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Abstract
Traditionally the power grid has been a one-way street with power flowing
from large transmission-connected generators through the distribution network
to consumers. This paradigm is changing with the introduction of distributed
renewable energy resources (DERs), and with it, the way the grid is managed.
There is currently a dearth of high fidelity solar irradiance datasets available to
help grid researchers understand how expansion of DERs could affect future
power system operations. Realistic simulations of by-the-second solar irradi-
ances are needed to study how DER variability affects the grid. Irradiance
data are highly non-stationary and non-Gaussian, and even modern time series
models are challenged by their distributional properties. We develop a subor-
dinated non-Gaussian stochastic model whose simulations realistically capture
the distribution and dependence structure in measured irradiance. We illustrate
our approach on a fine resolution dataset from Hawaii, where our approach
outperforms standard nonlinear time series models.
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1 INTRODUCTION

Decarbonizing the grid is a necessary step in aggressive climate action. In 2020 in the United States, electric power
generation from all non-renewable sources produced 1.55 billion metric tons of CO2 emissions, which is equivalent to
about 0.85 pounds of CO2 per kWh (EIA, 2021). In the effort to reduce these emissions as much as possible, renewable
energy generation sources, such as solar photovoltaics (PV), will continue to play an increasing role in grid planning and
operations moving forward. Traditionally, the power grid has been a one-way system with power flowing from large gen-
erators connected to the transmission grid down through the distribution system to consumers. With higher penetrations
of distributed energy resources (DERs), like solar panels on individual homes, there is now power being generated at the
distribution level with the potential to have reverse flow back into the transmission grid. A key to the success of the inte-
gration of solar power generation is to understand solar irradiance as a resource, which correlates very strongly with PV
power output. Irradiance is a variable and uncertain resource, which can cause challenges in maintaining efficient and
reliable grid operations (Bright et al., 2017; Lew et al., 2013; Nguyen et al., 2016). Having access to high-resolution (in
both time and space) solar irradiance data would be beneficial for site planning, grid integration planning, and mainte-
nance. While some sources of solar irradiance data do exist, like satellite data (the National Solar Radiation Database,
NSRDB) (Sengupta et al., 2018), weather model data (WRF-Solar) (Haupt et al., 2016; Jimenez et al., 2016) and observa-
tional pyranometer data, each of these sources has drawbacks. Satellite and weather model data are typically coarse in
time, whereas there is substantial variability of solar irradiance at very high time frequencies, which is only observed in
direct pyranometer measurement data. Direct pyranometer data can be rich temporally, but tend to have limited spatial
coverage and publicly available datasets are also very limited. Thus, access to synthetically generated solar irradiance time
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series that mimic observed statistical characteristics of real global horizontal irradiance (GHI) measurement data is criti-
cal for PV planning studies. The main goal of this work is to develop a stochastic model for high frequency solar irradiance
processes that may then be used to address the dearth of available solar irradiance datasets. It is important to distinguish
this goal from solar forecasting – while forecasting has great value for grid operators, and there are many studies that
address this need, planning studies require unconditional synthetic datasets (Huang et al., 2012, 2013; Reikard, 2009; Sun
et al., 2019; Weiss & Hays, 2004). We address solar resource variability quantification in that the goal of our model is to
generate synthetic irradiance simulations which mimic the statistical properties of high-frequency in situ measurements.
Said another way, this effort is meant to develop an irradiance stochastic weather generator (Wilks & Wilby, 1999).

In the solar modeling literature there have been myriad approaches proposed toward the goals of variability quan-
tification and generation of simulated irradiance time series. Studies which focus on the former, developing and testing
metrics of solar irradiance variability (Blaga & Paulescu, 2018; Castillejo-Cuberos & Escobar, 2020; el Alani et al., 2020),
typically do not cover their use in generating or comparing simulated data to real measurements. Our work falls at the
intersection of these two ideas where a main goal is synthetic simulation of irradiance data, which has been a subject of
interest for decades. (Amato et al., 1986) develop a model for simulating daily solar irradiance using a Fourier analysis
combined with a Markov process model, which is appropriate for a much coarser time resolution than our data example.

In more recent work, (Larrañeta et al., 2019) use a bootstrap approach to generate plausible meteorological years
(PMYs) of GHI and direct normal irradiance (DNI) 1 min data, which requires a large amount of training samples (about
10–15 years). There have also been attempts at augmentation of a Weather Research and Forecasting (WRF) model
designed for solar applications (WRF-Solar) with a physics-based ensemble to simulate solar irradiance at the 1 min and
1 h time scale (Prasad & Kay, 2020). These models at large tend not to perform well at finer temporal resolutions and are
more focused on near-term forecasting of GHI. (Ramírez et al., 2021) synthetically generates hourly solar irradiance time
series using a multivariate copula autoregressive algorithm, which performs well at capturing temporal dependencies
at the hourly level, but has not been tested on high-frequency GHI data. (Zhang et al., 2022) models log clear sky index
using a nonstationary moving average process, but also include a Bernoulli variable which serves to identify times of the
day which are clear versus times in which clouds, aerosols, or dusts are present. Some distinguishing factors between
our work here and (Zhang et al., 2022) is that ours is a continuous time model while theirs is discrete time. The model
in (Zhang et al., 2022) is also conditioned on lower resolution data from the NSRDB, which is a downscaling exercise
and different from the unconditional modeling we seek to accomplish. One final difference is that, similar to other
papers in the literature, this model is built for the 1 min time scale, which has different variability than the 1 s level.
Recent work from (Euán et al., 2022) does address high-frequency GHI simulation at the 1 s level using a self-exciting
threshold autoregressive (SETAR) model to quantify and replicate the variability of daily irradiance time series for use
in short term (1- and 5-step ahead) forecasting. While this has been shown to be quite effective for these short term time
horizon forecasts, it has not been tested on the task of full-day one second resolution GHI simulations. In fact, markedly
missing from the literature in this subject are models that can unconditionally generate multiple days of realistic GHI
data simulations at the 1 s time scale, a method for which we present here. While studies like (Zhang et al., 2022) or
(Euán et al., 2022) are successful, we feel that, because the problems they tackle (conditional downscaling and forecast-
ing, respectively) are different enough from ours, direct comparison is not justifiable. Additionally, particularly at fine
temporal resolution, GHI data tend to have intermittent high frequency variability and are highly non-Gaussian, which
challenges the assumptions of most traditional time series models. As such, even advanced nonlinear time series models
fail remarkably at modeling these data, as seen in Section 6.1. We develop a novel approach to handling such variability,
relying on a randomly time-changed Gaussian process model at the core. The random time-change process uses a spline
representation with random coefficients, and serves to capture clear and cloudy atmospheric conditions. An anamor-
phosis transformation allows for non-Gaussian behavior in the underlying irradiance process. The proposed estimation
approach is stepwise, allowing for the practitioner to check each step of the model fit. We apply the approach to a diffi-
cult 1 s timescale pyranometer irradiance dataset from Hawaii, and find that our approach better captures distributional
properties, intermittency, and variability than a competing state-of-the-art nonlinear time series model.

