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Abstract—There is rising interest in probabilistic forecasting to
mitigate risks from solar power uncertainty, but the numerical
weather prediction (NWP) ensembles readily available to system
operators are often biased and underdispersed. We propose a
Bayesian model averaging (BMA) post-processing method suitable
for forecasting power from utility-scale photovoltaic (PV) plants
at multiple time horizons up to at least the day-ahead timescale.
BMA is a kernel dressing technique for NWP ensembles in which
the forecast is a weighted sum of member-specific probability den-
sity functions. We tailor BMA for utility-scale PV forecasting by
modeling power clipping at the AC inverter rating and advance
the theory of BMA with a new beta kernel parameterization that
accommodates theoretical constraints not previously addressed.
BMA is demonstrated for a case study of 11 utility-scale PV plants in
Texas, forecasting at hourly resolution for the complete year 2018.
BMA’s mixture-model approach mitigates underdispersion of the
raw ensemble to significantly improve forecast calibration, while
consistently outperforming an ensemble model output statistics
(EMOS) parametric approach from the literature. At 4-hour lead
time, the BMA post-processing achieves continuous ranked proba-
bility skill scores of 2–36% over the raw ensemble, with consistent
performance at multiple lead times suitable for power system
operations.

Index Terms—Solar power forecasting, probabilistic fore-
casting, Bayesian model averaging (BMA), beta distribution, solar
power clipping.
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P(s) AC power rating of solar plant at site s
k Ensemble member index
K Number of ensemble members
t Forecast time index
tl Forecast lead time
λ Clipping threshold

Forecast Variables and Function Definitions

y
(s)
t Power at site s at time t

f
(s)
k,(t) NWP forecast from member k for site s at time t

h
(s)
k,(t) Conditional PDF from member k for site s at

time t
p Probability density function
P Discrete probability
z Dummy variable
φ Standard normal PDF
Φ Standard normal CDF
Γ Gamma function
gk Member-specific beta or normal PDF
Gk Member-specific beta or normal CDF
α, β Standard beta distribution parameters
γ Beta shape parameter
μ Mean
σ Standard deviation

Bayesian Model Averaging Parameters

a0k, a1k Logistic regression coefficients for member k
bk Linear bias correction coefficient for member k
ck Variance height coefficient for member k
wk Weight of member k
τh Sliding window width
τd Time-of-day window width

Forecast Evaluation and Metrics

T Evaluation period
Ft Predictive CDF at time t
δ Average interval width
ρ Central interval
(w)CRPS (Weighted) mean Continuous Ranked Probability

Score
(w)QSξ (Weighted) Quantile Score at level ξ
ξ Level in (0,1)
wl, wc, wr Left-, center-, and right-weighting functions
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SS CRPS skill score

Acronyms

NWP Numerical weather prediction
BMA Bayesian model averaging
EMOS Ensemble model output statistics
CDF Cumulative distribution function
PDF Probability density function
SLI Sliding
TOD Time-of-day

I. INTRODUCTION

A. Motivation

A S THE penetration of renewable resources such as wind
and solar photovoltaics (PV) increases in the power sys-

tem, there is also a need for improved forecasting techniques [1].
Accurate and reliable forecasting can improve the utilization of
variable and uncertain renewable generators, while mitigating
the associated risks. Historically, efforts have focused on de-
terministic or “point” forecasts; however, there has been recent
movement toward probabilistic forecasting to more fully capture
forecast uncertainty [2], [3]. In operational practice, the state of
the art is still to use deterministic forecasts, but a few system
operators such as the Hawaiian Electric Company have begun
to experiment with probabilistic forecasts [4]. As they become
more widely available, probabilistic forecasts can be valuable
for both power system operators and market participants [5], in-
forming adaptive reserve algorithms [6], robust and/or stochastic
unit commitment and economic dispatch models [7], [8], and
market bidding strategies [9].

When considering different solar forecasting horizons, there
are broadly two categories of techniques: statistical and time-
series methods, which are generally applicable for “very short-
term” forecasting (minutes to 6 hours ahead), and physics-based
models, such as numerical weather prediction (NWP), which are
more accurate for “short-term” hours- to days-ahead forecast-
ing [2]. While recent literature has developed machine learning
and time series methods for very short-term probabilistic solar
forecasting [10]–[12], these methods have not yet translated into
operations. We restrict our view to state-of-the-art short-term
NWP-based approaches currently used by system operators for,
e.g., the day-ahead unit commitment.

Post-processing NWP forecasts to develop probabilistic solar
forecasts is a recent area of interest. One class of techniques
post-processes a single deterministic NWP prediction to gen-
erate a probabilistic forecast [13]–[16], while a second group
uses an ensemble of NWP forecasts, by collecting a variety of
NWP models or perturbing their initial conditions [2], [17].
These “NWP ensembles” usually require post-processing to
address weaknesses and to smooth the ensemble from a discrete
set of points to a full cumulative distribution function (CDF).
These weaknesses usually include a sunny bias and ensemble
underdispersion—that is, a tendency to underestimate the un-
certainty in the forecast [17]. This paper addresses this area
of interest: post-processing NWP ensembles for solar power
applications.

B. Background and Related Works

Recently, NWP ensemble post-processing methods from the
meteorology and forecasting fields that address bias and under-
dispersion have been investigated for solar applications. [18]
demonstrated two NWP post-processing techniques for solar
power forecasting: variance deficit and ensemble model output
statistics (EMOS) [19], which fits a parametric truncated nor-
mal distribution to the ensemble. EMOS is a state-of-the-art
approach recently applied to wind speed [20] and electricity
price [21] forecasting. [22] also investigated EMOS as well as
Bayesian model averaging (BMA) for accumulated irradiance
forecasting. BMA is a common approach from the meteorology
field [23], which has been successfully applied to other weather
variables, including precipitation [24], wind speed [25], and vis-
ibility [26], but has not been explored for the specific challenges
of solar power forecasting.

