unstable 
manifold of 4’ and W ( z.+, ) the stable manifold of z;+$ converges 
to the orbit of zl+$ under applications of the map T, and converges 
to the preorbit of Zi under applications of the inverse map T-’ 

skips the, often very long, recurrent loop. We construct 
this patch Z: so that it converges to the preorbit of 
zi and to the orbit of zi+$. In practice, we choose a 
moderate value m, and require that ljzi_, - zi_+Jj < E 

and lK+, - z~+~+~,II < E for a small preset control 
constraint E. Thus we attempt to build an e-chain orbit 
which shadows the &chain orbit (consisting of simply 
skipping the S r~u~ences) . 

If the original orbit is hyperbolic, then any point p 
on an intersection between the unstable manifold of 
zi and the stable manifold of Zi+s+nl has the desired 
convergence properties, and so may be used as z;. One 
technique to obtain such a point is to shoot from the 
unstable manifold of zi+ well before the recurrence 
to ~i+,~+~, well after the recurrence. For large enough m, 
and small S, the curved manifolds are well represented 
by straight line segments, and the patch orbit will be 
close to the original orbit (see Fig. 1). 

Thus we require that a point on the unstable direc- 
tion, fU, at zi-nl lands on the stable direction, fS, at 
Q+~+~,. That is, we search for an s which solves 

[T2n’(Zi-tH + SfU) - Zi+s+nl] X fs = 0. (2) 

This can be found by the Newton-secant method. 
To define the stable and unstable directions for an 

orbit which is not necessarily periodic, we recall that 

the Jacobian matrix of the map rotates a vector in the 
tangent space towards the unstable direction, and the 
Jacobian matrix of the inverse map T-’ rotates the 

vector towards the stable direction. Thus upon itera- 
tion, almost any initial unit vector u approaches the 
unstable direction: DT”/z_,~ . o E D7’IZ_, . DTI~_~ . 
. . . * DT/.z_,, . v - fuf z 1 as II -+ 00. Likewise, 
upon inverse iteration we obtain the stable direction, 
DT-“jz,, *u + fs ( z ) as n --+ co and is well approxi- 
mated for finite n [ 5,6 1. To accurately calculate these 
vectors, we renormalize the length to one after each 
matrix multiplication to prevent the norms from grow- 
ing ~shrinking) beyond machine precision, and we 
choose a finite value of n. 

An important modification to our original targeting 
algorithm arises from the fact that almost all vectors 
in the tangent space rotate towards the unstable (sta- 
ble) direction upon repeated forwards (inverse) ap- 
plications of the tangent maps associated with forward 
(inverse) orbit. This, of course, is how we find the 
stable and unstable directions. The implication here is 
that we do not need to use the true stable and unsta- 
ble direction vectors in equation Eq. (2). Almost all 
variations near z+,~ will expand along the unstable 
manifold after m iterates if the patch size m is chosen 
large enough. A similar statement can be made regard- 
ing variations near ZL+,~+~, under m inverse iterations. 
Thus, we will have reduction of the 6 recurrence to 
within an E toferance for almost any choice of direc- 
tions in the place of fU and fS in Eq. (2). SpecificaIly, 
an unstable cone centered around fU at Zi_nl+ depend- 
ing on E and m, can be defined, within which any 
vector can be substituted in the place of fU. Similarly, 
there exists a stable cone around fS at Zj+s+nt. 

To find a short pseudo-orbit from near a to near b 
we begin with any orbit, that achieves the transport 
(within computer memory limits). Then we search for 
S recurrences, attempting to first remove the longest 
possible recurrent loops, and thus automatically re- 
move intermediate loops for free. The idea is, starting 
at a point zj, to find the last point in the orbit with 
which it is S recurrent. Whenever a S recurrence is 
found, a patch is attempted. If one is found, and it 
achieves a pre-assigned tolerance E, then the entire 
(often long) recurrent Ioop is discarded in favor of 
the patch, and the next recurrence search begins at the 
end of the patch. If the recurrence cannot be success- 
fully patched, we continue to search from the end for 
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the next longest recurrence with zj, only incrementing 

