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Cross-Covariance Functions for
Multivariate Geostatistics1

Marc G. Genton and William Kleiber

Abstract. Continuously indexed datasets with multiple variables have be-
come ubiquitous in the geophysical, ecological, environmental and climate
sciences, and pose substantial analysis challenges to scientists and statis-
ticians. For many years, scientists developed models that aimed at captur-
ing the spatial behavior for an individual process; only within the last few
decades has it become commonplace to model multiple processes jointly. The
key difficulty is in specifying the cross-covariance function, that is, the func-
tion responsible for the relationship between distinct variables. Indeed, these
cross-covariance functions must be chosen to be consistent with marginal co-
variance functions in such a way that the second-order structure always yields
a nonnegative definite covariance matrix. We review the main approaches to
building cross-covariance models, including the linear model of coregional-
ization, convolution methods, the multivariate Matérn and nonstationary and
space–time extensions of these among others. We additionally cover special-
ized constructions, including those designed for asymmetry, compact support
and spherical domains, with a review of physics-constrained models. We il-
lustrate select models on a bivariate regional climate model output example
for temperature and pressure, along with a bivariate minimum and maximum
temperature observational dataset; we compare models by likelihood value
as well as via cross-validation co-kriging studies. The article closes with a
discussion of unsolved problems.

Key words and phrases: Asymmetry, co-kriging, multivariate random
fields, nonstationarity, separability, smoothness, spatial statistics, symmetry.

1. INTRODUCTION

1.1 Motivation

The occurrence of multivariate data indexed by spa-
tial coordinates in a large number of applications has
prompted sustained interest in statistics in recent years.
For instance, in environmental and climate sciences,
monitors collect information on multiple variables
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such as temperature, pressure, wind speed and direc-
tion and various pollutants. Similarly, the output of cli-
mate models generate multiple variables, and there are
multiple distinct climate models. Physical models in
computer experiments often involve multiple processes
that are indexed by not only space and time, but also
parameter settings. With the increasing availability and
scientific interest in multivariate processes, statistical
science faces new challenges and an expanding hori-
zon of opportunities for future exploration.

Geostatistical applications mainly focus on interpo-
lation, simulation or statistical modeling. Interpolation
or smoothing in spatial statistics usually is synonymous
with kriging, the best linear unbiased prediction under
squared loss (Cressie, 1993). With multiple variables,
interpolation becomes a multivariate problem, and is
traditionally accommodated via co-kriging, the multi-
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variate extension of kriging. Co-kriging is often partic-
ularly useful when one variable is of primary impor-
tance, but is correlated with other types of processes
that are more readily observed (Almeida and Journel,
1994; Wackernagel, 1994; Journel, 1999; Shmaryan
and Journel, 1999; Subramanyam and Pandalai, 2008).
Much expository work has been developed on co-
kriging, see Myers (1982, 1983, 1991, 1992), Long and
Myers (1997), Furrer and Genton (2011) and Sang, Jun
and Huang (2011) for discussion and technical details.

Consider a p-dimensional multivariate random field
Z(s) = {Z1(s), . . . ,Zp(s)}T defined on R

d , d ≥ 1,
where Zi(s) is the ith process at location s, for
i = 1, . . . , p. If Z(s) is assumed to be a Gaussian
multivariate random field, then only its mean vec-
tor μ(s) = E{Z(s)} and cross-covariance matrix func-
tion C(s1, s2) = cov{Z(s1),Z(s2)} = {Cij (s1, s2)}pi,j=1
composed of functions

Cij (s1, s2) = cov
{
Zi(s1),Zj (s2)

}
, s1, s2 ∈ R

d,(1)

for i, j = 1, . . . , p, need to be described to fully specify
the multivariate random field. Authors typically refer to
Cij as direct- or marginal-covariance functions for i =
j , and cross-covariance functions for i �= j . Here, we
assume that Z(s) is a mean zero process. The quantities
ρij (s1, s2) = Cij (s1, s2)/{Cii(s1, s1)Cjj (s2, s2)}1/2 are
the cross-correlation functions. Our goal is then to
construct valid and flexible cross-covariance functions
(1), that is, the matrix-valued mapping C :Rd ×R

d →
Mp×p , where Mp×p is the set of p × p real-valued
matrices, must be nonnegative definite in the following
sense. The covariance matrix � of the random vector
{Z(s1)

T, . . . ,Z(sn)
T}T ∈ R

np:

� =

⎛⎜⎜⎜⎝
C(s1, s1) C(s1, s2) · · · C(s1, sn)

C(s2, s1) C(s2, s2) · · · C(s2, sn)
...

...
. . .

...

C(sn, s1) C(sn, s2) · · · C(sn, sn)

⎞⎟⎟⎟⎠ ,(2)

should be nonnegative definite: aT�a ≥ 0 for any vec-
tor a ∈ R

np , any spatial locations s1, . . . , sn, and any
integer n. Fanshawe and Diggle (2012) reviewed ap-
proaches for the bivariate case p = 2, although most
techniques can be readily extended to p > 2, and
Álvarez, Rosasco and Lawrence (2012) reviewed ap-
proaches for machine learning.

A multivariate random field is second-order sta-
tionary (or just stationary) if the marginal and cross-
covariance functions depend only on the separation
vector h = s1 − s2, that is, there is a mapping Cij :
R

d →R such that

cov
{
Zi(s1),Zj (s2)

} = Cij (h), h ∈ R
d .

Otherwise, the process is nonstationary. Stationarity
can be thought of as an invariance property under the
translation of coordinates. A test for the stationarity of
a multivariate random field can be found in Jun and
Genton (2012).

A multivariate random field is isotropic if it is sta-
tionary and invariant under rotations and reflections,
that is, there is a mapping Cij :R+ ∪{0} → R such that

cov
{
Zi(s1),Zj (s2)

} = Cij

(‖h‖)
, h ∈ R

d,

where ‖ · ‖ denotes the Euclidean norm. Otherwise,
the multivariate random field is anisotropic. Isotropy
or even stationarity are not always realistic, especially
for large spatial regions, but sometimes are satisfactory
working assumptions and serve as basic elements of
more sophisticated anisotropic and nonstationary mod-
els.

