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Abstract We propose a Bayesian hierarchical model for spatial extremes on a large domain. In the data
layer a Gaussian elliptical copula having generalized extreme value (GEV) marginals is applied. Spatial
dependence in the GEV parameters is captured with a latent spatial regression with spatially varying coeffi-
cients. Using a composite likelihood approach, we are able to efficiently incorporate a large precipitation
data set, which includes stations with missing data. The model is demonstrated by application to fall precip-
itation extremes at approximately 2600 stations covering the western United States, 21258E to 21008E
longitude and 308N–508N latitude. The hierarchical model provides GEV parameters on a 1/88 grid and,
consequently, maps of return levels and associated uncertainty. The model results indicate that return levels
and their associated uncertainty have a well-defined spatial structure. Maps of return levels provide informa-
tion about the spatial variations of the risk of extreme precipitation in the western US and is expected to be
useful for infrastructure planning.

1. Introduction

Engineering design of infrastructure, such as flood protection, dams, and management of water supply, and
flood control, requires robust estimates of return levels and associated errors of precipitation extremes. Spa-
tial modeling of precipitation extremes can not only capture spatial dependence between stations but also
reduce the overall uncertainty in at-site return level estimates by borrowing strength across spatial locations
[Cooley et al., 2007]. A Bayesian hierarchical model (BHM) of extremes precipitation was first introduced by
Cooley et al. [2007] and since has been widely discussed in the literature [Cooley and Sain, 2010; Aryal et al.,
2010; Atyeo and Walshaw, 2012; Davison et al., 2012; Ghosh and Mallick, 2011; Reich and Shaby, 2012; Sang
and Gelfand, 2010, 2009; Apputhurai and Stephenson, 2013; Dyrrdal et al., 2014]. BHMs have also been
applied successfully to runoff extremes [Najafi and Moradkhani, 2013, 2014]. Recently, BHMs have emerged
as a regional frequency analysis (RFA) approach which improves upon many aspects of traditional index-
flood-based RFA models [Hosking and Wallis, 1993; Bradley, 1998; Wang et al., 2014; Yan and Moradkhani,
2015], such as eliminating the need for delineation of homogeneous regions and providing full uncertainty
distributions at ungaged locations [Renard, 2011].

While they have seen an increase in popularity in recent years, BHMs for spatial extremes have typically
been limited to small geographic regions that include on the order of 100 stations covering areas on the
order of 100,000 km2. Large geographic regions with thousands of stations and diverse climatologies pre-
sent a computational challenge for BHMs, specifically when computing the likelihood of underlying Gauss-
ian processes (GPs), which for n data points requires solving a linear system of n equations, an Oðn3Þ
operation. Some attempts have been made to model extremes in large regions and with large data sets in a
Bayesian hierarchical context. Reich and Shaby [2012] use a hierarchical max-stable model with climate mod-
el output in the east coast to examine spatially varying GEV parameters, with a max-stable process for the
data dependence level. Ghosh and Mallick [2011] model gridded precipitation data over the entire US, for
annual maxima at a 58 3 58 resolution (43 grid cells) and copula for data dependence, incorporating spatial
dependence directly in a spatial model on the data, not parameters. Cooley and Sain [2010] and Sang and
Gelfand [2009] model over 1000 grid cells of climate model output using spatial autoregressive models. The
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spatial autoregressive models are parameterized in terms of the precision (inverse covariance) matrix so
that no matrix inversion (or Cholesky factorization) is needed. Furthermore, the structure of the generated
precision matrix is sparse and utilizing sparse matrix algorithms leads to substantial performance
improvements.