j when no successful patch is found. 
In practice, the choice of S determines how easily 

a patch can be found. However the size of S also has 

bearing on the probability of S recurrences, and there- 

fore how short the final pseudo-orbit will be. One nat- 
ural dynamical choice for 6 is related to the size of 

the turnstiles of the barriers through which the orbit 
must pass [ 41. The true time-optimal orbit will cross 

each turnstile exactly once, in turn. Nonoptimal orbits 

waste time passing through a given turnstile perhaps 

many times. However, in practice turnstile sizes are 

difficult to compute, so we choose 6 large enough so 
that no opportunities to cut a loop are missed; the only 
cost of trying to cut a loop for which there exists no 

patch is wasted computer time. 

We will now modify the technique to find real orbits 
in configuration space (rather than pseudo-orbits in 

the full phase space) for the planar, circular, restricted 
three body problem. This problem is the special case of 

the full three body problem in which one of the masses 

is taken to be infinitesimal, and so has no influence 
on the two primaries which are on circular orbits. We 

normalize the sum of the masses to one, ml = 1 - p 
and m2 = p, and Newton’s gravity constant to one, 

and use a frame rotating with the primaries, so they are 

fixed at x = -p and 1 - p respectively. The equations 

of motion, ti = F(w) for w = (x, y, U, u), are Hill’s 

equation [ 71, 

k = u, jJ = 0, 

x + m2 x - ml 
ti=x+2v-ml-- -, 

4 

ti=y-2u- &+$I ri (3) 

wherer:=(x+m;!)2+y2andrz=(x-m1)2+y2. 
The Jacobi integral, 

J=U2+Uz-(xz+yz) -2(F+$ (4) 

is a conserved quantity, thus the flow is restricted to a 
three dimensional submanifold of the four dimensional 
phase space. On the Poincare section y = 0, (x, U) 
are equal in value to the canonical variables, and so 
the map from section to section with u > 0 is area 
preserving. 

Our goal here is to look for low energy transfer or- 

bits to the Moon. To this end, we set ml /m2 = 0.0123. 
In our coordinates the unit of length is the Earth-Moon 
distance, L = 3.844 x lo5 km, the unit of time is T = 
104 h and therefore the unit of speed is V = 1024 m/s. 

The Earth-Moon system has eccentricity 0.055 and 
so is well approximated by the circular problem. An 

orbit which becomes a real mission is typically ob- 
tained first in such an approximate system and then 

later refined through more precise models which in- 

clude effects such as eccentricity, the Sun and other 

planets, the solar wind, etc. In any case, there is a 
limited precision to which a rocket can be placed 
and thrusted so occasional corrective maneuvers are 

needed. With this in mind, (3) is considered a good 

starting model [ 81. 

The goal is to beat the energy requirements of 
the standard Hohmann transfer from a parking orbit 
around the Earth to a parking orbit around the Moon. 

This transfer typically takes only a few days, de- 
pending on the altitude of the initial parking orbit. It 

requires two large rocket thrusts (perturbations), one 
parallel to the motion to leave the Earth, and one anti- 

parallel to the motion to capture the rocket around 

the Moon. The size of these perturbations, measured 

by the velocity boost AV, depends again on the alti- 

tudes of the Earth and Moon orbits. We will see that 

the chaotic orbit will eliminate the need for the large 
deceleration at the Moon and reduce required initial 

boost. 
Of course, there is a certain required energy Jc = 

-3.1883, which is that of the Lagrange point L2. This 
is the minimum energy for which an orbit could pos- 
sibly move between the primaries. For our mission 

we set J = JO = -3.17948 slightly above J,, but be- 

low the critical value at which orbits may escape, so 
that we may have a long bounded test orbit. This we 
imagine is attained by an impulsive boost, AV, of a 
spacecraft in a parking orbit around the earth to the 

energy JO. Fig. 2 shows a phase space plot of a single 
“chaotic” test orbit with lo5 iterates. This test orbit 

may be stored as a “library” of known behaviors, and 
used for generating many missions in the accessible 
portion of phase space. Certain islands in phase space 
are inaccessible; these are bounded by invariant tori, 
some of which are shown. At the center of each island 
is a periodic orbit. 