In the univariate setting, variograms are often the
main focus in geostatistics, and are defined as the vari-
ance of contrasts. Variograms can be extended to multi-
variate random fields in two ways: A covariance-based
cross-variogram (Myers, 1982) defined as

cov
{
Zi(s1) − Zi(s2),Zj (s1) − Zj(s2)

}
,(3)

s1, s2 ∈ R
d , and a variance-based cross-variogram

(Myers, 1991), also coined pseudo cross-variogram,

var
{
Zi(s1) − Zj(s2)

}
, s1, s2 ∈ R

d .(4)

The corresponding stationary versions are immediate.
Cressie and Wikle (1998) reviewed the differences be-
tween (3) and (4), and argued that (4) is more appro-
priate for co-kriging because it yields the same opti-
mal co-kriging predictor as the one obtained with the
cross-covariance function Cij in (1); see also Ver Hoef
and Cressie (1993) and Huang, Yao, Cressie and Hs-
ing (2009). Unfortunately, the interpretation of cross-
variograms is difficult, and so most authors favor work-
ing with covariance and cross-covariance formulations.

1.2 Properties of Cross-Covariance Matrix
Functions

Because the covariance matrix � in (2) must be sym-
metric, the matrix functions must satisfy C(s1, s2) =
C(s2, s1)

T, or C(h) = C(−h)T under stationarity.
Therefore, cross-covariance matrix functions are not
symmetric in general, that is,

Cij (s1, s2) = cov
{
Zi(s1),Zj (s2)

}
�= cov

{
Zj(s1),Zi(s2)

} = Cji(s1, s2),

s1, s2 ∈ R
d , unless the cross-covariance functions

themselves are all symmetric (Wackernagel, 2003).
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However, the collocated matrices C(s, s), or C(0) un-
der stationarity, are symmetric and nonnegative defi-
nite.

The marginal and cross-covariance functions satisfy
|Cij (s1, s2)|2 ≤ Cii(s1, s1)Cjj (s2, s2), or |Cij (h)|2 ≤
Cii(0)Cjj (0) under stationarity. However, |Cij (s1, s2)|
need not be less than or equal to Cij (s1, s1), or |Cij (h)|
need not be less than or equal to Cij (0) under station-
arity. This is because the maximum value of Cij (h)

is not restricted to occur at h = 0, unless i = j ,
and in fact this sometimes occurs in practice (Li and
Zhang, 2011). Thus, there are no similar bounds be-
tween |Cij (s1, s2)|2 and Cii(s1, s2)Cjj (s1, s2), or be-
tween |Cij (h)|2 and Cii(h)Cjj (h) under stationarity.

A cross-covariance matrix function is separable if

Cij (s1, s2) = ρ(s1, s2)Rij , s1, s2 ∈R
d,(5)

for all i, j = 1, . . . , p, where ρ(s1, s2) is a valid,
nonstationary or stationary, correlation function and
Rij = cov(Zi,Zj ) is the nonspatial covariance be-
tween variables i and j . Mardia and Goodall (1993)
introduced and used separability to model multivariate
spatio-temporal data, and Bhat, Haran and Goes (2010)
used separable covariances in the context of com-
puter model calibration. In the past, separable cross-
covariance structures were sometimes called intrinsic
coregionalizations (Helterbrand and Cressie, 1994).

With a large number of processes, detecting struc-
tures of the multivariate random process such as sym-
metry and separability can be difficult via elemen-
tary data analytic techniques. Li, Genton and Sherman
(2008) proposed an approach based on the asymptotic
distribution of the sample cross-covariance estimator
to test these various structures. Their methodology al-
lows the practitioner to assess the underlying depen-
dence structure of the data and to suggest appropriate
cross-covariance functions, an important part of model
building.

In the special case of stationary matrix-valued co-
variance functions, there is an intimate link between
the cross-covariance matrix function and its spectral
representation. In particular, define the cross-spectral
densities fij :Rd →R as

fij (ω) = 1

(2π)d

∫
Rd

e−ιhTωCij (h)dh, ω ∈ R
d,

where ι = √−1 is the imaginary number. A neces-
sary and sufficient condition for C(·) to be a valid
(i.e., nonnegative definite), stationary matrix-valued
covariance function is for the matrix function f(ω0) =
{fij (ω0)}pi,j=1 to be nonnegative definite for any ω0

(Cramér, 1940). While Cramér’s original result is
stated in terms of measures of bounded variation, in
practice using spectral densities is preferred. This can
be viewed as a multivariate extension of Bochner’s
celebrated theorem (Bochner, 1955). The analogue of
Schoenberg’s theorem for multivariate random fields,
that is, Bochner’s theorem for isotropic cross-covari-
ance functions, has recently been investigated by
Alonso-Malaver, Porcu and Giraldo (2013, 2015).

1.3 Estimation of Cross-Covariances

The empirical estimator of the cross-covariance ma-
trix function of a stationary multivariate random field
is

Ĉ(h) = 1

|N(h)|
∑

(k,l)∈N(h)

{
Z(sk) − Z̄

}
(6)

· {
Z(sl) − Z̄

}T
,

h ∈ R
d , where N(h) = {(k, l)|sk − sl = h}, |N(h)| de-

notes its cardinality, and Z̄ = 1
n

∑n
k=1 Z(sk) is the sam-

ple mean vector. A valid parametric model is then typ-
ically fit by least squares methods to the empirical es-
timates in (6). Alternatively, one can use likelihood-
based methods or the Bayesian paradigm (Brown, Le
and Zidek, 1994). In any case, valid and flexible cross-
covariance models are needed. Künsch, Papritz and
Bassi (1997) studied generalized cross-covariances and
their estimation.

Papritz, Künsch and Webster (1993) discussed em-
pirical estimators of the cross-variogram (3) and (4).
Unlike the pseudo cross-variogram, the cross-
variogram (3) has the disadvantage that it cannot be es-
timated when the variables are not observed at the same
spatial locations. Lark (2003) proposed two outlier-
robust estimators of the pseudo cross-variogram (4)
and applied them in a multivariate geostatistical analy-
sis of soil properties. Furrer (2005) studied the bias of
the empirical cross-covariance matrix C(0) estimation
under spatial dependence using both fixed-domain and
increasing-domain asymptotics. Lim and Stein (2008)
investigated a spectral approach based on spatial cross-
periodograms for data on a lattice and studied their
properties using fixed-domain asymptotics.