When only point data are available, the computational tricks which apply to gridded data cannot be used,
though other approximation methods may be employed. One such class of methods for speeding up GP
likelihood computations are low-rank approximations [Banerjee et al., 2008], where the likelihood is evaluat-
ed at only a specific set of knots placed throughout the domain, effectively reducing the size of the covari-
ance matrix. While attractive, low-rank methods can produce large uncertainties between knot locations.
Composite likelihood (CL) methods [Lindsay, 1988; Heagerty and Lele, 1998; Caragea and Smith, 2007; Varin
et al., 2011] approximate the likelihood function itself by breaking stations into groups and evaluating the
likelihood for each group. Spectral methods such as Fuentes [2007] imagine that irregularly spaced data are
on a regular lattice containing missing points and then apply likelihood approximations based on Fourier
transforms. Restricted likelihood methods [Stein et al., 2004] are similar to CL methods but approximate the
full likelihood via conditional distributions. The so-called integrated nested Laplace approximation (INLA)
method uses approximations to the posterior marginal distributions to efficiently compute approximate
Bayesian posterior samples [Rue et al., 2009].

Among all of these approximation methods, the CL method stands out for its flexibility (groupings of sta-
tions can be any size or spatial distribution) and ease of implementation inside of arbitrary Bayesian models.
Unlike low-rank methods, parameters can be fit for each station, improving the accuracy of spatial predic-
tions. CL methods also have attractive asymptotic properties; as more data are included in each group, the
likelihood approximation approaches the true likelihood [Lindsay, 1988]. This suggests that if we can strike a
balance between group size and computation time, we can obtain accurate parameter estimates and great-
ly reduced computational burden. In some cases, CL has been shown to diverge greatly from the truth
when small group sizes are used [Ribatet et al., 2012; Wang et al., 2014]. This problem is largely remedied
when larger group sizes are used [Castruccio et al., 2014].

With the CL method in mind, we turn our attention to the appropriate choice of model structure for large
spatial extremes data sets in a Bayesian framework. Bayesian hierarchical spatial extremes models are typi-
cally composed of three layers: (1) a data layer consisting of a specification of a joint distribution for the
data; (2) a process layer capturing spatial dependencies among the at-site distribution parameters using
Gaussian processes; and (3) priors. In the literature, three main methodologies exist for specifying a data lay-
er joint distribution. Conditional independence [Cooley et al., 2007] assumes stations are independent given
their distribution parameters where all spatial dependence is captured in the process layer. While computa-
tionally attractive, conditional independence models preclude the simulation of realistic fields of extremes.
Max-stable processes [Schlather, 2002; Cooley et al., 2006; Shang et al., 2011; Ribatet et al., 2012; Padoan
et al., 2010; Sang, 2015] refer to the specification of a joint distribution that is specifically formulated for spa-
tial extreme data. While theoretically appropriate, these methods have serious computational limitations for
large data sets, which necessitate very small CL group sizes, in turn leading to inaccurate results [Castruccio
et al., 2014]. Finally, elliptical copulas can be used to specify a joint distribution for spatial data with arbitrary
marginal distributions. While they require that some underlying assumptions be met, elliptical copulas are
attractive for their flexibility and ease of implementation.

Given a lack of such models in the literature, we propose a Bayesian hierarchical spatial extremes models
which can handle thousands of observation locations and arbitrarily large geographic regions. This model
pulls together several techniques and approximation approaches to produce gridded return levels and
uncertainty distributions at any desired resolution. In the first layer of the hierarchy, an elliptical copula is
used represent the joint distribution of the data. In the second layer, a spatial regression is used to model
the spatial dependence of the marginal distribution parameters. The spatial regression parameters are
allowed to vary in space, allowing the model to adapt to the varied climatologies of large geographic
regions. Any remaining spatial dependence is captured using latent GPs. A CL approximation approach is
employed to reduce computation time for the elliptical copula and GP likelihoods. In addition, the model is
capable of incorporating stations with missing data with little additional computational overhead. The mod-
el is applied to observe 3-day fall precipitation extreme in the western US, providing estimated return levels
and uncertainty estimates on a 1/88 grid for the entire domain.
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In section 2 the general model structure is described. Section 3 describes the composite likelihood proce-
dure. Section 4 describes details of the application to seasonal extreme precipitation in the western US.
Results are discussed in section 5 and discussion and conclusions are given in section 6.

