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Lévy processes are useful tools for analysis and modeling of jump-diffusion pro-

cesses. Such processes are commonly used in the financial and physical sciences.

One approach to building new Lévy processes is through subordination, or a random

time change. In this work, we discuss and examine a type of multiply subordinated

Lévy process model that we term a deep variance gamma (DVG) process, including

estimation and inspection methods for selecting the appropriate level of subordina-

tion given data. We perform an extensive simulation study to identify situations in

which different subordination depths are identifiable and provide a rigorous theoreti-

cal result detailing the behavior of a DVG process as the levels of subordination tend

to infinity. We test the model and estimation approach on a data set of intraday

1-min cryptocurrency returns and show that our approach outperforms other state-

of-the-art subordinated Lévy process models.
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1 | INTRODUCTION

Modern financial datasets are often modeled using Lévy processes due to the non-Gaussian and uncorrelated price fluctuations, as well as appar-

ent jumps. A Lévy process is a process with stationary and independent increments that is stochastically continuous. Such processes share an inti-

mate relationship with infinitely divisible distributions, which can lead to fruitful theoretical investigations (Sato, 1999). Although Lévy processes

have been explored since the 1930s (Sato, 2001), new application areas such as high frequency cryptocurrency returns can challenge existing

frameworks (Shirvani et al., 2022). One popular method for building new Lévy processes is through subordination, or stochastic time change. Sub-

ordination leads to popular classes of Lévy models such as the variance gamma, α-stable, and the normal inverse Gaussian process, details of

which can be found in Cont and Tankov (2004). The motivation for the use of stochastic time change in the context of financial modeling comes

from its ability to capture certain characteristics of returns like their non-Gaussianity and correlation with volatility (Carr & Wu, 2004).

The class of variance gamma models has been of interest for decades; Madan and Seneta (1990) introduced the process for modeling uncer-

tainty of security prices and generalized this idea in Madan et al. (1998) with a skewness parameter. Barndorff-Nielsen and Shepard (2006) stud-

ied the inconsistency of realized variance as an estimator for the time-change in time-deformed Lévy processes. More recently, Aguilar et al.

(2020) compared subordinated models like the variance gamma and normal inverse Gaussian process to an alternative approach, which they term

a fractional diffusion model, in calculating risk sensitivities and profit-and-loss explanation, a slightly different pursuit than we investigate here in

modeling cryptocurrency returns.

In this work, we begin with the idea of a time-changed Lévy process and explore a particular multiply-subordinated process that we term the

deep variance gamma (DVG) process (DVG), in which a variance gamma process is subordinated iteratively with further gamma processes.

Recently, Shirvani et al. (2021) proposed this idea of building new Lévy processes by using multiple levels of subordination in which the stochastic

time change process itself experiences a stochastic time change. Starting with their idea, we investigate further and analytically show that, under

certain conditions on the subordinators, infinite depth of subordination leads to a degenerate process. For moderately deep subordination, the

DVG allows for flexibility in having highly non-normal densities that can capture very small values, while allowing for heavy tails, making this a

good candidate model for cryptocurrency return data. We provide new discussion on estimation and identification of DVG processes, including a
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visual tool for selecting the appropriate depth of subordination given data, as well as detailed simulation study illustrating that moderately deep

DVGs can be distinguished from standard variance gamma processes. In the vein of multiple subordination, Shirvani et al. (2022) had success

developing a doubly subordinated Lévy process for Bitcoin volatility data; we consider an application of the DVG to a 1-min cryptocurrency

returns dataset and show that the model with our approach better fits the distribution of returns than the recently proposed doubly subordinated

Lévy process (Shirvani et al., 2022).

2 | LÉVY PROCESS BACKGROUND

Lévy processes are a wide class of models for stochastic processes with stationary and independent increments. A stochastic process ZðtÞ,t≥0, is
a Lévy process if it satisfies the following properties:

1. Zð0Þ¼0 almost surely.

2. For any choices of 0≤ t1 < t2 <…< tn, the random variables Zðt1Þ,Zðt2Þ�Zðt1Þ,…,ZðtnÞ�Zðtn�1Þ are independent.

3. The distribution of ZðtþhÞ�ZðtÞ does not depend on h.

4. Z is stochastically continuous.

Lévy processes share an equivalence to the class of infinitely divisible distributions in that ZðtÞ is an infinitely divisible random variable for

any t.

The Lévy–Khintchine representation is a celebrated result giving the general form of the characteristic function for a Lévy process.