2. CROSS-COVARIANCES BUILT FROM
UNIVARIATE MODELS

The most common approach to building cross-
covariance functions is by combining univariate co-
variance functions. The three main options in this vein
are the linear model of coregionalization, various con-
volution techniques and the use of latent dimensions.
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2.1 Linear Model of Coregionalization

Probably the most popular approach of combining
univariate covariances is the so-called linear model
of coregionalization (LMC) for stationary random
fields (Bourgault and Marcotte, 1991; Goulard and
Voltz, 1992; Grzebyk and Wackernagel, 1994; Vargas-
Guzmán, Warrick and Myers, 2002; Schmidt and
Gelfand, 2003; Wackernagel, 2003). It consists of rep-
resenting the multivariate random field as a linear com-
bination of r independent univariate random fields. The
resulting cross-covariance functions take the form

Cij (h) =
r∑

k=1

ρk(h)AikAjk, h ∈ R
d,(7)

for an integer 1 ≤ r ≤ p, where ρk(·) are valid station-
ary correlation functions and A = (Aij )

p,r
i,j=1 is a p × r

full rank matrix. When r = 1, the cross-covariance
function (7) is separable as in (5). The allure of this
approach is that only r univariate covariances ρk(h)

must be specified, thus avoiding direct specification
of a valid cross-covariance matrix function. The LMC
can additionally be built from a conditional perspec-
tive (Royle and Berliner, 1999; Gelfand et al., 2004).
Note that the discrete sum representation (7) can also
be interpreted as a scale mixture (Porcu and Zastavnyi,
2011).

With a large number of processes, the number of
parameters can quickly become unwieldy and the re-
sulting estimation difficult. Zhang (2007) described
maximum likelihood estimation of the spatial LMC
based on an EM algorithm, whereas Schmidt and
Gelfand (2003) proposed a Bayesian coregionaliza-
tion approach with application to multivariate pollu-
tant data. A second drawback of the LMC is that the
smoothness of any component of the multivariate ran-
dom field is restricted to that of the roughest underlying
univariate process.

2.2 Convolution Methods

Convolution methods fall into the two categories of
kernel and covariance convolution. The kernel convo-
lution method (Ver Hoef and Barry, 1998; Ver Hoef,
Cressie and Barry, 2004) uses

Cij (h)

=
∫
Rd

∫
Rd

ki(v1)kj (v2)ρ(v1 − v2 + h)dv1 dv2,

s1, s2 ∈ R
d , where the ki are square integrable ker-

nel functions and ρ(·) is a valid stationary correla-
tion function. This approach assumes that all the spa-
tial processes Zi(s), for i = 1, . . . , p, are generated

by the same underlying process, which is very restric-
tive in that it imposes strong dependence between all
constituent processes Zi(s). Overall, this approach and
its parameters can be difficult to interpret and, ex-
cept for some special cases, requires numerical inte-
gration.

Covariance convolution for stationary spatial ran-
dom fields (Gaspari and Cohn, 1999; Gaspari et al.,
2006; Majumdar and Gelfand, 2007) yields

Cij (h) =
∫
Rd

Ci(h − k)Cj (k)dk, h ∈ R
d,

where Ci are square integrable functions. Although
some closed-form expressions exist, this method usu-
ally requires numerical integration. A particularly use-
ful example of a closed form solution is when the
Ci are Matérn correlation functions with common
scale parameters. In this setup, Matérn correlations
are closed under convolution and this approach re-
sults in a special case of the multivariate Matérn model
(Gneiting, Kleiber and Schlather, 2010).

2.3 Latent Dimensions

Another approach to build valid cross-covariance
functions based on univariate (p = 1) spatial covari-
ances was put forward by Apanasovich and Genton
(2010) (see also Porcu and Zastavnyi, 2011). Their idea
was to create additional latent dimensions that repre-
sent the various variables to be modeled. Specifically,
each component i of the multivariate random field Z(s)
is represented as a point ξ i = (ξi1, . . . , ξik)

T in R
k ,

i = 1, . . . , p, for an integer 1 ≤ k ≤ p, yielding the
marginal and cross-covariance functions

Cij (s1, s2) = C
{
(s1, ξ i ), (s2, ξ j )

}
, s1, s2 ∈R

d,(8)

where C is a valid univariate covariance function on
R

d+k ; see Gneiting, Genton and Guttorp (2007) for a
review of possible univariate covariance functions. It
is immediate that the resulting cross-covariance matrix
� in (2) is nonnegative definite because its entries are
defined through a valid univariate covariance. If the co-
variance C is from a stationary or isotropic univariate
random field, then so is also the cross-covariance func-
tion (8); for instance, Cij (h) = C(h, ξ i − ξ j ).

As an example of the aforementioned construction,
Apanasovich and Genton (2010) suggested

Cij (h) = σiσj

‖ξ i − ξ j‖ + 1
exp

{ −α‖h‖
(‖ξ i − ξ j‖ + 1)β/2

}
(9)

+ τ 2I (i = j)I (h = 0), h ∈ R
d,
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where I (·) is the indicator function, σi > 0 are margi-
nal standard deviations, τ ≥ 0 is a nugget effect, and
α > 0 is a length scale. Here, β ∈ [0,1] controls
the nonseparability between space and variables, with
β = 0 being the separable case. The parameters of the
model are estimated by maximum likelihood or com-
posite likelihood methods. Apanasovich and Genton
(2010) provided an application to a trivariate pollution
dataset from California. Further use of latent dimen-
sions for multivariate spatio-temporal random fields
are discussed in Section 7.2. The idea of latent dimen-
sions was recently extended to modeling nonstationary
processes by Bornn, Shaddick and Zidek (2012).