2. Model Structure

The joint distribution of the m stations in each year is modeled as a realization from a Gaussian elliptical
copula with generalized extreme value (GEV) distribution marginals. The copula is characterized by pairwise
dependence matrix R. Spatial dependence is further captured through spatial processes on the location
lðsÞ, scale rðsÞ, and nðsÞ parameters. We assume the parameters can be described through a latent spatial
regression where the residual component wcðsÞ follows a mean 0, stationary, isotropic Gaussian process
(GP) with covariance function Ccðs; s0Þ where c represents any GEV parameter (l, r, n). The corresponding
covariance matrix is CcðhcÞ5½Ccðsi; sj; hcÞ�mi;j51 where hc represents the covariance parameters. The first layer
of the hierarchical model structure is

ðYðs1; tÞ; . . . ; Yðsm; tÞÞ � Cm½R; flðsÞ; rðsÞ; nðsÞg�; (1)

Yðs; tÞ � GEV½lðsÞ; rðsÞ; nðsÞ�; (2)

where Yðs; tÞ is the response at site s and time t and Cm stands for ‘‘m-dimensional Gaussian elliptical copula’’
with dependence matrix R. The spatial data layer processes in each year are assumed independent
and identically distributed. Marginally, observations have a generalized extreme value (GEV) distribu-
tion, the theoretical distribution of block maxima data.

The second layer of the hierarchy, also known as the process layer, involves spatial models for the GEV parameters

lðsÞ5bl01xT
lðsÞblðsÞ1wlðsÞ; (3)

rðsÞ5br01xT
rðsÞbrðsÞ1wrðsÞ; (4)

nðsÞ5bn01xT
nðsÞbnðsÞ1wnðsÞ; (5)

where bc0 are spatially constant intercept terms, xT
c ðsiÞ is a vector of p spatially varying predictors, and

bcðsÞ5½bc1ðsÞ; . . . ; bcpðsÞ�T is a vector of p spatially varying regression coefficients. Covariates will be
discussed in section 4.2.

The shape parameter n is notoriously difficult to estimate its value determining the support of the GEV dis-
tribution and the heaviness of the tail. Positive values of n indicate a lower bound to the distribution and a
heavy upper tail which are typically seen with precipitation data. Negative values of indicate an upper
bound with a tail that may be heavy or light. A zero value of n indicates an unbounded distribution which is
light tailed. In many studies, n is modeled as a single value per study area or per region within the study
area [Cooley et al., 2007; Renard, 2011; Atyeo and Walshaw, 2012; Apputhurai and Stephenson, 2013]. As in
Cooley and Sain [2010], we cannot assume that this parameter is constant over the large study region and
so it is modeled spatially along with the other GEV parameters.

For large regions we cannot assume that a constant spatial regression holds for the entire domain and thus
must introduce spatial variation in the regression coefficients. The second layer of the hierarchy also
involves a spatial model for these regression coefficients

bciðsÞ5
Xk

j51

ccijgcijðs; acijÞ i51; . . . ; p; (6)

where the c can represent any GEV parameter, bciðsÞ is the ith (spatially varying) regression coefficient, ccij ’s are
weights for k radial basis functions, the gcij ’s, which are distributed throughout the domain. Additional details
are provided in section 2.2. The hierarchical relationship between parameters is summarized in Figure 1.

2.1. Elliptical Copula for Data Dependence
Elliptical copulas are a flexible tool for modeling multivariate data [Renard, 2011; Sang and Gelfand, 2010;
Ghosh and Mallick, 2011; Renard and Lang, 2007]. This class of copulas can represent spatial data with any
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marginal distribution, a particularly attractive feature for extremal data. The Gaussian copula constructs the
joint pdf of a random vector (Y1; . . . Ym) as

FCopðy1; . . . ; ymÞ5URðu1; . . . :umÞ; (7)

where URðu1; . . . :umÞ is the joint cdf of an m-dimensional multivariate normal distribution with dependence
matrix R, ui5/21ðFi½yi�Þ; / is the cdf of the standard normal distribution, and Fi is the marginal GEV cdf at
site i. The corresponding joint pdf is

fCopðy1; . . . ; ymÞ5

Ym

i51

fi ½yi�

Ym

i51

w½ui�
WRðu1; . . . :umÞ; (8)

where fi is the marginal GEV pdf at site i, w is the standard normal pdf, and UR is the joint pdf of an m-
dimensional multivariate normal distribution.