Theorem 1 Lévy–Khintchine. Let ZðtÞ be a Lévy process on ℝ, then

EexpðiωZðtÞÞ ¼ exp � t
2
σ2ω2þ itγωþ t

ð
eiωx�1� iωx1½jxj≤1�ðxÞ
� �

νðdxÞ
� �

¼ expðtΨðωÞÞ

for ω�ℝ, where γ �ℝ, σ ≥0, and ν is a measure on ℝ such that νðf0gÞ¼0 and
Ð ðjxj2^1ÞνðdxÞ<∞.

In this theorem, ν is the Lévy measure, Ψ is the characteristic exponent, and ðγ,σ,νÞ is often referred to as the characteristic triplet of Z. Here,

γ is a drift term and σ2 represents the variance of the Brownian motion component (Cont & Tankov, 2004) while ν controls the jump behavior.

There are many types of Lévy processes, but one particular class we will utilize throughout this work is the class of gamma processes. Con-

sider a gamma random variable with density μðxÞ¼ λαΓðαÞ�1xα�1 expð�λxÞ for x>0; we refer to this as a Gamma(α,λ) distribution with shape

parameter α>0 and rate parameter λ> 0. A gamma process, ZðtÞ, is a Lévy process such that Zð1Þ is Gammaðα,λÞ; thus, the distribution of ZðtÞ is
Gammaðtα,λÞ.

One important type of Lévy process is a subordinator; a Lévy process SðtÞ is a subordinator if it is nonnegative and increasing in t almost

surely. Subordinators can be used to create new Lévy processes through a random time change: If ZðtÞ is a Lévy process and SðtÞ a subordinator,

then XðtÞ¼ZðSðtÞÞ is also a Lévy process. Subordinated Lévy processes can be interpreted as time-changed processes where the time change is

random; in the financial literature, such random time changes are often interpreted as market time, which speeds up and slows down according to

the stochastic subordinator. For example, the gamma process described above is a subordinator.

A convenient representation exists for a nonnegative Lévy process using the Laplace transform. The Laplace transform of a nonnegative mea-

sure μ is LðuÞ¼ Ð∞
0 e

�uxμðdxÞ for u≥ 0. For a nonnegative Lévy process SðtÞ, the Laplace transform can be written Eexpð�uSðtÞÞ¼ expðtℓðuÞÞ,
where we refer to ℓðuÞ as the Laplace exponent of SðtÞ. The Laplace transform of a gamma random variable is

LðuÞ¼ 1

1þλ�1u

� �α

and so the Laplace exponent of a gamma process is

ℓðuÞ¼�αlogð1þλ�1uÞ ð1Þ

which will be useful in the next section.
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3 | DEEP VARIANCE GAMMA PROCESSES

A favored way of generating new types of Lévy processes is through subordination. The following proposition, the proof of which appears in Cont

and Tankov (2004), tells us the effect of subordination on the Lévy exponent.

Proposition 1. If ZðtÞ is a Lévy process with characteristic exponent ΨðωÞ, and SðtÞ is a nonnegative subordinator with Laplace exponent

ℓðuÞ independent of ZðtÞ, then YðtÞ¼ZðSðtÞÞ is a Lévy process. Moreover, YðtÞ has characteristic function

EexpðiωYðtÞÞ¼ expðtℓð�ΨðωÞÞÞ: ð2Þ

Under the conditions of Proposition 1, suppose SðtÞ is a gamma process with parameters ðα,λÞ and ZðtÞ is a Brownian motion with zero drift

and variance σ2; then YðtÞ¼ZðSðtÞÞ is termed a variance gamma process. A variance gamma is a time changed Brownian motion, where the time

randomly dilates or contracts according to the gamma process; in the financial literature, the gamma process is sometimes referred to as “market

time.” The variance gamma has characteristic function

EexpðiωYðtÞÞ¼ exp �tαlog 1þ σ2

2λ
ω2

� �� �
: ð3Þ

We can readily see from Equation (3) that the variance gamma is overparameterized in that changes in the rate λ of SðtÞ are equivalent to

changes in the variance of the driving Brownian motion. Thus, we follow Madan and Seneta (1990) and Madan et al. (1998) by setting λ¼ α so

that ESðtÞ¼ t for all t≥0.

Proposition 2 can readily be generalized to produce a large class of useful new Lévy processes, contained in the following theorem.