3. MATÉRN CROSS-COVARIANCE FUNCTIONS

The Matérn class of positive definite functions has
become the standard covariance model for univariate
fields (Gneiting and Guttorp, 2006). The popularity
in large part is due to the work of Stein (1999) who
showed that the behavior of the covariance function
near the origin has fundamental implications on predic-
tive distributions, particularly predictive uncertainty.
The key feature of the Matérn is the inclusion of a
smoothness parameter that directly controls correlation
at small distances. The Matérn correlation function is

M(h|ν, a) = 21−ν

�(ν)

(
a‖h‖)νKν

(
a‖h‖)

, h ∈ R
d,

where Kν is a modified Bessel function of order ν,
a > 0 is a length scale parameter that controls the rate
of decay of correlation at larger distances, while ν > 0
is the smoothness parameter that controls behavior of
correlation near the origin. The smoothness parameter
is aptly named as it implies levels of mean square dif-
ferentiability of the random process, with large ν yield-
ing very smooth processes that are many times differ-
entiable, and small ν yielding rough processes; in fact
there is a direct connection between the smoothness pa-
rameter and the Hausdorff dimension of the resulting
random process (Goff and Jordan, 1988).

Due to its popularity for univariate modeling, there is
interest in being able to simultaneously model multiple
processes, each of which marginally has a Matérn cor-
relation structure. To this end, Gneiting, Kleiber and
Schlather (2010) introduced the so-called multivari-
ate Matérn model, where each constituent process is
allowed a marginal Matérn correlation, with Matérns
also composing the cross-correlation structures. In par-
ticular, the multivariate Matérn implies

ρii(h) = M(h|νi, ai) and
(10)

ρij (h) = βij M(h|νij , aij ), h ∈ R
d .

Of course, this correlation structure can be coerced to
a covariance structure by multiplying Cii(h) by σ 2

i

and Cij (h) by σiσj . Here, βij is a collocated cross-
correlation coefficient, and represents the strength of
correlation between Zi and Zj at the same location,
h = 0.

The difficulty in (10) is deriving conditions on
model parameters νi, νij , ai, aij and βij that result in
a valid, that is, a nonnegative definite multivariate co-
variance class. In the original work, Gneiting, Kleiber
and Schlather (2010) described two main models, the
parsimonious Matérn and the full bivariate Matérn.
The parsimonious Matérn is a reduction in complex-
ity over (10) in that ai = aij = a are held at the same
value for all marginal and cross-covariances, and the
cross-smoothnesses are set to the arithmetic average of
the marginals, νij = (νi + νj )/2. The model is then
valid with an easy-to-check condition on the cross-
correlation coefficient βij .

The flexibility of the parsimonious Matérn is in
allowing each process to have a distinct marginal
smoothness behavior, and thus allowing for simultane-
ous modeling of highly smooth and rough fields. The
natural extension to allow distinct process-dependent
length scale parameters ai turns out to be more in-
volved. The full bivariate Matérn of Gneiting, Kleiber
and Schlather (2010) allows for distinct smoothness
and scale parameters for two processes (and in fact
results in a characterization for p = 2). A second
set of authors, Apanasovich, Genton and Sun (2012),
were able to overcome the deficiencies of the parsimo-
nious formulation for p > 2, introducing the flexible
Matérn. The flexible Matérn works for any number
of processes, allowing for each process to have dis-
tinct smoothness and scale parameters, and is as close
in spirit to allowing entirely free marginal Matérn co-
variances with some level of cross-process dependence
as is currently available. A number of simpler suffi-
cient conditions are available by using scale mixtures
(Reisert and Burkhardt, 2007; Gneiting, Kleiber and
Schlather, 2010; Schlather, 2010; Porcu and Zastavnyi,
2011).

It is worth pointing out that the experimental re-
sults of both sets of authors, Gneiting, Kleiber and
Schlather (2010) and Apanasovich, Genton and Sun
(2012), highlighted the importance of allowing for
highly flexible and distinct marginal covariance struc-
tures, while still allowing for some degree of cross-
process correlation, and indeed the improvement over
an independence assumption was substantial.
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4. NONSTATIONARY CROSS-COVARIANCE
FUNCTIONS

Geophysical, environmental and ecological spatial
processes often exhibit spatial dependence that de-
pends on fixed geographical features such as terrain
or land use type, or dynamical environments such as
prevailing winds. In either case, the evolving nature
of spatial dependence is not well captured by station-
ary models, and thus the availability of nonstationary
constructions is desired, that is, models such that the
marginal and cross-covariance functions are now de-
pendent on the spatial location pair, not just the lag
vector, cov{Zi(s1),Zj (s2)} = Cij (s1, s2).

Many of the aforementioned models have been ex-
tended to the nonstationary setup, including the origi-
nal stationary models as special cases. The first natural
extension to allowing the LMC to be nonstationary is
to let the latent univariate correlations be nonstationary,
so that

Cij (s1, s2) =
r∑

k=1

ρk(s1, s2)AikAjk, s1, s2 ∈ R
d,

where now ρk are nonstationary univariate correlation
functions. The onus of deriving a matrix-valued non-
stationary covariance function is then alleviated in fa-
vor of opting for univariate nonstationary correlations,
of which there are many choices (e.g., Sampson and
Guttorp, 1992; Fuentes, 2002; Paciorek and Schervish,
2006; Bornn, Shaddick and Zidek, 2012). Although
this extension seems straightforward, we are unaware
of any authors who have implemented such an ap-
proach. The second way to extend the LMC to a non-
stationary setup is to allow the coefficients to be spa-
tially varying (Gelfand et al., 2004), so that

Cij (s1, s2) =
r∑

k=1

ρk(s1 − s2)Aik(s1)Ajk(s2),

s1, s2 ∈ R
d . This type of approach can be useful if

the observed multivariate process is linked in a vary-
ing way to some underlying and unobserved processes.
Guhaniyogi et al. (2013) combined a low rank predic-
tive process approach with the nonstationary LMC for
computationally feasible modeling with large datasets.