The dependence between sites is assumed to be a function of distance [Renard, 2011]. The dependence
matrix is constructed with a simple exponential model

Rði; jÞ5exp ð2jjsi2sjjj=a0Þ; (9)

where a0 is the copula range parameter. Note that the values in this dependence matrix are not covariances
since they are not scaled by a marginal variance parameter, though the dependence matrix is a valid covari-
ance matrix. By analogy with the variogram, the dependence model is termed the dependogram [Renard,
2011].

2.2. Spatial Regression Model
For large regions, spatial regression relationships may not hold constant for the entire domain due to vary-
ing regional climatologies and topographies. In these situations a single regression coefficient for each
covariate is not appropriate and it is necessary to allow for spatial variation in the spatial regressions for
each GEV parameter. Each regression coefficient is represented as a weighted sum of radial basis functions
basis functions (equation (6)). The form of these radial basis functions is

gcijðs; acijÞ5exp 2jjs2sijj2=a2
cij

� �
; (10)

where a2
cij is a range parameter determining the spatial extent of the basis function. These radial basis func-

tions, also known as Gaussian kernels, are placed at points throughout the domain, known as knots. The
sum of the radial basis functions creates a smoothly varying surface for each regression coefficient.

The knots are placed according to a space-filling design [Johnson et al., 1990; Nychka and Saltzman, 1998].
For each GEV parameter, we use 10 knots (Figure 2) since based on the author’s experience, regression

Figure 1. Hierarchical relationship between model parameters. Note that while four layers are shown for illustrative purposes, the rows in
the diagram are not layers in the hierarchical model since only components which contribute to the likelihood are considered layers.
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relationships in the western US region
tend to hold for regions of a few
square degrees. For simplicity, the
same knot locations were used for
each GEV parameter though each
could use different configurations of
knots.

2.3. Missing Data
Stations with missing data can be easi-
ly incorporated in the model. When
the GEV likelihood is computed, years
with missing data are simply skipped.
With at least 30 years of data at each
station, the GEV parameters can be
estimated adequately based on only
the available data. For simplicity, the
copula likelihood was only computed
for stations with complete data. This
did not strongly affect the estimates of
the copula range parameter during
testing. An alternative approach to

incorporating missing data when computing the likelihood for each year of data is to use a covariance
matrix of a size corresponding to the number of available stations. While potentially more accurate, manag-
ing multiple matrices of varying sizes leads to additional computational costs and coding challenges.

2.4. Likelihood and Priors
The marginal distribution of Yðsi; tÞ is GEVðyðsi; tÞjlðsiÞ;rðsiÞ; nðsiÞÞ where the log-likelihood for some data
point y is

log GEVðyjl; r; nÞ52log ðrÞ2ð111=nÞlog ðbÞ2b21=n; (11)

where b511nðy2lÞ=r.

Let c represent any of the GEV parameters (l; r; n). The residual Gaussian processes likelihood pðwcjhcÞ is
obtained from the multivariate normal density function wcjhc � MVNð0;RcÞ, where Rc5CðhcÞ. We use an
exponential covariance function with parameters d2

c (the partial sill or marginal variance), ac (the range),
and s2

c (the nugget), so hc5ðd2
c ; ac; s2

cÞ. The parametric form of the covariance function is

Cðsi; sj ; hcÞ5
d2

c exp ð2jjsi2sj jj=acÞ i 6¼ j

d2
c1s2

c i5j
:

8<
:

We use weakly informative normal priors centered at 0, with a standard deviations as follows: 0.1 (d2
n; s

2
n), 1

(d2
l; d

2
r; s

2
l; s

2
r; bn0; clij; crij; clij; i51; . . . ;m), 10 (bl0; br0), 1000 (al; ar; an; a0;), 5000

(alij; arij; anij; i51; . . . ; p; j51; . . . ; k). For n we restrict values to the range ½20:5; 0:5�, motivated by the
typical ranges seen in precipitation data [Cooley and Sain, 2010].