Theorem 2. If ZðtÞ is a Lévy process with characteristic exponent ΨðωÞ and S1ðtÞ,…,SLðtÞ nonnegative subordinators that are mutually

independent and independent of ZðtÞ with Laplace exponents ℓ1,…,ℓL, respectively, then YðtÞ¼ZðS1ðS2ð…SLðtÞÞÞÞ is a Lévy process with

characteristic function

EexpðiωYðtÞÞ¼ expðtℓLð�ℓL�1ð� � �ð�ℓ1ð�ΨðωÞÞÞÞÞÞ ð4Þ

for all ω and t.

Proof of this theorem can be found in Appendix A.

We are now set up to define the main object of this study. Suppose ZðtÞ is a Brownian motion with no drift and variance σ2 at t¼1 and let

S1ðtÞ,…,SLðtÞ be independent gamma subordinators where Skð1Þ has parameter αk for k¼1,…,L. We define the deep variance gamma process of

order L to be YðtÞ¼ZðS1ðS2ð…ðSLðtÞÞÞÞÞ. This multiply-subordinated process allows for great flexibility in density function shapes including heavy

tails and peaked density around zero that commonly occur in financial data.

By Theorem 2, the characteristic exponent of YðtÞ is straightforward,

�αLlog 1þαL�1

αL
log 1þαL�2

αL�1
log � � �α1

α2
log 1þ σ2

2α1
ω2

� �� �� �� �
: ð5Þ

Unfortunately, the Fourier inverse of (4) is not available for L≥2 for the deep variance gamma process, so likelihood-based estimation

methods are challenging.

Figure 1 shows a set of characteristic function (chf) and probability density function (pdf) pairs for L¼2,3, varying some possible combina-

tions of αk parameters. Some interesting patterns emerge; for the L¼2 case, smaller pairs of α lead to a peaked pdf with heavier tails in the chf,

while larger values dampen the tails of the chf, leading to a broader, lighter-tailed pdf. In the L¼3 case, a similar story can be seen with large and

small values of the αs corresponding to peaked/spread out pdfs; here, we can see that changes in α1 tend to have a greater effect on the shape of

the chf/pdf than individually changing the higher-level α2 or α3.

A natural inquiry is to consider the behavior of a deep variance gamma process as L!∞. For ease of exposition, we consider the special case

when αk ¼ α for all k¼1,…,L, and behavior of (5) as L!∞. Shirvani et al. (2021) hypothesized that the distribution of YðtÞ converges to a point

mass but did not provide a rigorous proof; we will establish a similar result but with proof (see Appendix A), in the following theorem.

BERRY and KLEIBER 3 of 11
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Theorem 3. Suppose YðtÞ is a deep variance gamma process of order L with αk ≤ αkþ1 ≤Λ for all k and some finite Λ. As L!∞, the char-

acteristic function of YðtÞ,EexpðiωYðtÞÞ, converges to unity for all ω and all t.

According to Theorem 3, as L!∞ the characteristic function of a DVG converges to a constant everywhere as the levels of composition

increase; thus, the distribution of YðtÞ converges to degenerate Dirac delta point mass at zero in the limit of infinite subordination. Figure 1 illus-

trates this claim to some extent with the L¼3 pdfs becoming more peaked around zero with the addition of greater levels of depth.

4 | ESTIMATION AND SIMULATION STUDIES

In this section, we discuss an estimation approach for DVG processes and present a detailed set of simulation studies designed to assess our abil-

ity to recover DVG parameters from data.

F IGURE 1 Examples of characteristic function and probability density function pairs for the deep variance gamma process with σ¼1 for
depths L¼2,3, varying values of fαkg
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4.1 | Estimation

Estimation of Lévy process parameters from data is a topic of much discussion. When probability density functions (pdfs) are analytically available,

such as for the variance gamma process, standard maximum likelihood techniques can be used (Barndorff-Nielsen & Blaesild, 1981; Cont &

Tankov, 2004; Sueishi & Nishiyama, 2005), although Honore (1998) warns of potential difficulties for unbounded likelihoods. Unfortunately, for

DVG of orders L> 1, analytic pdfs are unavailable. In such cases, other estimation approaches have been proposed, such as maximum empirical

likelihood (Elgin, 2011), and nonparametric methods (Figueroa-L�opez, 2009, 2011).