The multivariate Matérn was extended to the non-
stationary case by Kleiber and Nychka (2012). The
basic idea is to allow the various Matérn parameters,
variance, smoothness and length scale, to be spatially
varying (Stein, 2005; Paciorek and Schervish, 2006),
using normal scale mixtures (Schlather, 2010). For ex-
ample, temperature fields exhibit longer range spatial
dependence over the ocean than over land due to ter-
rain driven nonstationarity, and a nonstationary Matérn

with spatially varying length scale parameter can cap-
ture this type of dependence without resorting to using
disjoint models between ocean and land. In particular,
the nonstationary multivariate Matérn supposes

ρii(s1, s2) ∝ M
(
s1, s2|νi(s1, s2), ai(s1, s2)

)
,

ρij (s1, s2) ∝ βij (s1, s2)M
(
s1, s2|νij (s1, s2), aij (s1, s2)

)
,

s1, s2 ∈ R
d . An additional point here is that βij (s, s)

is proportional to the collocated cross-correlation co-
efficient cor{Zi(s),Zj (s)}, that is, the strength of rela-
tionship between variables at the same location. This
strength often varies spatially, for example minimum
and maximum temperature are less correlated over
highly mountainous regions than over plains where
they exhibit greater dependence. Kleiber and Genton
(2013) considered an approach to allowing this corre-
lation coefficient to vary with location in such a way
that it can be included with any arbitrary multivari-
ate covariance choice, as long as each process has a
nonzero nugget effect (which is not usually restric-
tive, as most processes exhibit small scale dependence
that are typically modeled as nugget effects). Other au-
thors have noted similar phenomena with other scien-
tific data (Fuentes and Reich, 2013; Guhaniyogi et al.,
2013).

Owing to the increasing complexity of nonstationary
and multivariate models and the expertise required to
decide on a framework as well as implement an estima-
tion scheme, a few authors have considered nonpara-
metric approaches to estimation. Extending Oehlert
(1993) and Guillot, Senoussi and Monestiez (2001) to
the multivariate case, Jun et al. (2011) and Kleiber,
Katz and Rajagopalan (2013) worked with a nonpara-
metric estimator of multivariate covariance that is free
from model choice and is available throughout the ob-
servation domain. The underlying idea is to kernel
smooth the empirical method-of-moments estimate of
spatial covariance in a way that retains nonnegative
definiteness and yields covariance estimates at any ar-
bitrary location pairs, not only those with observations.
Their nonparametric estimators are variations on the
form

Ĉij (x,y)

=
(

n∑
k=1

n∑
�=1

Kλ

(‖x − sk‖)

· Kλ

(‖y − s�‖)
Zi(sk)Zj (s�)

)
(11)

·
(

n∑
k=1

n∑
�=1

Kλ

(‖x − sk‖)
Kλ

(‖y − s�‖))−1

,
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x,y ∈ R
d , where Kλ(r) = K(r/λ) is a positive ker-

nel function with bandwidth λ. The displayed equation
(11) is set up for the case when Zi is mean zero for
i = 1, . . . , p, for instance representing residuals after a
mean trend has been removed; the estimator can also
be applied to centered residuals such as Zi(sk) − Z̄i .
This type of estimator can capture substantial nonsta-
tionarity that may be difficult to pick up parametrically
(Kleiber, Katz and Rajagopalan, 2013). The nonpara-
metric approach to estimation is primarily useful when
replications of the multivariate random field are avail-
able. Although it can be applied when only a single
field realization is available, we caution against its use
given the well-known variability of empirical estimates
in small samples.

The two methods of covariance and kernel convo-
lution can also be extended to result in nonstationary
matrix functions (Calder, 2007, 2008; Majumdar, Paul
and Bautista, 2010). As with the univariate case, the
convolution integrals are often intractable and must be
estimated numerically, and parametric interpretations
are sometimes ambiguous.

5. CROSS-COVARIANCE FUNCTIONS WITH
SPECIAL FEATURES

5.1 Asymmetric Cross-Covariance Functions

All the stationary models described so far are sym-
metric, in the sense that Cij (h) = Cji(h), or equiva-
lently, Cij (h) = Cij (−h). Although Cij (h) = Cji(−h)

by definition, the aforementioned properties may not
hold in general. Li, Genton and Sherman (2008) pro-
posed a test of symmetry of the cross-covariance struc-
ture of multivariate random fields based on the asymp-
totic distribution of its empirical estimator. If the test
rejects symmetry, then asymmetric cross-covariance
functions are needed.

Li and Zhang (2011) proposed a general approach
to render any stationary symmetric cross-covariance
function asymmetric. The key idea is to notice that if
Cij (h) is a valid symmetric cross-covariance function,
then

Ca
ij (h) = Cij (h + ai − aj ), h ∈R

d,(12)

is a valid asymmetric cross-covariance function for
any vectors ai ∈ R

d , i = 1, . . . , p, such that ai �=
aj . Indeed, if Z(s) = {Z1(s), . . . ,Zp(s)}T has cross-
covariance functions Cij (h), then {Z1(s − a1), . . . ,

Zp(s − ap)}T has cross-covariance functions Ca
ij (h)

given by (12), i, j = 1, . . . , p. In particular, the con-
struction (12) can be used to produce asymmetric ver-
sions of the LMC and the multivariate Matérn models.

The vectors a1, . . . ,ap introduce delays that generate
asymmetry in the cross-covariance structure. Because
only the differences ai − aj matter, one can impose a
constraint such as a1 + · · · + ap = 0 or a1 = 0 to en-
sure identifiability. Li and Zhang (2011) proposed to
first estimate the marginal parameters of Ca

ij (h) in (12),
and then estimate the cross-parameters and p − 1 of
the ai’s. Their simulations and data examples showed
that asymmetric cross-covariance functions, when re-
quired, can achieve remarkable improvements in pre-
diction over symmetric models. Apanasovich and Gen-
ton (2010) used a similar strategy to produce asymmet-
ric spatio-temporal cross-covariance models based on
latent dimensions; see Section 7.2. Inducing asymme-
try in a nonstationary model is yet an open problem.