2 IRRADIANCE DATA

We use a dataset from June 1, 2010 through August 31, 2010 of 1 s GHI pyranometer measurements. These measurements
were collected by a pyranometer placed at the Daniel Inouye Airport in Oahu, Hawaii (Sengupta & Andreas, 2010).
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F I G U R E 1 GHI measurements from pyranometer every 1 s for a selection of 4 different days during June–August 2010. Note the
intermittent high-frequency variability in these data.

As we are interested only in daytime hours, solely the portions of the Oahu GHI data that occurred during daytime
were used. Here we define “daytime” as measurements taken between the first and last time points of the day where
GHI > 80 W∕m2, which is standard procedure in the literature (Yang et al., 2020). Figure 1 shows a selection of days of
1 s GHI measurement data from this dataset.

We use the National Solar Radiation Database (NSRDB) to obtain clear sky irradiance (CS) estimates for this location
(Sengupta et al., 2018). This data is only available at the 30 min timescale and therefore, to get by-the-second CS, we
interpolate the NSRDB measurements down to the 1 s level using a cubic spline. This gives us access to the CS time series
for the location of the pyranometer, {XC(t)}.

3 MODEL

The goal of this work is to create a time series model, realizations from which behave statistically similarly to
by-the-second observed GHI on any given day. Denote by Y (t) the GHI process at time point t ∈ R, and by XC(t) the cor-
responding clear sky irradiance. Clear sky irradiance is the amount of GHI expected under clear conditions with minimal
cloud cover, aerosols, and dusts. Note that actual measured GHI can exceed the clear sky value under cloud enhance-
ment events in which sunlight is reflected off of nearby clouds (Smith et al., 2017). We describe the model here in full
generality, and in Section 5 detail specific choices for our Oahu dataset.

The clear sky index (CSI) is the ratio of measured GHI to clear sky GHI, which is the typical variable of interest in
irradiance modeling (Lave et al., 2013; Zhang et al., 2019; Zhang et al., 2022). Let Z(t) denote the log-CSI process,

Z(t) = log
(

Y (t)
XC(t)

)
. (1)

Our proposed model for GHI is

Y (t) = XC(t) exp
(

F−1
Z (Φ (G(S(t))))

)
(2)

where FZ(⋅) is the cumulative distribution function (cdf) of Z(⋅), parameterized below,Φ(⋅) is the cdf of a standard normal
random variable, G(⋅) is a stationary, mean zero Gaussian process with a covariance function parameterized by 𝜽G ∈
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RdG (which often includes a variance, range and smoothness parameter, in which case dG = 3) and S(t) is a positive,
nondecreasing stochastic process. The basic assumption is that actual GHI is a modulated version of the clear sky GHI
by a stochastic multiplicative factor. Equivalently, we can write the model in terms of the log-CSI as

Z(t) = F−1
Z (Φ (G(S(t)))) . (3)

The composition of quantile and cdf is sometimes called an anamorphosis function, or a copula, and is often used to
model non-Gaussian processes in the statistical climatology literature (Berrocal et al., 2008; Kleiber et al., 2012; Kleiber
et al., 2023).

The cdf FZ can be any parametric distribution, but the CSI process is highly non-Gaussian (see Figure 5 as an example).
Thus, we model the corresponding probability density function (pdf), fZ, as a mixture model,

fZ(z;𝜽) =
K∑

k=1
𝜆kfk(z;𝜽k) (4)

where
∑K

k=1𝜆k = 1, each component pdf fk has parameters 𝜽k ∈ Rdk and 𝜽 = (𝜆1, … , 𝜆K ,𝜽
T
1 ,𝜽

T
2 , … ,𝜽

T
K)T. The specific

component distributions f1, … , fK can be chosen explicitly in a data-driven way based on the application.
We now turn to the nondecreasing stochastic process S(t). To help motivate the use of S(t), it helps to first understand

the idea of subordination; such an idea is common in the Lévy process literature (Tankov, 2003). A subordinator is a
particular type of Lévy process that can be used as a random time change to build new Lévy processes with certain
desirable statistical properties; subordinators are by definition positive and nondecreasing. Heuristically, a subordinator
can be thought of as a random process which, when composed with another random process as is done here with this
model, has the ability to “speed up” or “slow down” time. Rather than using a formal Lévy process subordinator, we
propose an I-spline adaptation, shown in Equation (5). In our proposed model, the “subordinator” S(t) serves as a time
change to a Gaussian process, G(⋅). From exploratory data analysis for our application below, comparing traditional Lévy
subordinators to our proposal, we found improvement in capturing clear sky conditions in using the proposed I-spline
adaptation, see Appendix A.2 for discussion. Because an I-spline is not strictly a subordinator in the technical Lévy sense,
to distinguish our proposal, we refer to it as a spline-subordinator.