3. Estimation

3.1. Composite Likelihood
Composite likelihood for spatial data are a method in which the full likelihood is approximated by a set of
conditional or marginal likelihoods (see Varin et al. [2011] for a recent review). Conditional approaches con-
struct the composite likelihood as a product of conditional likelihoods for each observation given neighbor-
ing observations [Vecchia, 1988; Stein et al., 2004]. Marginal approaches construct the conditional likelihood
as a product of joint densities of groups of observations of two or more. The case when a group consists of
one observation is known as the independence likelihood, which precludes the computation of spatial
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Figure 2. Station locations with complete data (black solid dots) and station loca-
tions with incomplete data (gray filled dots). Red asterisks are knot locations for
the spatially varying regression coefficients.
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dependence parameters [Varin et al., 2011]. Composite likelihood methods have also been applied to max-
stable spatial processes (see Sang [2015] for a recent review).

In our approach, the stations are broken up into G groups each with ng stations. The marginal composite
likelihood estimator (Lc) is constructed as a product of the group likelihoods

Lcðhjy1; . . . ; yGÞ5
YG

g51

LgðhjygÞ; (12)

where h contains covariance parameters and yg contains observations from group g. This approach is simi-
lar to the ‘‘small blocks’’ approach from Caragea and Smith [2006, 2007]. Approximating the likelihood in
this way requires OðGn3

gÞ computations as opposed to Oðn3Þ. An assumption in this approach is that each
group is independent, which is expected to introduce some loss of statistical efficiency. As ng increases (and
G decreases) the composite likelihood estimator approaches the true likelihood at the cost of increased
computation time [Caragea and Smith, 2007]. The choice of ng must be a balance between computation
time and accuracy. Along these lines, Caragea and Smith [2007] suggest that computational efficiency is
maximized when ng is between m1=2 and m2=3, where m is the total number of stations. In this application,
the composite likelihood approximation is applied to compute the copula likelihood as well as each of the
latent GEV parameter residuals.

3.2. Composite Likelihood Group Size and Distribution
In order to use a composite likelihood approach, we must decide how many stations to use in each group
(ng). The number of stations in each group should be small enough so as not to incur substantial computa-
tional cost but large enough so that the covariance parameters can be adequately estimated. We used 30
stations per group or approximately 1% of the total number of stations. The consequences of this choice
are explored in section 5.2.

We must also choose how stations are to be grouped. Several approaches come to mind such as selecting
groups based on climatological regions, elevation bands, or a course grid. We chose to group stations ran-
domly, expecting that groups will have a mixture of stations with a range of spatial proximities, allowing for
estimation of both small and large scale behavior.

What remains in the model are a few application specific details: selection of the knot locations and the
selection of covariates. These are described in the next sections.

4. Application to the Western US

4.1. Precipitation Data
Daily fall (SON) precipitation data were obtained from the Global Historical Climatology Network (GHCN).
We use all available stations in the western US which contain more than 30 years of data from 1950 to
2013. Maximum 3 day total precipitation was computed for each year during the fall period (SON). For a
data point to be considered nonmissing, we required no more than 25% of the days to be missing in the
corresponding 3 month period. The number of stations included (with the number of complete stations in
parentheses) was 2618 (848). Figure 2 shows the station locations, with solid black points indicating stations
with complete data and filled gray points indicating stations with incomplete data. Red asterisks indicate
the centers (knots) for the radial basis functions.