5.2 Compactly Supported Cross-Covariance
Functions

Computational issues in the face of large datasets
is a major problem in any spatial analysis, includ-
ing likelihood calculations and/or co-kriging; see the
review by Sun, Li and Genton (2012, Section 3.7).
Especially, if the observation network is very large
(even on the order of thousands), likelihood calcula-
tions and co-kriging equations are difficult or impos-
sible to solve with standard covariance models, due
to the dense unstructured observation covariance ma-
trix. One approach to overcoming this difficulty is to
induce sparsity in the covariance matrix, either by us-
ing a compactly supported covariance function as the
model, or by covariance tapering, that is, multiplying
a compactly supported nonnegative definite function
against the model covariance (Furrer, Genton and Ny-
chka, 2006; Kaufman, Schervish and Nychka, 2008).
Then sparse matrix methods can be used to invert the
covariance matrix, or find the determinant thereof.

Only recently have authors begun to consider this
problem for multivariate random fields. Most of the
currently available models are based on scale mixtures
of the form

Cij (h) =
∫ (

1 − ‖h‖/x)ν
+gij (x)dx, h ∈ R

d,

or variations on this theme (Reisert and Burkhardt,
2007; Porcu and Zastavnyi, 2011). Here, ν ≥ (d +
1)/2, and {gij (x)}pi,j=1 forms a valid cross-covariance
matrix function. The generality of this construction
gives rise to many interesting examples. For instance,
with gij (x) = xν(1 − x/b)

γij

+ where γij = (γi + γj )/2
and γi > 0 for all i = 1, . . . , p we have the multivariate
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Askey taper

Cij (h) = bν+1B(γij + 1, ν + 1)

(
1 − ‖h‖

b

)ν+γij+1

,

‖h‖ < b, and 0 otherwise, where B is the beta function
(Porcu et al., 2013). Kleiber and Porcu (2015) provided
a nonstationary extension of this model, while Porcu
et al. (2013) considered similar ideas for Buhmann
functions and B-splines. Daley, Porcu and Bevilacqua
(2015) obtained multivariate Askey functions with dif-
ferent compact supports bij and the multivariate ana-
logue of Wendland functions. The latter provide a tool
for tapering cross-covariance functions such as the
multivariate Matérn. Recent results on equivalence of
Gaussian measures of multivariate random fields by
Ruiz-Medina and Porcu (2015) will allow for assessing
the statistical properties of multivariate tapers. Du and
Ma (2013) derived compactly supported classes of the
Pólya type. Although there has been a flurry of recent
activity, much additional work remains in implement-
ing these models in real world applications, exploring
covariance tapering and understanding limitations of
stationary constructions.

5.3 Cross-Covariance Functions on the Sphere

Many multivariate datasets from environmental and
climate sciences are collected over large portions of the
Earth, for example, by satellites and, therefore, cross-
covariance functions on the sphere S

2 in R
3 are in

need. Consider a multivariate process on the sphere
for which the ith variable is described by Zi(L, l),
i = 1, . . . , p, with L denoting latitude and l denot-
ing longitude. Jun (2011) constructed cross-covariance
functions by applying differential operators with re-
spect to latitude and longitude to the process on the
sphere. Furthermore, Jun (2011) studied nonstationary
models of cross-covariances with respect to latitude,
so-called axially symmetric, and longitudinally irre-
versible cross-covariance functions for which

cov
{
Zi(L1, l1),Zj (L2, l2)

}
�= cov

{
Zi(L1, l2),Zj (L2, l1)

}
,

(L1, l1) ∈ S
2, (L2, l2) ∈ S

2. All the models described
in Jun (2011) are valid for the chordal distance, that
is, the Euclidean distance in R

3 between points on S
2.

Castruccio and Genton (2014) relaxed the assump-
tion of axial symmetry for univariate random fields on
the sphere and the extension of their work to multi-
variate random fields on the sphere remains an open
problem. Gneiting (2013) provided a very thorough

study of positive definite functions on a sphere that
can be used as covariances. Du, Ma and Li (2013)
developed a characterization of isotropic and continu-
ous variogram matrix functions on the sphere, extend-
ing some of the ideas of Ma (2012) who characterized
continuous and isotropic covariance matrix functions
on the sphere using Gegenbauer polynomials. Because
the great circles are the geodesics on the sphere, they
are the natural metric to measure distances in this con-
text. Porcu, Bevilacqua and Genton (2014) developed
cross-covariance functions of the great circle distances
on the sphere. In particular, they studied multivariate
Matérn models as functions of the great circle dis-
tance on the sphere. Recently, Jun (2014) developed
nonstationary Matérn cross-covariance models whose
smoothness parameters vary over space and with large-
scale nonstationarity obtained with the aforementioned
differential operators.

6. DATA EXAMPLES

We illustrate a selection of the above cross-covari-
ance models on two data examples. First, a set of re-
analysis climate model output that represents spatially
gridded data. Second, a set of observational temper-
ature data that illustrates spatially irregularly located
data.

6.1 Climate Model Output Data

The specific reanalysis dataset in use is a National
Centers for Environmental Protection-driven (NCEP)
run of the updated Experimental Climate Prediction
Center (ECP2) model, which was originally run as part
of the North American Regional Climate Change As-
sessment Program (NARCCAP) climate modeling ex-
periment (Mearns et al., 2009). Reanalysis data can be
thought of as an estimate of the true state of the atmo-
sphere for a given period. The variables we use are av-
erage summer temperature and cube-root precipitation
(summer being comprised of June, July and August;
JJA) over a region of the midwest United States that is
largely an agricultural region with relatively constant
terrain. The cube-root transformation reduces skew-
ness in the precipitation output and brings the distri-
bution closer to Gaussian. For each grid cell, we cal-
culate a pointwise spatially varying mean as the arith-
metic average of all 24 years of model output from
1981 through 2004. The data considered then are 24
years of residuals, having removed this spatially vary-
ing mean from each year’s reanalysis output for the two
variables of temperature and cube-root precipitation.
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The residuals are assumed to be independent between
years, and are additionally assumed to be realizations
from a mean zero bivariate Gaussian process (both as-
sumptions are supported by exploratory analysis).