An I-spline is created using a basis of integrated M-spline basis functions (Ramsay, 1988) and thus can be written as:

S(t) =
N∑
𝓁=1

𝛼𝓁𝜙𝓁(t) (5)

where 𝜙𝓁(⋅) are I-spline basis functions, 𝛼𝓁 > 0 are coefficients, and N = 𝜅 + d + 1, where 𝜅 is the number of knots
in the I-spline, and d is the degree of the I-spline. The 𝛼𝓁 coefficients of the I-spline can be thought of as control-
ling how “quickly” or “slowly” the subordinator moves time with respect to the subordinated Gaussian process (SGP),
where each 𝓁 corresponds to a window of real time in seconds. For example, let 𝓁 = 1, … ,N; in the context of GHI
data, we can think of breaking the day up into N windows of time, where each window of time corresponds to an 𝛼𝓁 .
If a particular 𝛼𝓁 is close to zero, then the corresponding I-spline basis function 𝜙𝓁(t) effectively does not enter S(t),
and thus the domain over which its slope is non-negligible does not affect the slope of S(t), whereas if 𝛼𝓁 ≫ 0 then
S(t) increases dramatically over the effective domain of non-negligible slope of 𝜙𝓁(t). Figure 2 uses a simple example
to illustrate how the 𝛼𝓁 coefficients applied to the 𝜙𝓁 affect the final S(t). For a selection of N = 14 basis functions,
{𝛼𝓁}14

𝓁=1 = {14, 1, 5, 5, 0.1, 15, 20, 22, 0.3, 0.1, 0.01, 15, 0.1, 0.5}, the scaled versions of the basis functions are shown in the
middle plot and the final form of S(t) for t = 1, … , 1000 is shown in the bottom panel of Figure 2. One can see from this
plot how the 𝜙𝓁(⋅) with larger 𝛼𝓁 values associated affect the slope of S(t) more dramatically. Thus, larger 𝛼𝓁 values tend
to correspond to sharper increases in S(t) (a speeding of time), and smaller 𝛼𝓁 values correspond to times of flat, almost
negligible increases, in S(t) (a slowing of time).

Once the spline-subordinator is generated, as shown in Figure 2, Figure 3 illustrates the process of subordinat-
ing a stationary GP, which, when passed through the model (2), can replicate the kinds of behavior seen in 1 s GHI
measurements.

For the proposed model, we assume 𝛼𝓁 are strictly positive, uncorrelated left censored normal random variables,
𝛼𝓁 ∼ Ncensored(𝜇𝓁 , 𝜎2; 𝜖)with mean 𝜇𝓁 , 𝜎2 is a constant variance for all 𝓁, and 𝜖 refers to the censoring value, below which
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F I G U R E 2 I-spline basis functions (top), scaled I-spline basis functions with various 𝛼 (middle) and final spline form S(t) (bottom).

F I G U R E 3 Example realization of stationary mean-zero GP, G(t), (left) S(t) (red) with linear time (black) (left middle), subordinated
GP (right middle), and simulation of GHI using the SGP (right).
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(uncensored values of) 𝛼𝓁 are assigned the value 𝜖. We choose to model 𝜇𝓁 with a B-spline

𝜇𝓁 =
M∑

k=1
𝛽kBk(𝓁) (6)

where {Bk(⋅)} is the set of B-spline basis functions with coefficients {𝛽k}, and 𝜎
2
> 0 a constant variance parameter for

all 𝓁 (de Boor, 1978). The choice of M and knots are detailed in Section 5.
The flexible family of mean models for 𝜇𝓁 allow periods during which N(𝜇𝓁 , 𝜎2) is below the cutoff 𝜖, but also vary

above the cutoff in a continuous way. This is useful because there may be stretches of time, which correspond to clear
points of the day, where we need time to “slow” with respect to the SGP. These correspond to times when 𝛼𝓁 ≈ 𝜖. By having
𝜇𝓁 modeled as a B-spline, we can achieve this behavior by 𝜇𝓁 dipping below 𝜖 (see the red curve in Figure 6), thereby
creating stretches of “time" where the 𝛼𝓁 = 𝜖. Then to generate a set of {𝛼𝓁}N

𝓁=1, unconditionally simulate N random
variables distributed as N(𝜇𝓁 , 𝜎2) and assign values below 𝜖 to 𝜖. See Figure 6 for an example of the creation of this process.

4 ESTIMATION AND SIMULATION

We begin this section with a description of our proposed estimation approach using a single day’s worth of GHI measure-
ment data. Expansion to multiple days of data is discussed in Section 4.4. Suppose we have a set of GHI observations,
{Y (t)}, at t = 1, … ,L where L represents the number of time points of non-negligible irradiance (i.e., irradiances during
daylight hours and above the threshold discussed in Section 2). Time is indexed in seconds, and L varies depending on
the day of year, but is on the order of tens of thousands.

Under the proposed model, techniques wherein we maximize the likelihood to find suitable parameters are not easily
accessible because the joint distribution of (S(1) … S(L))T, the values of the subordinator at each time point, does not
have a closed form in general and therefore likelihood-based estimation approaches are not directly available. Even if
closed-form likelihoods were available, we would be working in a high-dimensional parameter space, which would be a
computational burden that the approach we propose avoids. Due to these limitations, we propose a multi-step procedure,
which is not uncommon in the solar irradiance forecasting and modeling literature (Euán et al., 2022; Zhang et al., 2022).
See Figure 4 for a summary overview of the steps of the estimation procedure.

4.1 Marginal distribution

Given all available Z(⋅) data, we estimate the parameters of the mixture model fZ(z;𝜽) in (4) by maximum likelihood
using the expectation-maximization (EM) algorithm, assuming mutual independence between Z(t1) and Z(t2) for distinct
t1 and t2 (Dempster et al., 1977). Although pairs of log-CSI are dependent, the joint distribution of (Z(t1), … Z(tN))T is
complicated and this simplifying assumption works well in exploratory experiments, partly due to the volume of data we
have at the 1 s level.

The marginal density fZ is the density of log-CSI data for a stretch of days on the order of a month or a season. The
interpretation of this with regard to our multi-day simulations is that we are, to a degree, assuming that each individual
day has the same density as the aggregate of data. In reality, there will be some variability in the distribution fZ on a daily
basis, and, in theory, one could instead fit a new mixture model for each day of interest to account for this. However,
for more than a few days of irradiance data, this would be computationally challenging. Since the goal of this work is
to capture and quantify distributional qualities of GHI over, say, a season, this choice of common density fZ performs
well.