BMA is a “kernel-dressing” method, in which each ensemble
member is dressed with a probability density function (PDF)
based on its historical performance. It is a relative of non-
parametric methods like kernel density estimation (KDE), ap-
plied in [27], [28] for wind and [16], [29] for solar applications.
In KDE, the overall probability distribution is the normalized
sum of kernels (PDFs) centered at each data point. All kernels
typically have the same bandwidth, but there is not a standard
bandwidth selection method. Options range from rules-of-thumb
to plug-in methods that require prior information [30].

BMA improves upon classic KDE by offering added cus-
tomization. First, BMA includes a bias correction step, so that
each kernel is not necessarily centered at the raw NWP data
point. Additionally, the bandwidth and relative weight of each
kernel are individually determined from that NWP member’s
historical performance, giving higher weight to more reliable
members and ensuring the spread of uncertainty is adequately
captured. With this added customization, BMA shapes and
weights each ensemble member’s kernel based on its historical
performance to generate a mixture model that combats ensemble
bias and underdispersion.

BMA is also distinguished from similarly named “Bayesian
methods” [31], [32] that use historical observations as inputs to a
time-series ARIMA model to fit a single parametric distribution,
e.g., a beta [32]. In contrast, BMA uses physics-based NWP
models, which are more accurate at longer time-horizons, as
inputs to a mixture-model that cannot be described with a single
parametric distribution.

Given that potential forecast users are system operators and
plant owners, this method produces usable solar power forecasts,
rather than irradiance forecasts. However, forecasting power
from utility-scale PV plants does come with specific challenges.
Training data quality can be a concern, due to plant maintenance
and partial outages, as well as system conditions, like forced
curtailment due to transmission constraints. Additionally, PV
power output is determined by a plant’s technical specifications
including panel type, axis tracking configuration, and DC and
AC power ratings. In particular, if the DC side is oversized
compared to the AC inverter rating, the plant power might be
“clipped” at its AC rating—nonlinear behavior that should be
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taken into account [33]. Besides common-sense data quality
control, this paper addresses these challenges by directly in-
corporating clipping into its methods.

C. Contributions

To the best of the authors’ knowledge, this is the first demon-
stration of BMA post-processing for NWP ensembles for solar
power forecasting. Using a “raw” ensemble of NWP forecasts
that have been individually preprocessed into hourly PV plant
power, each ensemble member is dressed in a two-part mixture
model that explicitly accounts for clipping. In addition, we
advance the field of BMA by addressing theoretical constraints
on applying a beta kernel that were not addressed in previous lit-
erature [26]. Improvement from BMA post-processing is quan-
tified with probabilistic metrics relative to three benchmarks:
a persistence ensemble [15], the raw NWP ensemble, and a
state-of-the-art parametric EMOS post-processed forecast from
the literature [18]. The methods comparison is replicated for
11 utility-scale (∼5–100 MW) PV plants in Texas to illustrate
the effectiveness over multiple locations and plant specifica-
tions, including thin film and regular silicon technologies and
fixed, 1-axis, and 2-axis tracking configurations. At each site,
BMA outperforms the three benchmarks at multiple lead times
suitable for intra-day and day-ahead forecasting. These case
studies use actual data for the complete year 2018 from power
plants spanning hundreds of acres, rather than irradiance point
measurements or kW-scale rooftop systems, as is common in
the literature [10], [13], [32], [34].

D. Organization

The rest of the paper is organized as follows: Section II
outlines the BMA post-processing model; Section III introduces
how the model is fit to historical data; Section IV describes
forecast benchmarks and metrics; Section V introduces the case
study data; Section VI shows sensitivities on how to train the
BMA models; Section VII presents the final post-processed
forecast performance for 1 year; and Section VIII concludes.

II. BMA POST-PROCESSING METHOD

In BMA, the PDF of the quantity of interest yst for each
location s at time t is determined as a mixture of conditional
PDFs, hs

k,t(y
s
t |fs

k,t), one for each forecast fs
k,t in an ensemble

of K members. For brevity, the indices s and t are omitted. Each
PDF hk(y|fk) can be understood to be a PDF for y, conditional
on member k. Based on that member’s relative performance in
the historical training period, each conditional PDF is assigned
a nonnegative weight wk, such that the sum of the weights is 1.
The predictive PDF determined through BMA is then:

p(y|f1, . . ., fK) =

K∑
k=1

wkhk(y|fk). (1)

The selection of an appropriate kernel for hk(y|fk) depends
on the application. Popular choices include the Gaussian distri-
bution for continuous variables [23] and the gamma or truncated

Fig. 1. Histogram of power output over 2+ years of plant operation, normalized
by the AC power rating, for two sites used in this case study. Site A exhibits
regular clipping at its AC power rating, but site B does not.

normal distributions for non-negative quantities [25], [35]. In the
context of solar power, the forecasted power should obey a lower
bound of zero and an upper bound of the AC rating of the PV
plant, P. A doubly truncated normal kernel is one parsimonious
option. A beta kernel is another flexible choice bounded on the
interval [0,1]; power values can be easily translated onto this
interval through normalization.

As an added complication, there could be a discrete proba-
bility that the plant is being clipped. When a PV plant has a
DC power rating higher than its AC inverter rating, clipping
can be observed when the plant’s output is restricted to the AC
power rating. For utility-scale solar power plants, it is common
to see DC-to-AC ratios of 1.2 or more [33]. For example,
Fig. 1 illustrates the historical normalized power from two of
the utility-scale plants used in this study, one of which exhibits
regular clipping, but the other does not. Clipping can complicate
probabilistic forecasting because it implies a high density or
point mass in the PDF near the site’s AC rating.

To explicitly handle clipping, we model each conditional PDF
hk(y|fk) as a discrete-continuous mixture with two parts. In the
historical data, clipping results in some small power fluctuations
slightly under the plant’s AC rating, so clipping is qualified here
by a threshold λ at 99.5% of the AC rating. The probability of
clipping P (y ≥ λP|fk) is estimated through logistic regression
on the forecasted power:

logit (P (y ≥ λP|fk)) ≡ log
P (y ≥ λP|fk)
P (y < λP|fk)

= a0k + a1kfk (2)

Here, P (y < λP|fk) is the conditional probability that the so-
lar power is not clipped, if fk is the best ensemble member
forecast at that time. In a forecast, this discrete component is
re-distributed evenly over the top 0.5% of plant AC rating.