4.2. Covariates
For all GEV parameters the same covariates are used, i.e., xlðsÞ5xrðsÞ5xnðsÞ5xðsÞ. The covariates are eleva-
tion and mean seasonal precipitation. Typically, latitude and longitude are used as well, but the spatially varia-
tion of the regression coefficients precludes this. Covariates were obtained at knot locations, station locations,
and at a 1/88 grid throughout the study area. Elevation data were obtained from the NASA Land Data Assimila-
tion Systems (NLDAS) (http://ldas.gsfc.nasa.gov/nldas/NLDASelevation.php) [Xia et al., 2012a, 2012b]. Mean sea-
sonal precipitation was computed from the Maurer data set [Maurer et al., 2002].
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4.3. Implementation and Model Fitting
The model was implemented in the Stan modeling language [Stan Development Team, 2015a] using the
RStan interface [Stan Development Team, 2015b]. Stan uses the No-U-Turn Sampler (NUTS), an implementa-
tion of Hamiltonian Monte Carlo (HMC) [Hoffman and Gelman, 2014]. The Stan/Rstan interface to the NUTS
algorithm allows for Bayesian. The NUTS sampler uses information about the gradient of the posterior to
avoid Metropolis-Hastings (MH) random walk behavior. NUTS is a multivariate sampler that deals well with
high-dimensional problems, highly correlated parameters, tends to need very few warmup iterations, and
typically produces nearly uncorrelated samples. For these reasons, very long chains are usually not needed,
nor is thinning. The tradeoff we observed in this application was that the NUTS sampler required longer
computation time per sample compared to a traditional MH sampler.

Three chains of length 3000 were run, with the first 1000 iterations discarded as warmup, resulting in 6000 sam-
ples for each parameter. Chains took 2–3 days to run on an 8-core 2.6 GHz Intel Core i7 processor. To assess con-
vergence, we computed the R̂ statistic to ensure it is below 1.1, as well as visually inspected trace plots.

4.4. Computation of Gridded Return Levels
After model fitting is complete, distributions of each GEV parameter are obtained at each 1/88 grid cell via
conditional simulation. The gridded parameter values are used to compute return levels at each grid cell
using the GEV return level formula

ziðrÞ5li1riðð2log ð121=rÞÞ2ni 21Þ=ni ; i51; ::;m;

where r is the return period in years (100 years for example). The detailed steps for this procedure are
shown in Figure 3 and are described as follows:

1. Select a single posterior sample of all model parameters.
2. Conditionally simulate latent GEV parameter residuals, wlðsÞ; wrðsÞ, and wnðsÞ.
3. Compute latent regression coefficient surfaces, blðsÞ; brðsÞ, and bnðsÞ by combining the radial basis

functions at knot locations.
4. Compute GEV parameter mean surfaces, bl01xT

lðsÞblðsÞ; br01xT
rðsÞbrðsÞ, and bn01xT

nðsÞbnðsÞ.
5. Combine the results of steps 2 and 4 to create GEV parameter surfaces, lðsÞ; rðsÞ; nðsÞ.
6. Combine the GEV parameter surfaces at each grid cell using equation (4) to create return level surfaces.
7. Repeat steps 1–6 for each posterior sample.

5. Results

5.1. Testing the Validity of the Gaussian Copula
An implication of the Gaussian copula is that marginal distributions are asymptotically independent, or P
ðFxðXÞ > pjFyðYÞ > pÞ ! 0 as p! 1 [Renard and Lang, 2007]. To test this we conducted asymptotic inde-
pendence tests [Reiss and Thomas, 2007] for all pairs of stations. The null hypothesis of this test is depen-
dence, so setting a significance level of 99% ensures that stations passing the test exhibit strong
asymptotic dependence. At the 99% significance level, 0.30% of pairwise stations exhibited dependence,
less than 1% expected from chance (Figure 4). In addition, we examined plots of the station locations
when dependence was indicted by the test. These plots did not show any discernible spatial pattern of
dependence; for example, dependent stations did not tend to fall near each other.