Estimation of fZ(z;𝜽) here is done as an iterative process. First, select D ∈ N options for K̂ and the components fk for
k = 1, … , K̂. This generates D number of possible models for fZ. Second, estimate the MLEs (�̂�k, �̂�k) based on those choices
using EM for each of the possible D choices of model. Given the various potentially reasonable choices for K̂ and fk, we
fit a variety of models and select the model that balances goodness-of-fit of the quantile-quantile (Q-Q) plot and model
simplicity. We use the Q-Q plot as a visual assessment of model fit, and choose a model such that the Q-Q plot is “close”
to the identity line (this check can be done visually or using the nonparametric two-sample Kolmogorov-Smirnov (K-S)
test (Pratt & Gibbons, 1981)) while using the smallest K̂ possible. One could envision a quantitative information criterion
that balances goodness-of-fit with model complexity, but for this application we find the visual assessment works well.
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F I G U R E 4 Flowchart of estimation algorithm; diamonds represent decision points, rectangles process points, and parallelograms are
outputs.

4.2 Spline-subordinator

We now turn to the parameters governing the spline-subordinator, S(t), defined in (5). Recall the connection of the 𝛼𝓁

coefficients to the behavior of the spline-subordinator: higher 𝛼𝓁 values tend to correspond to windows of time in the day
where we see higher frequency variability (i.e., a “speeding" of time according to the spline-subordinator) and vice versa
for 𝛼𝓁 ≈ 0. With this motivation, we propose an approach to estimate the 𝛼𝓁 which utilizes a moving-window variance
measure of the data. The scheme is implemented in two parts: first, empirically calculate a local variance measure of the
data, second, fit a parametric model to that measure.

Let one day of log-CSI data be denoted Z = (Z(1), … ,Z(L))T. What we define as the empirical local variance measure
(ELVM) is calculated by dividing the L time points available in the day into N overlapping windows of time and taking
empirical variances of the data within those windows. This ELVM is used as an intermediate estimate for the �̂�𝓁 . The
goal is to match a potential �̂�𝓁 to an estimated variance of the data within each window for 𝓁 = 1, ...,N. In theory, the
higher the empirical variance, the higher frequency variability we might expect to see in the measurements and therefore
the higher we would want the active �̂�𝓁 in that window of time to be – signifying a speeding of time. Alternatively, a low
empirical variance in the window would produce a small �̂�𝓁 , which would have the effect of slowing time.

Denote by Z𝓁,𝛿 = (Z(⌈k𝓁 ⋅ L⌉ − 𝛿), … ,Z(⌈k𝓁 ⋅ L⌉ + 𝛿))T, where k𝓁 ∈ (0, 1) is the 𝓁 th knot in the I-spline, 𝛿 = ⌈k1 ∗
L⌉ − 10 is the half-width of the window over which we are taking the variance, ⌈⋅⌉ is the ceiling function, and let Z𝓁,𝛿 be
the mean of this vector. Then define the ELVM for �̂�𝓁 , as

�̂�𝓁 =
(Z𝓁,𝛿 − Z𝓁,𝛿)T(Z𝓁,𝛿 − Z𝓁,𝛿)

2𝛿 + 1
, (7)

which is simply the empirical variance of Z𝓁,𝛿 .
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Once �̂� = (�̂�1, … , �̂�N)T is calculated, we can use this as data to estimate parameters for our proposed model for the 𝛼𝓁
using a likelihood-based approach. As mentioned in the model section, assume �̂� represent realizations of independent
random variables with a censored normal distribution (see Appendix for functional form). Assuming independence, the
likelihood function for 𝜽𝛼 is

L(𝜽𝛼|�̂�) =
N∏
𝓁=1

f𝛼(�̂�𝓁; 𝜃𝓁) (8)

where 𝜽𝛼 = (𝜷, 𝜎2)T is a size (M + 1) × 1 vector of the parameters for f𝛼 , the pdf for a censored normal. We calculate the
maximum likelihood estimator for 𝜽𝛼 by maximizing (8).

4.3 Gaussian process parameters

Next we discuss estimation of 𝜽G, the parameters for the Gaussian process G(⋅). The parameters 𝜽G define the covariance
structure for the Gaussian process; exact specification of which covariance function we use is described in the model
specifics section next, but typically 𝜽G includes a variance, range and smoothness parameter. Let y = (y(1), y(2), … , y(L))T
be a vector of historical by-the-second GHI data. A basic problem is that the joint distribution of y is intractable due
to the complicated nature of the joint distribution of the underlying subordinator S(t). Thus, we propose an approach
which minimizes the L2 distance of spectral estimators based on an adapted approximate Bayesian computation (ABC)
algorithm (Beaumont et al., 2009).

In an ABC algorithm, first, a parameter value 𝜽∗G is chosen. Then a realization of the data is generated according
to the statistical model under 𝜽∗G, Y = (Y (1), … ,Y (L))T, at which point statistics based on the data and simulation are
calculated, 𝜉(y) and 𝜉(Y), and a distance between those values is considered, g(𝜉(y), 𝜉(Y)). If the distance is below a given
threshold, the value of 𝜽∗G is recorded, otherwise it is discarded; the algorithm then begins anew with a newly chosen
value of 𝜽∗G. We propose an approach similar to an ABC algorithm, but where uncertainty in 𝜽G is quantified using daily
replicates of data, rather than posterior estimate values of 𝜽G.