Figure 1 contains an example set of reanalysis resid-
uals for the year 1989. By eye, it appears that temper-
ature residuals are smoother over space, while precip-
itation is apparently rougher, while both seem to have
similar correlation length scales. The two variables are
strongly negatively correlated, with an empirical cor-
relation coefficient of −0.67. This situation, with neg-
ative and strong cross-correlation and both variables
exhibiting distinct levels of smoothness, provides nu-
merous challenges to available cross-correlation mod-
els. Call T (s, t) and P(s, t) the temperature and pre-
cipitation residual at location s in year t , respectively
(recalling that, although indexed by year, the processes
are viewed as temporally-independent).

Of the above models, we compare six to an inde-
pendence assumption, that is, where temperature and
precipitation residuals are assumed to be independent;
for the independence model, each variable is assumed
to follow a Matérn covariance, and parameters are esti-
mated by maximum likelihood. The first nontrivial bi-
variate model is the parsimonious Matérn, whose pa-
rameters we estimate by maximum likelihood. The sec-
ond model is a nearly full bivariate Matérn, where we
set the cross-covariance smoothness νTP, T represent-
ing temperature and P precipitation, to be the arith-
metic average of the marginal smoothnesses. For the
full bivariate Matérn, we set marginal parameters to be
those of the independence model, and conditional on
these, estimate the remaining cross-covariance length
scale aTP and cross-correlation coefficient ρTP by max-
imum likelihood. We additionally consider two vari-
ations on the bivariate parsimonious Matérn, one us-

ing a lagged covariance of Li and Zhang (2011) (see
Section 5.1), and a nonstationary Matérn with spatially
varying variances for both variables. Spatially varying
variances are estimated empirically at each grid cell,
and conditional on these, the remaining parameters are
estimated by maximum likelihood. We also consider a
linear model of coregionalization,

T (s, t) = a11Z1(s, t),

P (s, t) = a12Z1(s, t) + a22Z2(s, t),

where Z1 and Z2 are independent mean zero spatial
processes with Matérn covariances. We opt for this for-
mulation since temperature is expected to be smoother
than precipitation, and our goal is to preserve this fea-
ture within the statistical model. Parameters are esti-
mated by maximum likelihood. Finally, we addition-
ally consider two latent dimensional models. The first
is parameterized by (9), except without a nugget effect,
and the second is built via

T (s, t) = b11Z(s, t) + b12Z1(s, t),

P (s, t) = b21Z(s, t) + b22Z2(s, t),

where Z(s, t) has a latent dimensional covariance of
the form

C(h) = 1

(‖ξ i − ξ j‖ + 1)β
exp

{ −α‖h‖2

(‖ξ i − ξ j‖ + 1)β

}
,

h ∈ R
2, and Z1,Z2 are independent with Matérn corre-

lations. This choice for Z allows the temperature pro-
cess to retain smoother behavior at the origin than pre-
cipitation, whereas the model of (9) forces exponential-
like behavior at the origin.

Table 1 contains the parsimonious and full bivariate
Matérn parameter estimates. Note the smoothness pa-
rameter of the temperature field is approximately 1.3,

FIG. 1. Example residuals from 1989 after removing a spatially varying mean from NCEP-driven ECP2 regional climate model run for the
variables of average summer temperature and precipitation. Units are degrees Celsius for temperature and centimeters for precipitation.
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TABLE 1
Maximum likelihood estimates of parameters for full and parsimonious bivariate Matérn models, applied to the NARCCAP model data.

Units are degrees Celsius for temperature, centimeters for precipitation, and kilometers for distances

Model σT σP νT νP 1/aT 1/aP 1/aTP ρTP

Full 1.63 0.19 1.31 0.55 384.3 361.6 420.1 −0.60
Parsimonious 1.61 0.19 1.33 0.54 367.1 – – −0.49

indicating a relatively smooth field, which supports
the theoretical analysis of North, Wang and Genton
(2011); on the other hand, precipitation has a smooth-
ness of approximately 0.55, suggesting an exponen-
tial model may work well. Both variables have sim-
ilar length scale parameters, which suggests the as-
sumptions of the parsimonious Matérn model may
be reasonable for this particular dataset. The cross-
correlation coefficient is estimated to be strongly neg-
ative in both cases, with the full Matérn slightly closer
to the empirical cross-correlation.

Table 2 contains log likelihood values for the var-
ious models considered. Evidently, the parsimonious,
full and parsimonious lagged Matérn all have likeli-
hood values on the same order, which are all superior to
the LMC, independent Matérn and latent dimensional
models. We remark that, given the smooth nature of
the temperature field, the latent dimensional model of
(9) is not expected to perform as well, as it fixes the
smoothness of the temperature field at ν = 0.5, while
on the other hand the latent dimensional model using
a shared process with squared exponential covariance
performs nearly as well as the Matérn alternatives. The
nonstationary extension of the parsimonious Matérn
exhibits the largest log likelihood, improving the next
best model by over 1000. This suggests that the bi-
variate field indeed exhibits nonstationarity, and there

may be other modeling improvements that can be ex-
plored with new nonstationary cross-covariance devel-
opments.

Finally, we perform a small pseudo cross-validation
study. We hold out the bivariate model output at a ran-
domly chosen 90% of spatial locations consistent over
all time points. We then co-krige the remaining 10%
(62 locations) to the held out grid cells using parame-
ter estimates based on the entire dataset. As the residual
process is assumed to be independent between years,
co-kriging is performed separately for each year. Root
mean squared error (RMSE) and the continuous ranked
probability score (CRPS) are used to validate interpo-
lation quality, averaged over all held out locations and
years. We repeat this experiment ten times for different
randomly chosen sets of held out spatial locations and
average the resulting scores; the results are displayed in
Table 2. Generally speaking, all models are effectively
equivalent in terms of predictive ability, except for the
nonstationary extension to the parsimonious Matérn,
which appears to improve both predictive quantities
for temperature especially. Perhaps surprisingly, the in-
dependent Matérn performs as well for interpolation,
although this has not been the case with all datasets
(Gneiting, Kleiber and Schlather, 2010).