For the DVG, the characteristic function is available, so we propose following a least squares characteristic function estimation approach that

has seen success for Lévy and other types of distributions (Kappus & Reiß, 2011; Xu & Darve, 2020; Yu, 2007). Let cðω,θL,LÞ be a theoretical chf

of the DVG with depth L and corresponding parameters θL at frequency ω�ℝ, and cnðωÞ be an empirical chf defined by

cnðωÞ¼1
n

Xn
j¼1

expðiωXjÞ

where X1,…,Xn are independent and identically distributed random variables and i is the imaginary number. The least squares chf method uses θ̂L

that minimizes

ℓðθL,LÞ¼
XK
k¼1

jcðωk ,θL,LÞ�cnðωkÞj2 ð6Þ

where j � j is the complex modulus and fωkgKk¼1 is a set of user-specified frequencies.

A separate issue in estimating DVG parameters is in choosing the appropriate depth level, L. We propose a heuristic approach (seen to work

well in the simulation studies and examples below) in which models are fit sequentially with L¼1,2,…, each of which results in a minimizing value

of (6), ℓðθ̂L,LÞ. Adding in additional levels of depth at small L, we expect to gain additional flexibility in the probability model, however, according

to Theorem 3, there will be a point of diminishing returns at which ℓðθ̂L,LÞ grows with L. We propose a visual approach by plotting values of

ℓðθ̂1,1Þ,ℓðθ̂2,2Þ,…, and identifying the inflection point at which increasing L either offers no improvement in model fit, or becomes detrimental to

model fit. Another approach is to examine the relative improvement as levels are increased, 1�ℓðθ̂Lþ1,Lþ1Þ=ℓðθ̂L,LÞ, choosing an L such that rela-

tive improvement is minimized, or becomes negative.

4.2 | Simulation studies

It is not clear a priori that the least squares chf approach will yield reasonable estimates of DVG process parameters, or to what extent sample

sizes have an effect on quality of estimates. It is also unclear that, given data, we can easily distinguish between different potential subordination

depths. In this section, we investigate a detailed set of simulation studies to first assess our ability to recover parameters, and second to distin-

guish between different levels of depth for the DVG process.

To assess estimation efficiency, we consider different sample sizes and parameter values for DVG processes with depths L¼2 or 3. In partic-

ular, consider sample sizes n� f2000,5000,10000g and αk � f0:5,1,2,5,10,100g for k¼1,2,3. For the purposes of this simulation study, we

assume σ2 ¼1 is fixed and known. We set a grid of frequencies at ω� f�40þ i=2gi¼0,…,160; in exploratory analyses, we considered other grid reso-

lutions and domains but found that the results were not manifestly affected. Each experiment with a possible combination of sample size and αs

is repeated 20 times.

We begin by assessing the ability of the least squares chf method to recover parameter values. Figures 2 and 3 show logarithmic scatterplots

of least squares estimates of the α parameters over all experiments colored by sample size. The least squares chf method produces reasonable

estimates of DVG parameters at both levels, with greater variability and uncertainty for higher values of α, regardless of level. In view of Figure 1,

the variability at higher values of α is due to the flattening of the chf tails for large frequencies, requiring more data to tease apart possible chf

shapes at lower frequencies.

In the depth L¼3 DVG experiment, Figure 4 considers which pairs of values for ðα1,α2,α3Þ the correct depth model of L¼3 has a lower mini-

mizing value of (6) over the best models from depths 1, 2, and 4. The goal is to identify parameter combinations for which it is easier to distinguish

between the correct and incorrect models. Generally, most situations correctly identify that L¼1 is inappropriate except for the largest pairs of α,

due to the flattening of the chf tails for these values. The second row indicates that any parameter combinations with α1 small are difficult to dis-

entangle from L¼4, along with combinations having large values of α2 and α3. However, for larger values of α1, and small-to-moderate values of

α2 and α3, there is good ability to identify L¼3 as the correct depth compared to L¼4. The final row suggests is it generally more difficult to dis-

tinguish between L¼3 and L¼4.
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5 | APPLICATION TO HIGH FREQUENCY CRYPTOCURRENCY RETURNS

Cryptocurrencies have become highly popular within the last decade. Led by the popularity of Bitcoin, hundreds of new blockchain currencies

have been introduced, some of the most common include Ethereum, Ripple, and Litecoin. Although each has its own unique features, these cur-

rencies share the power of blockchain's peer-to-peer distributed ledger technology, in which public records of each transaction are maintained in

a chain. Bitcoin, invented by Satoshi Nakamoto, began trading in 2009 while Ethereum began public transactions in 2015. Although Ethereum has

smart contract functionality, the ability to execute contracts in an automated way, its associated currency, Ether, is often referred to as Ethereum,

the parent blockchain.