We now define 𝜉(Y), 𝜉(y), g(⋅, ⋅) for this particular model. Define first Py(⋅) to be the periodogram of the data y:

Py(𝜔) =
1
L

||||||
L−1∑
k=0

yke−i𝜔k
||||||
2

(9)

for 𝜔 ∈ [0, 𝜋]. We then smooth Py(⋅) using a Daniell kernel with C ∈ N spans set to {sp1, sp2, … , spC} to get the statistic
Py(⋅). The choice to smooth comes from the desire to limit the high variance the periodogram tends to exhibit over 𝜔

varying from [0, 𝜋]. Smoothing eases this variability to better highlight the overall trend, and is common procedure in
the time series literature (Brockwell & Davis, 1991). The number C of spans in the Daniell kernel can be chosen to yield
the best results for specific data. Then we let 𝜉(y) = log(Py). 𝜉(Y) is created in an analagous manner using the realization
from the model, Y, as a replacement for the real measurement data y. The distance metric g(⋅, ⋅) is the L2 distance between
𝜉(y) and 𝜉(Y), given by

J∑
j=0

(
log

(
Py(𝜔j)

)
− log

(
PY (𝜔j)

))2
(10)

where 𝜔j = 2𝜋j
L

for j = 0, … , ⌊L∕2⌋.
For each day of data, y, and a given 𝜽G, we can generate Y using our proposed model. Then, instead of selecting various

𝜽
∗
G and recording them if they meet a certain criteria, we first search for a 𝜽∗G for this specific y by way of

𝜽
∗
G = argmin

𝜽G

{g(𝜉(y), 𝜉(Y);𝜽G)} (11)

and save the �̂�G = 𝜽∗G which minimizes this distance. This process is repeated for each y, thereby allowing for estimation
of 𝜽G through repeated estimation using daily y, which are available through the given data set.
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4.4 Multi-day parameter estimates

The estimation steps outlined in Sections 4.2 and 4.3 are designed for use with a single day of historical GHI data at a time.
However, in practice, and in our example below, we have multiple days of data. We propose repeating the aforementioned
estimation processes using multiple days of historical by-the-second GHI data, resulting in sets of estimated parameters
{�̂�, �̂�2

, �̂�G}. As described in Section 4.5 below, these daily parameters can then be resampled to capture daily variability
in the estimated models, as well as uncertainty in the individual parameter estimates.

4.5 Simulation

Once the proposed model has been trained on a set of data, one can simulate realizations of one second GHI data one day
at a time. Detailed here is the methodology used to generate these simulated data. Note that a specified𝚯 ∶= (�̂�, �̂�2

, �̂�G)T ,
is all that is required to simulate from the model (2).

Let us first assume we have access to a set of distributions of estimated parameters for the component parameters of
𝚯. We may generate Y, a realization of one day of GHI data, by first independently resampling M times from the dis-
tribution of 𝛽 estimates and once from the distribution of �̂�2 estimates. Then �̂�𝓁 can be determined using Equation (6).
Once �̂�𝓁 is calculated, we can generate �̂�𝓁 by simulating N independent N(𝜇𝓁 , 𝜎2) random variables and left-censoring
them at 𝜖. These �̂�𝓁 can then be substituted into (5) to generate S(t). Next, independently resample a v̂ parameter
and jointly resample a set of {�̂�, �̂�} from the corresponding distribution of estimated parameters, which make up �̂�G.
Once �̂�G and S(t) are known, using XC(t) for t = 1, … L and the estimated cdf model F̂Z, we can generate Y using the
model (2).

5 MODEL CHOICES AND ESTIMATES FOR HAWAII DATA

We now apply this model and estimation technique to irradiance data from Hawaii. We describe our specific model choices
made with regard to the cdf FZ, the spline-subordinator, and the Gaussian process. With the exception of the density func-
tion for Z(⋅), estimation schemes for all parameters in the model are performed on each single day of GHI measurement
data separately.

Using these model choices for the Hawaii data, we train the model on 1 s GHI measurements from June and July.
There are 61 days of data in these months so we have a set of 61 best estimates of the parameters 𝜷, 𝜎2

, 𝜌, 𝜈, v, which are
also shown and remarked upon in the following sections.

5.1 Model choices and estimates for FZ

Figure 5 shows a histogram of {Z(t)} for t in June, July, and August 2010. For this application, we assume Z(t) has the
same density, fZ, for every day of June, July, and August. In general, fZ varies day-to-day, but the months of June, July
and August define a widely-accepted climatological period of summer, during which we assume a stationary climate. The
histogram in Figure 5 is an empirical estimate of fZ that we model using the mixture model of Equation (4). For the pdf f̂ Z,
we estimate �̂� which includes K̂, the number of distributions in the mixture model, �̂�k, the proportions of the mixtures,
and all associated �̂�k, the sets of parameters for each of the member distributions of the mixture model, fk.

Based on visual inspection of the somewhat bimodal histogram of log-CSI data in Figure 5, we determined that the
general shapes of the component distributions look like they could be well fit by a combination of Gaussian and Gamma
distributions. Therefore we originally chose K̂ = 3, where the components were two Gaussian and one Gamma. This fit
the distribution of data in terms of having a Q-Q plot which followed the identity line relatively well; however, the tail
(particularly at the top 0.5% of data) of the fit distribution f̂ Z for K̂ = 3 were slightly too light, thus concentrating more
mass at high values of GHI than actual GHI measurement data can support. As a result, we decided to add a fourth
component to this mixture model, which is a Pareto. As a result of this iterative process, we select the model for f̂ Z with
K̂ = 4, f1(z; 𝜃1) a Gaussian pdf with parameters (𝜇1, 𝜎

2
1 ), f2(z; 𝜃2) a Gaussian pdf with parameters (𝜇2, 𝜎

2
2 ), f3(z; 𝜃3) a Gamma

pdf with parameters (𝛼, 𝛽, c), and f4(z; 𝜃4) a Pareto pdf with parameters (𝜂, 𝜃). The results of the maximum-likelihood
estimates from the EM algorithm are shown in Table 1.
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10 of 22 BERRY et al.

F I G U R E 5 The estimated density f̂ Z (blue) along with the histogram of Z(t) data for June, July, and August.