The second part of the mixture is a continuous kernel that
models the amount of power, subject to not clipping. Both a
beta and truncated normal kernel are considered here.

Since plant power is limited by the AC power rating, a trun-
cated normal kernel can be defined on the interval 0 ≤ z ≤ P,
using the PDF of the standard normal distribution, φ, and
CDF, Φ:

pφ(z, μ, σ) =
φ
(
z−μ
σ

)
σ
(
Φ
(

P−μ
σ

)
− Φ

(
0−μ
σ

)) . (3)
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Analogously, the PDF of a beta kernel with parameters α >

0 and β > 0 for 0 ≤ z ≤ 1 is given as: Γ(α+β)
Γ(α)Γ(β)z

(α−1)(1−
z)(β−1), where the mean is α/(α+ β), and the variance is
αβ/[(α+ β)2(α+ β + 1)]. To allow a clearer interpretation of
the parameters, we follow [26] by using the alternate formu-
lation in [36]. By defining μ ≡ α/(α+ β) for 0 < μ < 1 and
γ ≡ α+ β for γ > 0 (i.e., α = μγ and β = γ(1− μ)), the beta
PDF can be defined as:

pβ(z, μ, γ) =
Γ(γ)

Γ(μγ)Γ (γ(1− μ))
zμγ−1(1− z)(1−μ)γ−1 (4)

These two parameters can be interpreted as a location parameter
(μ) associated with the forecast and a shape parameter (γ)
associated with its uncertainty.

The parameters μ and σ or γ for the two kernels are estimated
similarly. The historical data suggest that the observed power has
a linear relationship with the NWP forecast—note that the “raw”
NWP forecast here is already in units of power, following the
preprocessing described in the Appendix. After preprocessing,
the power forecasts can still retain some sunny bias from the
NWP model. The kernel mean is estimated from the forecast for
member k through a scaling factor, bk, which corrects this bias
from the NWP forecast:

μk =

{
bk

fk
P
, if beta kernel

bkfk, if truncated normal kernel
(5)

A constant bias correction is not included, so the mean tends
to zero as the forecast does. Previous work considered fitting
to powers of the forecast, such as the square root for visibil-
ity [26] or cubed root for precipitation [24]. For this application,
however, a linear relationship results in an acceptable fit.

The shape parameter, γk or σk, is determined by the distribu-
tion’s standard deviation. Previous BMA implementations have
estimated standard deviation through simple power relation-
ships, such as σk = c0k + c1kf

1/2
k [24]–[26]. When applying

a beta kernel, however, the domain of the standard deviation is
restricted, given the restricted domain of the distribution itself.
In other words, to ensure α and β are positive, the variance
must be limited to σ2 < μ(1− μ), a quadratic domain with a
maximum value of 0.25, as shown in Fig. 2. An investigation
of the historical data shows that the variance of the observa-
tions follows a quadratic trend within this domain, suggesting a
quadratic model with height ck:

σ2
k = − ck

0.25
(μk − 0.5)2 + ck (6)

A large ck indicates a larger spread of uncertainty, while small
ck indicates high confidence. Although a similar discrete-beta
model was proposed in [26] for visibility, the authors suggested
a linear relationship with the standard deviation, which could vi-
olate the theoretical limit onσ2. Restricting the height parameter
to 0 < ck < 0.25 in (6) resolves this issue and ensures the limit
on σ2 is satisfied for the beta kernel, while also generating a σ2

estimate that is appropriate for the truncated normal distribution.
With the standard deviation model in (6), the truncated normal

kernel can be calculated directly, while a few more steps are

Fig. 2. For one ensemble member, trends in variance are illustrated by binning
3 months of estimated beta means into increments of 0.01; these fall within
[0, bk] because of the linear correction in (5). The variance of the associated
observations is modeled with a quadratic equation, shown in green. This model
must obey the theoretical limit, shown in red. Additionally, the grey area indicates
variances that result in ∪-shaped beta distributions.

Fig. 3. Some typical beta distribution shapes.

required for the beta kernel. The beta’s shape parameter, γk,
has a defined relationship with the standard deviation, σk =√
μk(1− μk)/(γk + 1), which can be substituted into (6) and

simplified to yield:

γk =
0.25− ck

ck
(7)

To further simplify and reduce computation time, the number of
parameters is reduced by holding the height parameter constant
across the ensemble members, as suggested in [24]. That is,
c1 = · · · = cK = c, and therefore γ1 = · · · = γK = γ.

After the a, b, and c coefficients are fit as discussed in Sec-
tion III, a final adjustment to γ is applied during the forecasting
step. For differentμ andγ values, the beta kernel can take various
shapes, illustrated in Fig. 3. In particular, “∪-shape” distributions
emphasize the likelihoods of both zero and maximum power at
the same time, which conflicts with forecaster intuition for a
solar power application. ∪-shapes occur when α < 1 and β < 1
and are the result of high variance (high c) in this model. A
preliminary analysis indicated that this is not generally a major
issue; a handful of the 11 sites had <0.5% ∪-shaped member
forecasts, but one site had up to 7%. As mitigation, the beta
variance estimate is truncated during forecasting to reduce ∪
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Fig. 4. Example BMA forecasts, (a) without and (b) with a high likelihood
of clipping. The shaded circles show the NWP member forecasts, the thick line
shows the BMA forecast, the thin lines show the component forecasts (wkhk),
and the vertical dashed line shows the power at this instance.

distributions to J- or reverse-J-shapes. That is, (7) is truncated
by a minimum value, γk, based on the forecasted distribution
mean:

γk =

{
1

1−μk
if μk ≤ 0.5

1
μk

if μk > 0.5
(8)

This is illustrated in Fig. 2 by collapsing variance values that
fall in the shaded grey area onto the line at its boundary.