Draw posterior 
sample

Compute latent 
regression 

coefficient surfaces

Compute latent 
parameter means

Conditionally 
simulate latent 

parameter residuals

Return Level Field
Latent GEV 

parameter fields

Figure 3. Schematic of the procedure for generating gridded return levels from posterior samples.
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5.2. Group Size Selection
To demonstrate that the selection of
group size has little effect on return levels,
a small experiment is conducted. We run
the model for a region encompassing
most of the state of Oregon, using 4
knots. The group size is set to be 2, 5, 10,
15, 20, and 30 stations representing
approximately 1, 2, 4, 6, 8, and 13% of the
total number of stations, respectively. The
same 240 stations (60 complete, 180
incomplete) are used in each model run.

Figure 5 shows the median return level for
each model run. The results are nearly iden-
tical for this range of group sizes, indicating
that median return levels are not sensitive

to the choice of group size. Credible intervals of return levels (not shown) were quite similar as well, with credi-
ble intervals decreasing as group size is increased indicating that a larger group size yields more accurate results,
as expected. In light of this we chose a group size of 30 for the large domain which provides both a diversity in
the distribution of stations within a group but is small enough to not significantly hider computation.

5.3. Gridded Return Levels
Figure 6 shows the median of the GEV parameters after interpolation by conditional simulation as well as the
average extreme precipitation for the fall period. The location and scale fields are highly correlated; locations
with higher average extreme precipitation tend to have more variability in these extremes. As expected, the
location parameter field corresponds quite well with the location parameter field. Cooley and Sain [2010]
who model extreme precipitation from a climate model over the same study region, though for winter.

Values of n are always positive, indicating a heavy upper tail for precipitation throughout the western US.
The southwestern coastal region exhibits the highest shape parameters reflecting the arid climate of the

0
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200000
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t

Figure 4. Histogram of P values from the asymptotic independence test
between all pairwise stations. Values below the red line indicate asymptotic
dependence at the 99% level, which is the case for only 0.3% of pairwise sta-
tions, less than 1% expected from chance.
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Figure 5. Median return levels using a group sizes of 2, 5, 10, 15, 20, and 30. Note the logarithmic color scale.
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region. In some years the seasonal maxima in that region are identically zero, while other season has large
events, causing the heaviest tailed distributions in the western US.

We find reasonable agreement with Cooley and Sain [2010] (Figures 1 and 3) in terms of spatial patterns of
GEV parameters and return levels, though magnitudes are somewhat different, which is expected from win-
ter versus fall. Similar patterns of high location and scale parameters can be seen in the pacific northwest
and high shape values in the southwest can be seen in both models.

5.4. Validation
Cross validation was conducted by dropping 885 stations or approximately 35% of the total stations.
Gridded return levels were computed for this subset of data. Figure 7 shows the difference between the
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Figure 6. Median of underlying GEV parameters, location (l, upper right), scale (r, lower left), and shape (n, lower right). The figure on the
top left shows the average fall 3 day maximum precipitation computed from the Maurer et al. [2002] data set.
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median return level for the full data and subset data. The difference map shows some spatial coherence but
none that indicates any strong bias in a single region (states for example). The largest differences occur in
areas in the northwest where influential stations were dropped randomly. For example in the Pacific North-
west, some of the largest differences are seen where stations with extremes higher than surrounding sta-
tions were dropped. These differences do not suggest any systematic bias in the method. The method is
expected to perform well even with smaller subsets of data.
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Figure 7. Difference between fiftieth percentile return levels from the full model and the validation model dropping 35% of the data.
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Figure 8. Return levels maps produced using latent Gaussian predictive processes.
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5.5. A Case for Composite Likelihood
To highlight the usefulness of the composite likelihood approach for this application, we present results
using a Gaussian predictive process (GPP) model [Banerjee et al., 2008] for the latent GEV parameter process-
es (Figure 8). A Gaussian predictive process model approximates the likelihood at a small set of knots to
reduce the dimension of the covariance matrix and the computational burden of inverting it. The GP values
at knot locations are treated as model parameters, and sampled in the MCMC procedure. During the likeli-
hood computation, the GP is interpolated via kriging to each station location in order to obtain the value of
the GP at each station. We originally set out using latent GPPs for this application for each GEV parameter
but switched to a composite likelihood approach when we realized the uncertainty was unacceptably large
away from knot locations. While this section is not intended to be an exhaustive comparison of these two
methods, it is intended as a cautionary note.