T A B L E 1 The estimated parameters for the fZ distribution function fit for Equation (4).

k Parameters Estimates

1 (𝜆1, 𝜇1, 𝜎1) (0.494,−0.857, 0.5)

2 (𝜆2, 𝜇2, 𝜎2) (0.255, 0.142, 0.1)

3 (𝜆3, 𝛼, 𝛽, c) (0.245, 1.978, 0.026, 0.007)

4 (𝜆4, 𝜂, 𝜃) (0.005, 9.357, 0.387)

5.2 Model choices for the spline-subordinator

With regard to the estimation of the spline-subordinator, recall that we need to choose the number of knots 𝜅, the degree
d, and the number of coefficients M for the B-spline, 𝜇𝓁 .

We selected the number of equally-spaced knots to be 𝜅 = 500 and the degree to be d = 4. Since the amount of data in
each day falls around 50,000 s, with this choice of 𝜅, each 𝛼𝓁 in Equation (6) will take into account a little more than 1.5
min of 1 s GHI data. Aside from convenience, the justification for equally-spaced knots is that the data are evenly spaced
in time so it isn’t clear that more complicated knot placements (e.g., based on quantiles of available features of the data)
would be an improvement. And even if they were an improvement, the level of complexity this adds to the problem at this
stage is beyond the scope of this paper. We chose d = 4 to achieve a certain level of smoothness for the spline-subordinator.
Finally, we choose M = 25 to allow for the most possibility for flexibility in the B-spline to fit the ELVM vector �̂� while
acknowledging we only have 505 data points with which to estimate 𝜷, the coefficients of the B-spline; this choice balances
between model flexibility and model parsimony.

An example realization of �̂�𝓁 is shown in Figure 6. The mean trend 𝜇𝓁 (B-spline) is shown in red and the final process
in blue. The blue line in this figure illustrates how the anamorphosis censors the N(𝜇𝓁 , 𝜎2) process (black) at 𝜖 = 0.001,
thereby creating some stretches where �̂�𝓁 ≈ 0. This also further illustrates the motivation for the use of the B-spline mean
trend in pulling the original uncorrelated N(𝜇𝓁 , 𝜎2) process below 𝜖, where it will be censored by the anamorphosis,
resulting in stretches of time with near zero �̂�𝓁 s, which correspond to clear times of day.

For the 61 days of June and July irradiance data, Figure 7a,b show the marginal densities of the set of 𝛽k (treated
as independent here, see Appendix A.3 for discussion) and 𝜎

2. The 𝛽k and 𝜎
2 densities seem to be uni-modal in nature,

centered around 𝛽 ≈ 0 and 𝜎
2 ≈ 0.15.
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F I G U R E 6 Simulation of N(𝜇𝓁 , 𝜎2) for 𝓁 = 1, … , 505 with mean trend (red).
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F I G U R E 7 Distribution of 𝛽 parameters used in 𝛼𝓁 model (a), 𝜎2 parameters for the 𝛼𝓁 model (b), and variance parameters of G(⋅) (c).

5.3 Model choices and estimates for the Gaussian process

The final model choices are to specify the particular covariance function of the Gaussian process G(⋅), which populates
𝜽G, as well as C and {sp1, … , spC} for the Daniell kernel smoother.

For this application we choose a Matérn covariance function for the Gaussian process which involves a variance
parameter v, a range parameter 𝜌 and a smoothness parameter 𝜈 (see Appendix for functional form of Matérn used). For
these data, we select C = 2 with respect to the Daniell kernel smoother spans and sp1 = 55 and sp2 = 201. These specific
choices were made based on a desire for a smoothed spectral estimate without an excess of bias that would occur from
over-smoothing. When we set C = 1, there was not sufficient smoothing, resulting in a noisy spectral estimate, thus the
choice to use C = 2. We chose sp2 of about four times that of sp1 so as to improve the smoothing without adding too much
bias of the underlying spectral values at individual frequencies. Since these choices for C and spi, i = 1, 2 gave desirable
results visually with regard to the periodogram, we chose not to pursue more complicated smoothing schemes for the
sake of simplicity in the model.

Figure 8 shows the marginal densities of the 61 estimates from June and July of v and (𝜌, 𝜈) jointly. The parameter
estimates for v, the variance parameter for the GP, yield a somewhat bimodal density with peaks around 1000 and 1600,
which is interesting because the starting values for the optimization were chosen randomly, therefore this bi-modal distri-
bution cannot be explained through a bias in starting values for the numerical optimization to find each 𝜽∗G. With regard
to the joint density of {𝜌, 𝜈} in Figure 8, we also have a relatively bimodal surface where most of the density lies in the
region where 1.2 ≤ 𝜈 ≤ 2 and 20 ≤ 𝜌 ≤ 45.
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F I G U R E 8 Joint density of smoothness (𝜈) and range (𝜌) parameters of G(⋅).
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F I G U R E 9 Violin plot of reliability results for August GHI simulations.

6 VALIDATION FOR HAWAII DATA

In this section, we consider a suite of validation measures for the proposed model fitted to the Hawaii irradiance data.
Recall that the goal is to capture the statistical properties of the irradiance process, and not to forecast any individual time
or day of GHI. That is, this section assesses the unconditional distribution of modeled GHI to the actual distribution. To
this end, we consider a cross-validation experiment in which the model is fit to data from June and July, whose implied
statistical distributions are then compared to held-out August data.
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F I G U R E 10 Reliability plots broken down by time of day: morning time (left), mid-day (middle), and afternoon/evening (right).

We train the model on the 61 days of June and July 2010, and use the simulation technique described above in
Section 4.5 to generate 500 simulations of GHI at the 1 s resolution for each day of August 2010. To validate the model,
we consider reliability plots, spectral density estimates, sample partial autocorrelation functions (PACFs), and sample
autocorrelation functions of first differences (FDACFs), and marginal density estimates among other visual assessments.

Figure 9 contains a reliability plot assessing the statistical calibration of the model. For a given day in August, we
generate 500 realizations of the stochastic model; at each second, we consider the actual coverage of confidence inter-
vals represented by the ensemble of 500 simulations at nominal levels from 5% to 90% in 22 equal increments. For a
well-calibrated model, we expect that reliability plot will follow the identity line where actual coverage approximately
matches the nominal coverage. The violin plots capture variability over each day of August. Each violin in Figure 9 rep-
resents the shape of the distribution of actual percent coverage for a given nominal percent coverage over each of the 31
days of August. Generally the reliability plot indicates that our model is well-calibrated, with slight under dispersion at
the largest intervals.