With these elements, the conditional PDF from each ensemble
member fk, assuming fk is the best forecast is:

hk(y|fk) = P (y ≥ λP|fk)
(1− λ)P

1[y ≥ λP]

+
P (y < λP|fk)
Gk (y|fk)|λ

gk (y|fk)1[y < λP], (9)

where 1 is the indicator function and gk(y|fk) is the member
specific beta or truncated normal kernel:

gk (y|fk) =
{

pβ( y
P
,μk,γk)
P

, if beta kernel

pφ (y, μk, σk) , if truncated normal
(10)

Gk(y|fk) is the corresponding CDF—this minor scaling ad-
justment is added to counterbalance estimating the discrete
component continuously over a nonzero width, (1− λ)P. With
these conditional member PDFs, the complete weighted model
can be evaluated in (1).

The end result is illustrated in Fig. 4 for two forecast times
from the case study, using a beta kernel. Fig. 4(a) shows a time
when the majority of ensemble members overestimate power,
which BMA addresses by shifting the bulk of the probability
downwards. Fig. 4(b) shows a time when the discrete probability
of clipping is high (27%), and the actual power was indeed
clipped at 99.8% of the AC rating.

The complete BMA parameter fitting, forecasting, and eval-
uation process is summarized in Fig. 5, including key steps
described further in Sections III, IV and VI.

III. BMA PARAMETER FITTING

Given a training data set for a given forecast, the a, b, c,
and w parameters of the BMA model are estimated based on a
previously published approach in [25]. The a coefficients in (2)

Fig. 5. Schematic of the parameter fitting, forecasting, and evaluation process.

are estimated by maximum likelihood of a logistic regression
model. The member forecast is the predictor variable, whereas
the dependent variable is the binary observation of clipping/no
clipping. Because of minor deviations in the telemetry, clipping
is determined by a threshold at 99.5% of the plant’s AC power
limit. This value was selected based on a review of the case study
data, but it can be customized based on a plant’s specifications.
For this application, there is a high incidence of complete or
quasi-complete separation in the logistic regression—that is,
when the predictor at or above a constant is associated with
only one of the binary outcomes. For example, training data
for a sunrise forecast might contain no history of clipping, or
training data for an afternoon forecast might show clipping only
in some instances when the forecast was exactly at the plant’s
rated power. Therefore, two modifications are implemented: if
there is no clipping in the training data, the discrete component
is assumed to be 0, while in the general case, penalized logistic
regression is used instead of basic logistic regression to handle
instances of quasi-complete separation [37].
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The linear bias correction slope bk in (5) is determined by
linear regression. Only time points in the training set when the
power observations are not clipped (i.e., y < 0.995× P) are
used. The member forecast is the predictor, whereas the observed
power is the dependent variable.

Finally, the member weights, wk, and the variance coefficient
c in (6) are found by maximum log-likelihood estimation, given
the a and b coefficients found in the steps above. The maximum
log-likelihood is estimated numerically using the Expectation
Conditional Maximization Either (ECME) algorithm, which
iterates between expectation (E) and conditional maximization
(CM) steps [38]. Briefly, the algorithm introduces unobserved
variables for each ensemble member, which can be interpreted
as the probability of the member being the most skillful for the
given time. In the E step, these latent variables are estimated
from the current weight and variance coefficient estimates. In
the first conditional maximization step CM-1, new estimates of
the weights are developed from a maximization of the complete
data log-likelihood. This is followed by a second step, CM-2,
in which the mixture log-likelihood is numerically maximized
as a function of the variance coefficient c, given the estimated
weights from CM-1. As suggested in [25], the CM-2 step is
performed only once per 50 iterations of the E and CM-1
steps, which significantly reduces computation with very similar
resulting parameter estimates. These steps are iterated until the
changes in parameters are very small (< 10−5). For starting val-
ues, the members are weighted equally, though missing members
are assigned 0 weight.

IV. FORECAST EVALUATION

To evaluate the improvement from the BMA method, the post-
processed forecasts are compared to two benchmark forecasts
using appropriate metrics, as introduced here.

A. Benchmark Forecasts

The proposed method is compared to three benchmark proba-
bilistic forecasts: The first benchmark is a persistence ensemble
(PeEn), a commonly used benchmark that only relies on histor-
ical observations [10], [11], [15], [18]. Following [15], a PeEn
forecast for a given time is defined as the empirical CDF of the
last 20 available measurements at the same hour of the day, which
captures weather-related variations in solar power over the past
three weeks. Comparing to a PeEn can illustrate the value of
using NWP models that integrate more information than only
the historical observations.

The second benchmark is the raw NWP ensemble itself, used
to illustrate the added value from post-processing. The quantiles
of both the PeEn and raw ensemble are interpolated using the
“Classical” empirical CDF approach described in [39]. Third,
an alternative NWP ensemble post-processing technique called
ensemble model output statistics (EMOS) is implemented to
benchmark BMA against a competing method [18]. Unlike
BMA which results in a more complex mixture model, EMOS
uses the NWP ensemble to fit a single parametric distribution.
In [18], EMOS was applied to fit a non-negative, truncated
normal distribution to solar irradiance. Here, we modify that

method to fit a doubly-truncated normal distribution for solar
power. The EMOS forecast is defined using the truncated normal
equation in (3) as:

p(y|f1, . . ., fK) = pφ(y, a+ b1f1 + · · ·+ bKfK , c+ dS2),
(11)

where a+ b1f1 + · · ·+ bKfK is the bias-corrected mean of
the ensemble members and c+ dS2 is a linear function of the
ensemble variance, S2. The EMOS a, b, c, and d coefficients,
which are distinct from the BMA a, b, and c coefficients, are fit
by minimizing CRPS over the training data (Section VII) [18],
using the robust Nelder-Mead algorithm in R’s optim function
and the truncated normal CRPS calculation from the scor-
ingRules package.