The median return levels with the GPP approach (Figure 8, left) were nearly identical to those from the com-
posite likelihood method (Figure 9, left) but large differences are apparent when looking at the credible
intervals of the return levels. Clear artifacts are present in Figure 8 (right) where the locations of knots are
apparent. Uncertainty away from knot locations was typically large, rendering this method much less useful
than the composite likelihood approach. The reason for the large uncertainty away from knot locations is
due to the conditional simulation procedure to generate GEV parameter fields. The GP is simulated from as
if there are no stations in between knots, when in reality there are many stations in between each knot that
were unused in the spatial predictions. Thus, we recommend the use of a composite likelihood type
approach when low predictive uncertainty is required.

6. Discussion and Conclusions

We describe a general Bayesian hierarchical model for extreme data observed over space and time. The
data are assumed to originate from a Gaussian elliptical copula having generalized extreme value (GEV)
marginal distributions. Spatial dependence is further captured by Gaussian processes on the three GEV
parameters (location, scale, and shape). Using a composite likelihood approach, we are able to incorporate
2595 observation locations with 54 years of data. With spatially varying regression coefficients, the model
can be applied to arbitrarily large regions. The model was applied to extreme 3 day precipitation in fall in
the western United States, a climatologically and geographically diverse region. The model was fit using a
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Figure 9. Median 100 year return levels for fall (left) and width of corresponding 95% credible interval (right). Note the logarithmic color
scale.
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standard Bayesian methodology, implicitly capturing uncertainty in the parameter estimates and spatial
predictions.

This model is useful as a tool for creating precipitation frequency maps similar to the NOAA Atlas 14
[National Oceanic Atmospheric Administration, 2004]. Engineering applications for these types of maps
include design of water management infrastructure (dams, levees, storm water control structures), water
supply management, and flood control. While we focused on 100 year return levels, the model can easily
create maps for any return period, without reestimation of parameters. One estimation run may take 2–3
days but this is a one-time up-font cost.

In section 5.5 we briefly examine results for the same region using a Gaussian predictive process (GPP) mod-
el for the latent GEV parameters. In this application, GPPs produced unreasonably large posterior credible
intervals when moving away from knot locations. In light of this we recommend a composite likelihood
approach for regions of equal or larger size than the western US.

A crux of this model is the use of appropriate spatial covariates. Mean seasonal precipitation (MSP) had a
correlation of 95% with the MLE estimates of l and 75% with the MLE estimates of r. Even with spatially
varying regression coefficients, appropriate covariates are key. The covariates here helped in generating
realistic spatial variability and helped to reveal a complex spatial pattern for the shape parameter, n. The
strongest covariate for n was elevation. The spatial variability in n shows that it is inappropriate to model
without spatial variation for anything but the smallest regions.

A number of extensions can be made to this framework. The most obvious extension is to allow temporal
variation in the GEV parameters by including temporal covariates. While this extension remains infeasible
for the size of the current study region, it may be feasible for smaller regions, say a single state or moderate
sized river basin. Additional spatial covariates could be included; for example, seasonal temperature, winds
or evapotranspiration. A model such as the one presented here can be used to investigate changes in risk
under specific climate regimes (i.e., ENSO); one would simply include the mean seasonal precipitation field
from strong El Ni~no or La Ni~na years. Because we incorporate a data layer, this model could be used to sim-
ulate realistic fields of extremes under specific climate regimes. Finally, we plan to explore the linking of
streamflow data into the hierarchy, so that streamflow extremes can be simultaneously estimated.
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