The behavior of GHI differs depending on the time of day, so it is natural to consider a more detailed assessment of
reliability broken out by hours. Figure 10 shows three reliability plots grouped by time of day. In particular, we consider
coverage in the morning (first third of the day), mid-day (middle third of the day), and afternoon (last third of the day).
Note here the term “day” refers to total time of usable irradiance as defined in Section 2. We see that the mornings generally
give the best reliability at most nominal coverages, while the mid-day and afternoon show slight under dispersion at
mid-to-high coverage levels. Although there is slight under dispersion, the nominal levels are still captured within the
interquartile range at each band.

Another set of statistics we use to compare the simulations to real GHI data is the estimated spectra (log periodograms),
PACFs, and FDACFs. The functional boxplots (Sun & Genton, 2011) in Figure 11 show comparisons of these statistics
for 500 GHI simulations versus those of the GHI measurement data for August 9. The simulations yield accurate statis-
tics – notably neither the PACF nor the FDACF are trained statistics within the estimation procedure, so capturing these
well indicates the model is appropriate for these held-out data.

We also show the density of GHI measurement data in August compared with the simulations overall, see Figure 12, as
well as by times of day (morning, mid-day, afternoon), see Figure 13. The bimodal appearance of this density is interesting
and is even, to some degree, mimicked in the morning/mid-day/afternoon breakdowns. This may be explained by the
reaction of GHI to the existence of cloud events. If every day in August were clear, we would still expect to see a peak at
higher GHI due to the nature of the clear sky curve. The existence of the second mode at lower GHI, however, is interesting
and likely caused by cloudy days which cause higher incidence of lower GHI values. Our model matches the complicated
density of high-frequency GHI throughout the day very well.

We also remark on the visual comparison of the simulated and measured GHI data. Figure 14 shows 8 days of GHI
data. A selection of these 8 plots are real GHI measurement and a selection are days of simulated GHI data produced from
our model. A question one might ask as a litmus test for the viability of this model is: can you tell which is which? While
statistical or visual similarity each have varying levels of import, the two together make a successful model in the space
of quantifying and assessing variability for solar irradiance data. The results shown here are evidence of the promise of
this model.
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F I G U R E 11 Functional boxplots of statistics of 500 simulations of one day of August compared with those of the real GHI
measurement data. Log periodograms are shown in (a), sample autocorrelation function of first differences (FDACF) in (b), and sample
partial autocorrelation function (PACF) in (c).
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F I G U R E 12 Density of August simulations compared with real GHI.

6.1 Comparison to GARCH

We now turn to a comparison against a well-established nonlinear time series model. In particular, we consider a Gener-
alized AutoRegressive Conditional Heteoskedasticity (GARCH) model (Berkes et al., 2003). The GARCH model is meant
for time series in which there are periods of time with increased or decreased variability, which is certainly an appropriate
concept for irradiance data modeling. As such, one might consider replacing G(S(t)) in Equation (2), with a GARCH(p, q)
process. A GARCH(p, q) process, {wk} is defined by the equations

wk = 𝜎k𝜀k (12)

𝜎
2
k = 𝜔 +

∑
1≤i≤p

𝛼iw2
k−i +

∑
1≤j≤q

𝛽j𝜎
2
k−j (13)

where 𝜔 ≥ 0, 𝛼i ≥ 0, 𝛽j ≥ 0 are constants and 𝜀k are independent, identically distributed random variables (Berkes
et al., 2003). Here𝜔 is a mean term, the 𝛼i and 𝛽i are coefficients of the autoregressive terms in the GARCH process, and 𝜎

2
k
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F I G U R E 13 Density of August simulations compared with real GHI broken down by time of day.

F I G U R E 14 A selection of days of simulated GHI and real GHI measurement data.
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F I G U R E 15 Comparison of real GHI measurement data (left) to a simulation using the GARCH model (right).
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F I G U R E 16 Functional boxplots of statistics of 500 GARCH-based simulations of 1 day of August compared with those of the real GHI
measurement data.

is the variance of the process at time k. Thus, the variance of the GARCH at any given point is dependent on past squared
observations and variances. Note that, while there may be overlap in notation used in the SGP model, these parameters
are to be thought of as different quantities altogether and are recycled here because they are standard notation in the time
series literature.

Let Yg be a vector of simulated GHI data from a GARCH-based model, XC be a vector of the clear sky GHI for that
day, and FZ be the cdf of the log-CSI data, which has been estimated based on the details outlined in Section 4.1. Then
the GARCH-based model for a single day of 1 s GHI data can be written as

Yg = XC exp
(

F−1
Z (Φ(W))

)
(14)

in much the same way as (2) where W is a vector of values generated from a GARCH(p, q) process. Then, given a
set of actual GHI measurements, y, choice of distribution of 𝜀k, and a selection of p, q, we may find the 𝜽GARCH =
{𝜔, 𝛼1, … , 𝛼p, 𝛽1, … , 𝛽q} which will maximize the likelihood of the GARCH process.

We chose p = 1, q = 1 and 𝜀k ∼ N(0, 1) for the sake of comparison to the most widely used GARCH process. Note that
we also fit models with p, q ∈ {2, 3}, however they perform qualitatively similarly to the GARCH(1,1) model shown here.
As the GARCH(1,1) is replacing the SGP in the model, we opt to estimate parameters for the process using a maximum
likelihood approach, which is built into statistical packages in R. We fit parameters {𝜔, 𝛼, 𝛽} using R’s garchFit in the
fGarch package (Wuertz et al., 2020).