B. Probabilistic Forecast Metrics

Several probabilistic metrics and diagnostic techniques are
used here to compare forecast performance. A probabilistic
forecaster intends to maximize forecast sharpness, subject to cal-
ibration [40]. Sharpness measures how concentrated the forecast
is, whereas calibration is the statistical consistency between the
forecasts and observations. Sharpness can be assessed over an
evaluation period T by the average interval width, δ, of a central
(1− ρ)× 100% interval of interest [39]:

δ =
1

T

T∑
t=1

F−1
t

(
1− ρ

2

)
− F−1

t

(ρ
2

)
, (12)

where Ft is the forecast CDF at time t. Calibration can be
assessed visually using a reliability diagram [39].

The Continuous Ranked Probability Score (CRPS) captures
both sharpness and reliability in one metric [41]. Average CRPS
(CRPS) over period T can be decomposed as the integral of the
Quantile Score (QS) over all quantiles [42]:

CRPS =

∫ 1

0

1

T

T∑
t=1

QSξ

(
F−1
t (ξ), yt

)
dξ, (13)

where QS of the forecast F−1
t (ξ) at the level ξ ∈ (0, 1) is:

QSξ = 2
(
1
{
yt ≤ F−1

t (ξ)
}− ξ

)
(F−1

t (ξ)− yt) (14)

CRPS can be weighted to focus on areas of interest within the
distribution [42]. From a utility perspective, the lower tail of the
distribution is of particular interest. The lower tail corresponds to
times when solar power is uncommonly low, which is more likely
to impact system reliability. To focus on different areas of the
distribution, three quantile-weighting functions are applied [42]:
a left tail weight function, wl(ξ) = (1− ξ)2; a center weight
function, wc(ξ) = ξ(1− ξ); or a right tail function wr(ξ) = ξ2,
for ξ ∈ (0, 1). A weighted QS of the form wQSξ = w(ξ)QSξ

can be evaluated and substituted into (13) to calculate a weighted
average CRPS, wCRPS.

Finally, to compare the forecast performance to a reference
benchmark, a CRPS skill score can be evaluated:

SS =
CRPS − CRPSref

CRPSideal − CRPSref

= 1− CRPS

CRPSref

, (15)
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TABLE I
NUMERICAL WEATHER PREDICTION MODEL DATA USED

where CRPSref and CRPSideal (i.e., 0) are the average CRPS
values for a reference and an ideal forecast, respectively [41]. A
forecast with negative SS is worse than the reference, a SS of 0
is on par with the reference, and a SS of 1 is ideal.

V. TEXAS CASE STUDY DATA

Using the evaluation framework above, we demonstrate the
value of BMA post-processing for a case study using actual
historical forecasts and observation data. Historical 5-minute
power data are gathered from 11 utility-scale PV plants in Texas,
with ratings of ∼5–100 MW. Two-plus years of data are used:
November 2016 to December 31, 2017 data are available for
training, and January 1, 2018 to December 31, 2018 is the test
period. The Appendix details several data preprocessing steps,
including quality control for suspect values, curtailment, and
partial plant outages, and hourly averaging to match the available
hourly forecasts. For data privacy concerns of the solar plant
owners and to allow relative comparison among sites, power
data and the forecast metrics are shown normalized by the plant
rating, P.

For the corresponding historical forecasts, a base ensemble
of four NWP models is used: the National Oceanic and At-
mospheric Administration’s (NOAA) Global Forecast System
(GFS), NOAA’s North American Mesoscale high-resolution
nest (NAM), NOAA’s High Resolution Rapid Refresh hourly
(HRRR), and the European Centre for Medium-Range Weather
Forecasts’s (ECMWF) High Resolution (HRES) models [43],
[44]. Table I gives details on each model used, including its
output resolution, the forecast horizon, the output time interval
of the forecast, and how frequently the forecast is issued. Each
ensemble member is preprocessed to generate hourly-resolution
forecasts of PV power from the weather variables; details are
available in the Appendix. These ensemble members are the
inputs for a BMA post-processed power forecast, at a given time
t with lead time of tl.

In addition to the base ensemble, a time-lagged ensemble of
21 members is considered by including the two previous model
runs for each of the GFS, NAM, and HRES models, as well as
the previous 11 runs of the HRRR model. For example, if the
forecast includes a GFS run issued at time t− 1 with a lead
time of tl = 1, the lagged ensemble would also include the GFS
run issued at time t− 7 with a lead time of tl = 7 and the run
issued at t− 13 with a lead time of tl = 13. In a similar vein
to [45], this time-lagged alternative investigates the value of a
more diverse ensemble that includes older forecast runs, which
have different initial conditions.

Fig. 6. Sensitivity of CRPS to (left) SLI and (right) TOD training windows
widths used to select historical data for BMA coefficient fitting.

VI. BMA TRAINING SENSITIVITIES

Before presenting the full results, this section presents a few
sensitivities to tune the data inputs for this case study.

A. Training Data Selection

The last step in the BMA post-processing algorithm is to select
training data to fit the BMA parameters and weights (Section III).
For other weather variables, BMA models have typically been
trained with a sliding window of data to capture recent weather
conditions [24]–[26]. However, solar power also has known
seasonal and diurnal trends, and other solar uncertainty models
have been trained with data from similar seasons and/or times
of day, e.g., [15].

To investigate these diurnal and weather impacts on model
training, two data selection methods are explored: a “sliding”
(SLI) window of τh hours (i.e., forecasts with the same lead
time and resulting observations for times t− τh, . . ., t− 1) or
a “time-of-day” (TOD) window of τd days. The TOD window
includes data for the same hour of the day from the past τd days,
plus a centered window of 2τd + 1 days around the same date in
the previous year. Only time points in the training set when both
the telemetry and forecast data are available are used, based on
the quality control preprocessing.