We choose the point a = (xc, ~0) to achieve a fast 
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Fig. 2. Phase space portrait of the Poinc& mapping of a 10s iterate test orbit for the restricted three body problem with I = -3.17948. 

The point (x, u) is plotted every time the flow pierces the surface p = 0 with positive u. The Earth and Moon are clearly labeled at their 

fixed locations in the rotating frame. The phase space locations of the starting point u near the Earth, and the target point b near a Moon 

orbit inva~ant torus are also labeled. Several invariant tori are also shown. 

chaotic orbit. A trial and error search for various x0 
near the Earth, but in the connected chaotic compo- 
nent that leads to the Moon, along the line segment 
rao = 0, gave the best results for an orbit at an aItitude 
of 59669 km above the Earth’s center. As our target, 
we choose the outermost invariant torus, marked “b” 
in Fig. 2, co~es~nding to a qu~i-periodically pre- 
cessing “elIipse” around the moon. As the actual target 
point, b, we use the point of closest approach of our 
test orbit to b, at an aItitude of 13970 km above the 
Moon’s center. From b a tiny perturbation will move 
the orbit onto the torus, thus achieving a state bound to 
the Moon without the large d~elera~on required by a 
Hohmann transfer. We define a ‘%rue” ballistic capture 
to the Moon (at constant energy) to be an orbit for- 
ward asymptotic to a Moon-orbiting invariant torus. 
This contrasts to a distinct de~nition by 3elb~no [ 91. 
We are s~ching for a bin-b~listic capture in the 
sense of our strong definition. 

The implication of solving Eq. (2), using the exact 
stable and unstable manifolds, is that near the pseudo- 

orbit we construct, there exists a true orbit which 
skips the recurrence. The orbit of p exactIy yields 
the shadow orbit, by construction. When we use other 
curves to p~ameterize the v~at~ons, we lose this im- 
plication, but we gain another advantage. In construct- 
ing an Earth-Moon pseudo-orbit, even small varia- 
tions along the stable and unstable ma~ifoids in phase 
space imply variations in velocity and position, We 
wish to construct an orbit with only velocity errors, 
since teleportation is not physical, but rocket impulses 
are routine. According to the arguments of the previ- 
ous p~agraph, we may substitute the vector (0, Su) 
for both fU and fS in Eq, (2) to find a reai config- 
uration space orbit, i.e., no position errors. With this 
choice, we find that m = 12, yielding a patch length 
2m+ 1 = 25 steps, yields adequate recurrence error 
compr~sion. 

The 105 iterate test orbit has a 10710 iterate seg- 
ment which goes from a to b. Fixing the recurrence 
distance to S = 0.02, we achieved a 58 iterate pseudo- 
orbit by cutting out 6 recurrence loops, and requiring 
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Fig. 3. A configuration space plot (x, ~1) of the 58 iterate chaotic 
transfer to the Moon. The final state at b is a precessing ellipse 
around the Moon corresponding to the targeted invariant torus. 

a maximum perturbation of E = 1.07 x 1 0e4. Note 

that this implies perturbations to the real coordinates 
of Su < 0.219 m/s. The actual time along this orbit 

is T = 172.3 = 2.05 years. 
Arbitrary AV maneuvers would change the value 

of the Jacobi constant, causing the rest of the pre- 
calculated orbit, constructed from segments of the con- 

stant energy orbit found in the stored library, to be- 

come invalid. However, by the implicit function the- 

orem, Eq. (4) allows freedom to choose a Su so as 
to conserve the value of J under small variations Su 

and SX = Sy = 0. Thus we change the direction of the 

motion, by our maneuvers, and not the speed. 
We show our chaotic orbit in the configuration space 

plot (Fig. 3). We can “see” the accelerating boosts of 

the Moon’s gravitational pull as it swings by the earth 
orbiting spacecraft. These boosts perturb the space- 