Once the GARCH parameters are fit, we generate 500 GHI simulations using those parameters and test the
GARCH-based model’s ability to perform the task of mimicking the kinds of variability seen in real GHI measurement
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F I G U R E 17 Reliability plot for 500 GARCH-based simulations of one day of GHI measurement data.

data using visual inspection and the same statistical metrics for comparison as shown in Section 6. Upon initial visual
inspection of these simulations, it is clear that this model does not perform as well as our proposal at capturing the kinds
of variability seen in GHI measurement data, see Figure 15. Figure 16 shows the analagous plots from Figure 11 for this
GARCH-based model. In addition to its lack of visual similarity to real GHI data, this model does not perform as well as our
proposal in terms of capturing the statistics–in particular with regard to the log-periodogram. The true log-periodogram
of the day of data these simulations were based on generally falls well outside the range of the functional boxplot for the
majority of frequencies. The PACF in Figure 16c shows that the simulations do not tell the same story as the true data in
terms of how the process’ partial autocorrelation looks–particularly at smaller lags. The FDACF does not show as dras-
tic of differences from the truth as the log-periodogram and the PACF, but the general pattern of the FDACF is markedly
different in the truth (magenta) as compared with the median of the simulations (black) in Figure 16b.

Figure 17 shows the reliability plot for these 500 simulations, which illustrates the inability of the GARCH-based
model to capture realistic uncertainty in irradiance, further supporting the need for improved approaches for irradiance
data simulation, such as our proposed model.

7 DISCUSSION

In this work we propose a new non-Gaussian approach to modeling high frequency solar irradiance data. Understand-
ing variability of irradiance resource data is critical for power planning studies with solar PV, and is a different task
than forecasting. Our model uses a new spline-subordinator that randomly time changes a stationary Gaussian process,
resulting in a stochastic process that exhibits periods of amplified variability between calmer periods, mimicking clear
atmospheric conditions and weather fronts. Our estimation procedure is stepwise, which allows for the practitioner to
check each stage of the model. We apply our model to a high frequency in situ irradiance data set in Hawaii, and find
that our approach well-captures variability, intermittency, and non-Gaussian distributional properties better than a com-
peting common nonlinear time series model. The parameters of our model could potentially be of use to grid researchers
in understanding the variability of irradiance data at the 1 s level. While this latter point is not the focus of the cur-
rent paper, there is possibility for interpretation of model parameters, which could be explored in future work, especially
when comparing multiple data sets from different climatological regions. For example, recall that the 𝛼 coefficients of
the spline-subordinator could be interpreted to represent the level of variability seen in the irradiance data during a given
time window (e.g., 𝛼 ≫ 0 means more variability and 𝛼 ≈ 0 means smoother, clearer times of day). Therefore, inspection
of plots like those found in Figure A3 might be an interesting comparison point between estimates of different locations.
Put another way, it might be of interest to grid researchers to know: does the distribution of these 𝛼 change depending on
time or location? This is outside the scope of the current proposal, but would certainly be a direction for the application
of this model.
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Future research may be devoted to generalizing this approach to the space-time setting, in which multiple correlated
time series trajectories of irradiance are necessary. Temporal nonstationarity of irradiances due to, say, seasonality, may
be captured using a seasonally-varying model, which may be an interesting route of future research. Other investigations
might include alternative subordinators that arise in the Lévy process literature.
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APPENDIX

A.1 Definitions and formulae
Matérn Covariance

𝜋
1∕2

𝜙𝜌
2𝜈

2𝜈−1Γ(𝜈 + 1∕2)

(
1
𝜌

|t|
)

𝜈

𝜈

(
1
𝜌

|t|
)

(A1)

where𝜈 is the modified Bessel function of the second kind, Γ is the gamma function, 𝜌 is a range parameter, and 𝜈 is a
smoothness parameter.

Censored Normal Density:

f (x) = Φ((𝜖 − 𝜇)∕𝜎)I{x≤𝜖} + (1 − Φ((x − 𝜇)∕𝜎))I{x>𝜖} (A2)
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Pareto Density:

𝜃𝜂
𝜃

x𝜃+1 , 𝜂 > 0, 𝜃 > 0, x ≥ 𝜂 (A3)

Gamma Density:

(x − c)𝛼−1 exp(−(x−c)
𝛽
)

𝛽𝛼Γ(𝛼)
, 𝛼 > 0, 𝛽 > 0, x ≥ c (A4)

A.2 Lévy versus spline-subordinators
We give a short explanation as to the motivation of the choice for the spline-subordinator over a true Lévy subordinator.
For example, let SL(t) be a Gamma subordinator. This means, by definition, that SL(t) > 0, for t2 > t1 SL(t2) ≥ SL(t2), and
SL(t2) − SL(t1)

iid∼ Γ(𝛼, 𝛽) .
We select 1 day of GHI data from which we have estimated parameters for the spline-subordinator, call it SS(t) for the

purposes of this section, using the Estimation and Model Specifics outlined in this paper. Additionally, for a selection of
(𝛼, 𝛽) = (0.1, 10), a realization of SL(t) is shown (Figure A1).

Figure A2 shows a comparison of a day of real GHI 1 s data to simulations using SL(t) and using SS(t). This illustrates
that using SL(t) doesn’t afford the same mix of clear and variable time periods that one sees in real GHI data and that the
spline-subordinators do a better job of capturing this behavior.

A.3 Discussion of independence of 𝜷k
Here we discuss the choice of treating the 𝛽k as independent in the model for the 𝛼𝓁 , which are the coefficients of the
spline-subordinator. In this work, we treat the 𝛽k for all k, as independent as opposed to using a 25 dimensional joint
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F I G U R E A1 A realization of SL(t) with (𝛼, 𝛽) = (0.01,100) (top) and SS(t), the spline-subordinator (bottom)
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F I G U R E A2 A day of real GHI 1 s data (top), a simulation of this day using SL(t) (middle), and a simulation of this day using SS(t)
(bottom).
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F I G U R E A3 Distribution of estimated 𝛼𝓁 parameters from measured data (left) compared to distribution of 1000 days of simulated 𝛼𝓁

(right) grouped by time of day.
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distribution for each 𝜷. There are drawbacks to this assumption, for instance, the left plot of Figure A3 depicts a clear
difference in how the 𝛼𝓁 are distributed during the middle of the day versus the beginning and end of the day. This does
not support the assumption that 𝛽k are independent; however, we found that treating the 𝛽k as independent allows for
more varied simulations and we still achieves good results.
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