The SLI and TOD selection methods are compared through
sensitivities on their window widths, τh and τd, respectively. A
SLI window up to 4 days and a TOD window up to 60 days are
considered. In the training step, the a, b, and c coefficients are fit
using the SLI or TOD training data. In the forecasting step, the
forecast of the power output 4 hours in the future is generated
by BMA post-processing of the 4-hour-ahead NWP ensemble
using those trained coefficients. This sensitivity is repeated for
two of the case study sites (A and B), using the 21-member
NWP ensemble at rolling 4-hour lead time over 2018 and a
beta distribution for the BMA kernel. Figs. 6 and 7 illustrate
the sensitivity of CRPS and central 90% interval width (i.e.,
sharpness) to the training data. First, small amounts of training
data (i.e., low τ ), typically result in sharp intervals but high
CRPS—that implies false sharpness at the expense of reliability.
Using at least the past 24 hours of training data with the sliding
window is enough achieve a flattening of CRPS, though CRPS
values show a slight 24-hour cycle with longer training windows.
With the TOD window, CRPS tapers for windows extending
back past 30 days.
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Fig. 7. Impact of (left) SLI and (right) TOD training window widths on central
90% interval width, as a percentage of plant AC rating.

TABLE II
CRPS (%P) OF 4- VS. 21-MEMBER ENSEMBLE FORECASTS. EVALUATED BY

ROLLING 4-HOUR AHEAD FORECAST OVER 2018

1SS of 21-member with 4-member ensemble as reference.

While the CRPS values are similar in magnitude, the single
metric obscures different forecast characteristics. When looking
at the central 90% interval width, the SLI window is clearly
sharper than the TOD window. Given the similar CRPS, this
implies the SLI approach is sharper, but the TOD window may
be more reliable. There is a tendency for the TOD method to
err on the side of over-dispersion and broader intervals, while
the SLI method errs on the side of underdispersion and narrower
intervals. One interpretation is that the sliding window’s reliance
on recent conditions results in a smaller standard deviation
estimate and a tighter beta kernel. However, the TOD approach
is likely better suited to estimating the clipping coefficients
in (2). Additional sensitivities on the clipping threshold and
training approach that best balance the continuous kernel and
clipped components are left for future work. Hybrid schemes
could also be considered. In the next two subsections, a 72-hour
SLI window and 60-day TOD window are selected for further
analysis. These windows achieve minimum CRPS, though most
of the benefits could likely be achieved with lower computation
time using a 24-hour SLI or 30-day TOD window.

B. Value of Time-Lagged NWP Members

Next, the performance of the base ensemble with 4 members
is compared to the larger 21-member ensemble with time-lagged
members. The comparison is conducted for the raw ensemble as
well as BMA with the two training windows selected above to
produce a 4-hour-ahead rolling forecast for sites A and B. Results
in Table II show that the 21-member forecast significantly im-
proves the raw ensemble CRPS, with skill scores of ∼20% com-
pared to the 4-member ensemble. The increased diversity of the
larger ensemble improves the BMA post-processed approaches
as well, with CRPS SS’s of 7-10%. The larger ensemble also
increases computation time commensurately, but the total time
to train and post-process a single TOD BMA forecast takes on

TABLE III
WEIGHTED CRPS SS (%) OF 4 BMA VARIANTS COMPARED TO THE RAW

NWP ENSEMBLE FOR A ROLLING 4-HOUR-AHEAD FORECAST OVER 2018.
FOR THESE COMBINATIONS OF THE 2 KERNELS AND 2 TRAINING DATA

SELECTION METHODS, β INDICATES A BETA KERNEL AND φ INDICATES A

TRUNCATED NORMAL KERNEL

average 25–70 seconds on an Intel Xeon E5-2697 v4 2.30 GHz
processor, which is not prohibitive for an hour to day-ahead
forecast. Therefore, the benefits from contributing members to
the more diverse 21-member ensemble by reusing older fore-
casts is deemed worthwhile, and it is applied in all following
analyses.

C. Beta vs. Truncated Normal Kernel

Finally, the performance of BMA with the beta kernel is
compared to its performance with a truncated normal kernel.
Similar to the sensitivities above, this sensitivity post-processes
the 21-member ensemble to generate a rolling 4-hour-ahead
forecast over 2018, replicated for sites A and B. The two BMA
kernels (beta and truncated normal) are combined with the
two training data windows from Section VI-A (72-hour SLI or
60-day TOD) to compare four variants on BMA post-processing.

This comparison investigates if the beta kernel’s flexible
shape lends any benefits over the truncated normal distribution,
which is slightly simpler to implement. For instance, the beta
kernel’s “reverse-J” or “J” shape as the distribution nears one of
the boundaries (0 or P) might result in different tail behavior.
To investigate these impacts on different areas of the forecast
distribution, Table III shows the weighted CRPS skill scores
for the four variants, shaded in order of performance with the
best skill shaded the darkest. To calculate these skill scores, each
CRPS value in (15) is replaced with wCRPS using the left, center,
or right weighting functions, then compared to the unweighted
original (w = 1).

Table III confirms the more flexible beta kernel consistently
outperforms the truncated normal kernel in all regions of the
forecast distribution. The beta kernel achieves a modest 1%–4%
increase in unweighted and left-, center-, and right-weighted
CRPS skill scores over the truncated normal kernel for site A, and
a 1%–19% increase for site B. These results also reinforce the
importance of training data selection. With a truncated normal
kernel, BMA outperforms the raw ensemble with a 12.0% skill
score using SLI window training data, but it performs 1.95%
worse with the TOD approach. The broadness of the truncated
normal kernel exacerbates the tendency of TOD selection to-
wards over-dispersion, worsening performance. Due to the con-
sistent performance of BMA using the beta kernel and 72-hour
SLI window training data (β-SLI), this variant is selected for the
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Fig. 8. Forecasts from the (clock-wise) PeEn, raw ensemble, EMOS, and BMA
methods for a 1-axis tracking plant over two days with mixed cloudiness. The fan
plot shows the intervals predicted 4 hours ahead, from 0.2% to 99.8% nominal
coverage. The orange line shows the observed power.

final methods comparison replicated for each of the 11 sites in
the next section.