craft into just the right orientation to pass through the 

neck around L2 exactly once with the correct speed 
and position so that it is captured by the Moon near 

the chosen invariant torus. 
The boosts required for our chaotic trajectory can be 

compared to those of a corresponding Hohmann-like, 
two impulse transfer (the classic mission). Both or- 

bits start at the (almost circular) parking orbit around 
the Earth at the starting altitude 59669 km with Ja- 
cobi constant J = -7.1738. An initial impulsive thrust 
is required for both transfers to increase the energy 
such that the zero velocity curves permit the transfer, 
J > 52. The chaotic transfer requires an initial boost 
of AV = 744.4 m/s to attain JO = -3.17948. Addi- 

tionally, it requires four patches with E < 1.07 x 10d4, 

and therefore the total change in velocity is bounded 
by AV < 6 x 0.107 m/s = 0.659 m/s. Finally, to 

jump from b to the targeted invariant torus requires 

E = 4.363 x 1O-3 and therefore AV = 4.468 m/s. Thus 

the total perturbation required by the chaotic transfer 
is 749.6 m/s. 

In contrast, the Hohmann-like transfer requires an 

initial parallel burn of AV = 817.4 m/s boosting the 

energy to J = -2.761. This gives a motion which 

is, roughly speaking (i.e. neglecting the effect of the 

moon ), a Kepler ellipse with apogee at b. The space- 
craft coasts until it arrives at b, where a deceleration of 

AV = 402.5 m/s is applied. Therefore the total boost 

required for this Hohmann transfer is 1219.8 m/s, but 

the transfer requires only 6.61 days. 

Therefore we find that the ratio between the im- 

pulses is 0.615, or a 38% advantage over the Hohmann 

orbit. 
This is a significant improvement, but at the cost of 

a much longer (and circuitous) transfer. In terms of 

transferring passengers, the extra time is probably not 
worth the savings. However, for transferring freight, 

the AV savings of our orbit translates directly to a 

considerably smaller fuel requirement and therefore 

allows the transfer of a larger payload. 

For example, suppose that a given booster is to be 

used in both cases, then an alternative figure of merit 
is given by the ratio of payload mass, mPi to propellant 

mass mProP. This can be derived from the elementary 
rocket equation, which gives the ratio of final mass to 

initial mass: mr/ma = exp( -AV/gl,,) where ZsP is the 

specific impulse of the booster. For a chemical rocket 
1 sP M 300 s (450 s is about the maximum achievable 

value with this technology). Using this value, and as- 
suming that the structural mass of the booster is a fixed 

fraction, N = 15%, of the propellant mass, gives 

mPl _ 1 

- - exp(Avgfsp) - 1 - cr’ rnP’OP 
(5) 

Then for our orbit mpl/mprop = 3.30 while the 
Hohmann transfer gives 1.80. Thus we are able to 
transfer 83% more payload from the circular orbit at 
a with the same booster. 

Recently, another approach due to Belbruno was 
used to find chaotic transfer orbits to the moon utiliz- 
ing the so-called “fuzzy boundary” [ 91. This method 
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was successfully applied to send the spacecraft Hiten 
to the Moon, thus saving an otherwise failed mission 
when the original Moon probe was lost. The Hiten 
orbit requires a restricted four body model, including 
the Sun, plus three configuration space directions. The 
technique is to send the spacecraft to the fuzzy bound- 
ary between the Earth and Sun, where their gravita- 
tional effects balance, so that only a small perturba- 
tion is necessary to reach the Moon in a “ballistic cap- 
ture orbit” analogous to our orbit in that it requires 
almost no decelerating AV. This orbit is much less 
circuitous than ours and requires approximately 4.4 
months. However, a larger rocket burn is required to 
escape the Earth in order to reach the fuzzy boundary, 
well away from the Earth-Moon zero velocity curve 
at Jc. Our technique could also be applied to the re- 
stricted four body problem (with the added complica- 
tion that the dimension of the phase space is increased 
since time cannot be eliminated by going to a rotat- 
ing frame), and would give a systematic method for 
finding optimal orbits in this case as well. 
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