Cryptocurrencies are not beholden to traditional stock market business hours and are traded continuously 24 h a day. There is interest in the

high-frequency behavior of cryptocurrency returns: Cocco et al. (2017) develop a statistical model to simulate artificial daily Bitcoin prices; Chu

et al. (2020) examine high frequency momentum trading using hourly cryptocurrency prices; Celeste et al. (2020) fit wavelet models and examine

volatility of Ethereum and Bitcoin daily returns. Challenges include the highly non-normal behavior of high-frequency returns often with heavy

tails and a sharp peak around zero (Petukhina et al., 2021; Zhang et al., 2019).

In spite of their clear utility for cryptocurrency modeling, Lévy processes have only been recently explored (Philippas et al., 2019). Shirvani

et al. (2022) propose using a doubly subordinated normal inverse Gaussian Lévy process for daily Bitcoin return data. We push this idea further

and show that deeper subordination using the DVG provides better fits of the small log-returns, but also captures tail behavior better than the

model of Shirvani et al. (2022).

F IGURE 2 Least squares chf estimates of α1 and α2 for the first simulation study with L¼2, colored by sample size.

F IGURE 3 Least squares chf estimates of α1,α2, and α3 for the first simulation study with L¼3, colored by sample size.
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We consider two of the most popular cryptocurrencies: Ethereum and Bitcoin. High-frequency 1-min price data were downloaded from

Kaggle (Klein, 2022); for both currencies, we consider a time period of 10,000 values covering approximately one week between October

31, 2021, to November 7, 2021. We model log-returns; that is, if PðtÞ is the price at time point t, we model ZðtÞ¼ logðPðtÞÞ� logðPðt�1ÞÞ. As is
common with investment return data, exploratory analyses suggest minimal autocorrelation between returns, and highly non-Gaussian behavior

(see Figure 5). We thus model the log-return data as a Lévy process, and consider both the proposed DVG model, as well as a recent proposal by

Shirvani et al. (2022), the normal double inverse Gaussian (NDIG) Lévy process. Both models are fit using the least-squares chf approach of

Section 4. We consider depths L¼1,…,6 of the DVG. Parameter estimates are contained in Table 1; we note that values of αL for small L tend to

grow as higher depths are considered, but then stabilize.

Figure 5 shows loss values as a function of depth of the DVG subordinators, along with the chf loss for the NDIG model. All depths of the

DVG are superior to the NDIG model, with a depth of L¼5 minimizing the chf loss for both cryptocurrencies. Histograms of the log-return values

with the best-fitting DVG and NDIG models illustrate some interesting points: The NDIG model fails to capture the frequent small changes in

price while the DVG adequately captures this spike in probability at small values. The DVG model also captures the heavy tails of the high-

frequency returns better. This is apparent in Figure 6, which shows probability integral transform (PIT) histograms for each currency and model fit.

An appropriate statistical model will have nearly uniform PIT histograms; we see the DVG showing good uniformity for both cryptocurrencies,

F IGURE 4 Percent of simulations in which the correct 3-depth model is favored over the competing depths of 1 (top row), 2 (middle row), or
4 (bottom row) in terms of minimizing value of (6), split by pairs of ðα1,α2,α3Þ

BERRY and KLEIBER 7 of 11
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while the NDIG exhibits underdispersion and strong modes on both sides of the PIT, suggesting it has tails that are too heavy for these data. Note

this is in contrast to the results of Shirvani et al. (2022)—however, these authors use daily Bitcoin returns, while we focus on intraday high-

frequency one minute behavior.

6 | DISCUSSION

We discuss a deep variance gamma (DVG) Lévy process in which a Brownian motion is subordinated multiple times with independent gamma pro-

cesses. We investigate theoretical properties of the model, and analytically show that, under certain conditions, as the depth increases without

bound, the Lévy process becomes degenerate in the limit. We perform a detailed simulation study and find that, even with moderately-sized data

F IGURE 5 Loss values as a function of depth of the deep variance gamma process fits for depths L¼1,…,6; the dashed line indicates the
best-fitting depth (L¼5 in both cases), while the horizontal line indicates the loss value for the NDIG model. Histograms of log returns with
estimated NDIG and proposed best-fitting DVG overlaid. The DVG model captures small returns as well as heavy tails better than NDIG.
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sets, parameters of the DVG can be well estimated, and appropriate depths can be identified given data. Our findings show that distinguishing the

optimal depth is generally most difficult for large gamma parameter values, and we propose a diagnostic approach for choosing an appropriate

depth given data. We illustrate the approach on two high-frequency cryptocurrency data sets using Ethereum and Bitcoin one minute returns.