VII. BMA POST-PROCESSING PERFORMANCE

The performance of BMA post-processing is compared to
the 3 benchmark methods for the validation year, 2018. The
PeEn benchmark is compared to the three NWP-based methods
using the 21-member ensemble: the raw ensemble benchmark;
the EMOS post-processed benchmark, and the proposed BMA
post-processed forecast. Based on the results in Section VI, the
“BMA” method in this section refers to the β-SLI variant. For
consistency, the 72-hour SLI training data selection is also used
to train the EMOS model coefficients. For each of the four
methods, forecasts are generated individually for each of the
11 case study PV plants in Texas at rolling lead times of 1, 4,
12, and 24 hours for 2018.

For a given site and lead time, each hourly probabilistic
forecast is validated with a single observation of the site’s av-
erage hourly power. For example, Fig. 8 compares the forecasts
issued at 4-hour lead time over 2 days with mixed clouds to the
actual power, demonstrating the differences among these four
methods. Since both the PeEn and raw NWP ensemble estimate
the forecast uncertainty from 20 or 21 discrete values, the result-
ing distribution is quite coarse. The PeEn forecast, which uses
previous observations at the same time of day, generates a very
broad and slowly changing forecast that nonetheless captures the
diurnal trend in power. The raw ensemble shows large variance
on the first cloudy day, while it is clustered and underdispersed
on the second day, failing to provide adequate coverage for
the peaks on both days. Recall that the “raw” ensemble here
already accounts for the irradiance-to-power transform of this
1-axis tracking plant (see the Appendix). While the EMOS
model adjusts for recent bias in the raw ensemble to improve
coverage on the second day, it provides false confidence on
the first day. EMOS’s single parametric model does not fully

TABLE IV
CRPS & SS OF ROLLING 4-HOUR AHEAD FORECASTS OVER 2018,

REPLICATED OVER THE 11 SITES. SSPEEN IS SS WITH PEEN AS THE REFERENCE

FORECAST; SSRAW IS REFERENCED TO THE RAW ENSEMBLE

Fig. 9. Average widths of the 10% to 90% central intervals for site C.

capture the disagreement in the raw ensemble, resulting in a
very sharp forecast with worse coverage compared to the raw
ensemble. In contrast, BMA’s mixture model captures more of
the uncertainty in the raw ensemble, while providing sharper
confidence intervals. Like EMOS, it also improves coverage on
the second day.

To compare average performance of the rolling 4-hour ahead
forecast over the entire validation year, Table IV compares CRPS
for the four methods, replicated for each site. Each site has a
different subset (T < 8760) of forecasts that can be validated for
2018 because of data quality control, ranging from∼2200–4300
time-points (see the Appendix). Sites F–I, for example, have
restricted data availability because of frequent curtailment. The
best scores are in bold. First, note that the raw NWP ensemble
alone has significant skill over the PeEn benchmark, with SS’s
of 14–45%; the post-processed forecasts have skill scores of
27–49% over the PeEn benchmark. Looking at the raw en-
semble as the reference, post-processing with EMOS achieves
skill scores of 28% for 2 sites, but skill scores ≤6% are more
common, while four sites have negative skill scores, showing
worse performance than the raw ensemble. In contrast, BMA
improves over the raw ensemble for all sites and performs as
well as or better than the EMOS technique for each site. Six
sites show SS’s of at least 12%, with one site achieving a
36% SS.

To investigate the tension between sharpness and calibration
that can be obscured by an aggregate metric like CRPS, Figs. 9
and 10 show the interval width and reliability diagrams for site
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Fig. 10. Reliability diagram of the 1st to 99th forecast percentiles for site C.
The black line shows ideal calibration.

C, which is the site where the EMOS and BMA techniques both
achieved 28.5% skill scores over the raw ensemble. Consistent
with the snapshot shown in Fig. 8, the PeEn benchmark has poor
sharpness with consistently large intervals, while the intervals
of the raw NWP ensemble are on average half the width. In
contrast, Fig. 10 shows the PeEn benchmark has decent, though
coarse, reliability, while the raw NWP ensemble is unreliable
by regularly overestimating power, though this effect is excep-
tionally pronounced for site C. In fact, this site suffered from
degradation of its 2-axis trackers over the evaluation period,
which the data preprocessing did not adequately capture. Both
post-processing techniques were able to correct for this changing
behavior and improve the forecast calibration, while smoothing
the stepped behavior of the raw ensemble. The EMOS forecast
is somewhat sharper than the raw ensemble while the BMA
forecast is somewhat broader. However, the EMOS benchmark
errs on the side of sharpness, but this is sometimes a false sharp-
ness that sacrifices reliability. The BMA forecast, in contrast,
provides somewhat broader forecast intervals that provide better
reliability, particularly on the lower tail of the distribution. While
these methods result in the same CRPS for this site, this trend
is consistent across the sites: by providing better coverage than
the raw ensemble, BMA outperforms both it and the EMOS
benchmark.

It is important to note that BMA does not evenly improve the
forecasts: the lower tail benefits most. This effect is pronounced
in Fig. 10 and is also evident in left-, center-, and right-weighted
CRPS SS’s. Across the sites, the left tail has the highest relative
improvement with BMA, followed by the distribution center and
then the right tail. Benefits from EMOS post-processing also
skew towards the left tail or the distribution center, but for all
sites, BMA’s improvement of the left/lower tail out outweighs
that from EMOS. Underestimation of lower-tail risk is concern-
ing to system operators because it is likely to result in the highest
cost and reliability impacts. BMA strongly improves tail risk
estimation with left-weighted SS’s of 6–47%, and improves the
right tail estimation for most sites as well with right-weighted
SS’s as high as 22%.