We show that a rather deep DVG fits both data sets better than a shallow DVG, or a competing model from the recent literature. The proposed

model captures both the tails and the strong peak around zero better than extant models. Future research may be directed toward investigating

other deep Lévy processes, some of which have been introduced in Shirvani et al. (2021), as well as developing theoretical criteria for choosing a

particular model depth given data.
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TABLE 1 Parameter estimates for different DVG model depths for Ethereum and Bitcoin high-frequency return data.

Ethereum Bitcoin

Depth 1 2 3 4 5 6 1 2 3 4 5 6

σ 3.9e�4 3.7e�4 3.6e�4 3.5e�4 3.5e�4 3.5e�4 3.1e�4 2.8e�4 2.7e�04 2.7e�04 2.7e�4 2.7e�4

α1 0.8 4.8 8.0 16.5 17.1 8.9 0.6 4.5 11.2 15.8 20.8 13.2

α2 - 1.5 3.8 9.2 10.3 9.8 - 1.2 3.7 3.6 12.3 93.5

α3 - - 2.7 3.8 5.8 3.4 - - 1.7 3.3 63.4 9.8

α4 - - - 3.5 2.6 37.7 - - - 4.4 2.6 3.9

α5 - - - - 228.8 11.5 - - - - 2.9 2.8

α6 - - - - - 11.9 - - - - - 23.3

F IGURE 6 PIT histograms for the Ethereum and Bitcoin examples with the normal double inverse Gaussian (NDIG) model and the proposed
deep variance gamma (DVG) model.
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APPENDIX A

This appendix contains proofs the main theorems.

Proof of Theorem 2. We show this by induction. Let ZðtÞ be a Lévy Process on ℝ with characteristic exponent ΨðωÞ, and
S1ðtÞ,S2ðtÞ,…,SLðtÞ be subordinators with Laplace exponents of ℓ1,ℓ2,…,ℓL, respectively. Finally, denote F S to be the filtration of

SðtÞ. The base case for L¼1 is Proposition 1, a proof of which can be found in Cont and Tankov (2004). Now assume the character-

istic function for the subordinated process YðtÞ¼ZðS1ðS2ð…SLðtÞÞÞÞ is
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EexpðiωYðtÞÞ¼ expðtℓLð�ℓL�1ð…ð�ℓ1ð�ΨðωÞÞÞÞÞÞ¼ expðtΨYðωÞÞ

where we define ΨYðωÞ¼ℓLð�ℓL�1ð…ð�ℓ1ð�ΨðωÞÞÞÞÞ. Consider VðtÞ¼YðSLþ1ðtÞÞ, where SLþ1 is a subordinator with Laplace expo-

nent ℓLþ1. Then we have

E½eiuVðtÞ� ¼E½eiuYðSLþ1ðtÞÞ�
¼E E½eiuYðSLþ1ðtÞÞjF SLþ1 �� �
¼E½eΨY ðωÞSLþ1ðtÞ�
¼E½e�ð�ΨY ðωÞÞSLþ1ðtÞ�
¼ etℓLþ1ð�ΨY ðωÞÞ

¼ etℓLþ1ð�ℓLð…ð�ℓ1ð�ΨðωÞÞÞÞÞ

where we use the induction step in the third equality, and form of the Laplace transform of a subordinated process in the fifth

equality. ▪

Proof of Theorem 3. The characteristic exponent of a deep variance gamma process of order L is

�αLlog 1þαL�1

αL
log 1þ…

α1
α2

AðωÞ
� �� �

where AðωÞ¼ log 1þ σ2

2α1
ω2

� �
. Define

γL ¼ log 1þαL�1

αL
log 1þ…

α1
α2

AðωÞ
� �� �

where we suppress dependence of γL on ω for ease of notation. Note γL forms a decreasing sequence because

γLþ1 ¼ log 1þ αL
αLþ1

γL

� �
<

αL
αLþ1

γL < γL

by the standard inequality for logarithms that logð1þxÞ< x for any positive x and that fαLgL is an increasing sequence. Additionally,

note that fγLgL is bounded below by zero, thus it converges.

Note that fαLgL converges as it forms a monotonically increasing sequence that is bounded above by Λ, let α be this limit, and

M be the limit of fγLgL. Then at the limit of fγLg we have M¼ log 1þ α
αM

� 	
which implies M¼0. Thus, for any choice of ω, we have

the characteristic exponent in (5) converges to zero as L!∞, and the chf converges to unity. ▪
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