To verify BMA improvements extend to other lead times
as well, Table VI reports unweighted SS’s over the raw NWP
ensemble at four rolling lead times up to 24-hours ahead. In
general, the SS’s are maintained or even increased as the lead
time increases, which is valuable as the number of available

TABLE V
WEIGHTED CRPS SS (%) OF EMOS OR BMA POST-PROCESSING COMPARED

TO THE RAW ENSEMBLE AT ROLLING 4-HOUR LEAD-TIME

TABLE VI
CRPS SS (%) OF THE BMA OR EMOS POST-PROCESSING METHODS

OVER THE RAW ENSEMBLE AT VARYING LEAD-TIMES

time-lagged members reduces from 21 to 14 for the 12-hour-
ahead and 9 for the 24-hour-ahead forecast. BMA outperforms
EMOS at all lead times for all sites, except for a few lead times
at site C where the skill scores are very similar. The consistent
performance demonstrates BMA’s applicability at multiple time
horizons, from the intra-day to the day-ahead.

VIII. CONCLUSIONS

This paper proposed a new Bayesian model averaging ap-
proach to post-process NWP ensemble estimates of utility-scale
PV power, applicable for forecasting up to the day ahead
timescales. This method uses a kernel-based mixture model
combining a discrete component for power clipped at the inverter
rating and a continuous portion for lower output. To use beta
kernels within the mixture model, a new parametrization was
developed that accommodates the beta distribution’s theoretical
constraints. In developing this mixture model, a large variety of
comparisons were examined to justify the selections made.

For a given forecast time, the parameters of the BMA model
are trained using historical forecasts and observations. The
length of this historical data training window was selected based
on the asymptotic behavior shown in Figs. 6 and 7. Training with
the sliding window (SLI) approach showed overall slightly better
results than with the time of day (TOD) approach (Table III),
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thus was used for all further comparisons. Including older NWP
runs to make a time-lagged ensemble produced superior results
to using only the latest runs (Table II). Using beta functions in
the mixture model was superior to using normal distributions
truncated on two sides (Table III).

Given those training and implementation selections, the BMA
post-processing achieves skill scores of 2–36% over the raw en-
semble. It generally improves forecast calibration while broad-
ening the interval widths compared to the underdispersed raw
ensemble, which is sharp but can be unreliable. The BMA
mixture model was also demonstrably superior to the parametric
EMOS post-processing method from the literature, which can
sometimes sacrifice reliability by erring on the side of sharp-
ness (Tables IV, V, and VI). Skill benefits were shown for a
variety of forecast time horizons relevant for power systems
operations (Table VI). These comparisons were replicated for
11 utility-scale PV plants in Texas, demonstrating improvements
over multiple locations and plant specifications.

The largest improvements demonstrated by the BMA mixture
model were in the lower tail of the distribution (Table V), which
is of greatest benefit to electric grid operators and solar plant
managers. Underestimating the lower tail risk can result in high
cost and potential power system reliability impacts.

Overall, the major findings of the article are:
� BMA post-processing contributed skill score improve-

ments of up to 36% over the raw NWP ensemble.
� Using a beta kernel in the BMA mixture model was superior

to using a doubly-truncated normal kernel.
� Skill score improvements were consistently shown over

forecast time horizons of 1–24 hours relevant for power
systems operations.

� Post-processing with BMA mixture models was superior
to a state-of-the-art parametric EMOS treatment, by better
capturing disagreements in the NWP ensemble.

� BMA contributed the largest improvement in the lower tail
of the distribution, which is of greatest benefit due to the
higher cost of managing situations of low output.

For future work, further sensitivities can investigate clipping
behavior, including different irradiance-to-power preprocess-
ing transforms, the clipping threshold, and whether multi-part
kernels provide improvements over a single continuous ker-
nel. Exploring additional hybrid training methods beyond the
sliding and time-of-day windows could further improve perfor-
mance by choosing the most appropriate data that capture both
seasonal/diurnal cycles and different weather regimes. Future
work will apply these improved probabilistic forecasts in power
systems operational models, such economic dispatch and unit
commitment models, to endogenously consider future gener-
ation risk through coherent risk measures such as conditional
value-at-risk (CVaR) and entropic value-at-risk (EVaR).

APPENDIX

POWER TELEMETRY PREPROCESSING

The raw power data are screened for several data quality
issues, including stuck loggers and nonsensical values (e.g.,
< 0, > P). Suspect values are treated as missing. Times when

the solar zenith angle indicates the sun is down are ignored.
Also, times when all ensemble members forecast power less than
500 kW are ignored to remove spurious and erratic behavior
caused by very small values around sunrise and sunset. This
threshold is < 10% of the smallest plant size and < 1% of the
largest plant size. Power data are also impacted by the operating
conditions, including involuntary curtailment caused by trans-
mission constraints and partial outages for maintenance. For
known partial outages, the power is scaled to what it would have
been without the outage. Curtailed data are treated as missing.
Most sites have < 10% curtailment, but some are curtailed up to
a third of the time.

Telemetry data are aggregated to hour-ending averages for
consistency with the hourly-resolution NWP ensemble mem-
bers. If any of the 12 5-minute values are missing, the entire
hour is treated as missing. If the solar zenith angle indicates that
the sun is down for part of the hour, it is assumed that those
times contribute zero power.

NWP FORECAST PREPROCESSING

The hourly or three-hourly time-averaged Global Horizontal
Irradiance (GHI) from each NWP model needs to be converted
to hourly PV plant power in preparation for the BMA treatment.
The preprocessing was done using the solar forecast system
in [46]. It makes small statistical corrections to the shape and
amplitude of the NWP model diurnal irradiance curve, then
calculates clear sky irradiance every 1 minute assuming the
time-averaged forecast clear sky index (CSI) from this corrected
model is constant for the interval. Next, minute-by-minute clear
sky direct and diffuse irradiance are calculated by prorating
with this CSI and adding stochastic variations to account for the
missed variability. These direct and diffuse irradiance data are
transposed into plane-of-array irradiance for tilted sun-tracking
PV panels, then used to empirically estimate power based on
historical data. Finally, the data are averaged into hour-ending
averages. This irradiance-to-power transform is similar to re-
gression methods, such as that in [47]; a PV simulation tool
like the System Advisor Model is an alternative [48]. Though
not a “raw” output from an NWP model, we refer to these pre-
processed, hourly PV plant power forecast members as the raw
ensemble, which is then input into the BMA post-processing.
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