TABLE 2
Comparison of log likelihood values and pseudo cross-validation scores averaged over ten cross-validation replications for various

multivariate models on the NARCCAP model data residuals for temperature (T) and precipitation (P)

Log likelihood RMSE (T ) CRPS (T ) RMSE (P ) CRPS (P )

Nonstationary parsimonious Matérn 53564.5 0.168 0.084 0.085 0.047
Parsimonious lagged Matérn 52563.7 0.179 0.090 0.087 0.048
Full Matérn 52560.1 0.178 0.090 0.087 0.048
Parsimonious Matérn 52556.9 0.179 0.090 0.087 0.048
Latent dimension 52028.8 0.180 0.091 0.088 0.049
LMC 51937.0 0.179 0.091 0.090 0.050
Independent Matérn 50354.5 0.180 0.091 0.088 0.049
Latent dimension of (9) 48086.3 0.195 0.100 0.088 0.048



CROSS-COVARIANCE FUNCTIONS 157

TABLE 3
Comparison of log likelihood values and pseudo cross-validation scores averaged over 100 cross-validation replications for various

multivariate models on the USHCN observed temperature residuals for maximum temperature (max) and minimum temperature (min)

Log likelihood RMSE (min) CRPS (min) RMSE (max) CRPS (max)

Parsimonious lagged Matérn −414.0 3.18 1.83 3.14 1.79
Parsimonious Matérn −414.9 3.22 1.85 3.16 1.80
LMC −415.7 3.22 1.85 3.16 1.80
Latent dimension −416.2 3.23 1.86 3.18 1.81
Latent dimension of (9) −419.1 3.24 1.86 3.17 1.81
Independent Matérn −427.6 3.41 1.94 3.35 1.91

6.2 Observational Temperature Data

The second example we consider is a bivariate mini-
mum and maximum temperature observational dataset.
Observations are available at stations that are part
of the United States Historical Climatology Network
(Peterson and Vose, 1997) over the state of Colorado.
Stations in the USHCN form the highest quality obser-
vational climate network in the United States; observa-
tions are subject to rigorous quality control.

We consider bivariate daily temperature residuals
(i.e., having removed the state-wide mean) on Septem-
ber 19, 2004, a day which has good network cover-
age with observations being available at 94 stations.
Exploratory Q–Q plots suggest the residuals are well
modeled marginally as Gaussian processes; we sup-
pose the bivariate process is a realization from a bi-
variate Gaussian process with zero mean.

We entertain the same set of bivariate models as
in the previous example subsection. Due to the fact
that the data are observational, we augment each pro-
cess’ covariance with a nugget effect. We begin by
estimating the independent Matérn model separately
for both minimum and maximum temperature residu-
als by maximum likelihood. Since the nugget effect is
tied to marginal process behavior, we fix the estimated
nugget effects at their marginal estimates, and estimate
all other covariance parameters from the remaining bi-
variate models by maximum likelihood, conditional on
these marginal nugget estimates. We remove both the
bivariate Matérn and nonstationary model from con-
sideration, as these are both difficult to estimate given
a single realization of the spatial process.

On top of comparing in sample log likelihood val-
ues, we additionally consider a pseudo cross-validation
study, leaving out a randomly selected 25% of loca-
tions, and co-krige the remaining bivariate observa-
tions to these held out locations. This pseudo cross-
validation procedure is repeated 100 times, and Ta-
ble 3 contains the averaged scores from this study.

Contrasting with the results of the NARCCAP exam-
ple, we now see the predictive benefit of considering
multivariate second-order structures. Generally, pre-
dictive RMSE and CRPS are improved by between
6–7% when co-kriging using the parsimonious lagged
Matérn, as compared to marginally kriging each vari-
able. A potential explanation for the improvement here
as compared to the NARCCAP example is that in the
current study, the observations are subject to measure-
ment error, and thus the greater uncertainty in estimat-
ing the bivariate surface is more readily quantified us-
ing an appropriate bivariate covariance model.

7. DISCUSSION

7.1 Specialized Cross-Covariance Functions

The models introduced so far cover the broad ma-
jority of usual datasets requiring multivariate models.
However, specialized scenarios sometimes arise, and
call for novel developments. For instance, some con-
structions involve modeling variables that exhibit long
range dependence. Ma (2011c) examined a construc-
tion for all variables having long or short range depen-
dence utilizing univariate variograms; and Ma (2011a)
explored the relationship between multivariate covari-
ances and variograms. Kleiber and Porcu (2015) de-
rived a nonstationary construction that allows individ-
ual variables to be a spatially varying mixture of short
and long range dependence, as well as having substan-
tial cross-correlation between variables (with possibly
opposing short/long range dependence); their construc-
tion is a special case of a multivariate generalization
of the univariate Cauchy class of covariance (Gneiting
and Schlather, 2004). Hristopoulos and Porcu (2014)
defined the multivariate analogue of Spartan Gibbs ran-
dom fields, obtained through using Hamiltonian func-
tionals.
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Ma (2011b) also studied various approaches to pro-
duce valid cross-covariance functions based on dif-
ferentiation of univariate covariance functions and on
scale mixtures of covariance matrix functions. Alter-
natively, Ma (2011d) provided constructions of vari-
ogram matrix functions, and Du and Ma (2012) intro-
duced an approach to building variogram matrix func-
tions based on a univariate variogram model.

We close this section by pointing out a recent novel
approach to generating valid matrix covariances by
considering stochastic partial differential equations
(SPDEs); Hu et al. (2013) used systems of SPDEs to si-
multaneously model temperature and humidity, yield-
ing computationally efficient means to analysis by ap-
proximating a Gaussian random field by a Gaussian
Markov random field.

7.2 Spatio-Temporal Cross-Covariance Functions

So far, the cross-covariance models that we de-
scribed were aimed at spatial multivariate random
fields. When adding the time dimension, the resulting
spatio-temporal multivariate random field, Z(s, t), has
stationary cross-covariance functions Cij (h, u), where
u denotes a time lag. All the previous spatial cross-
covariance models can be straightforwardly extended
to the spatio-temporal setting, for example, Rouhani
and Wackernagel (1990), Choi et al. (2009), Berrocal,
Gelfand and Holland (2010) and De Iaco et al. (2013),
De Iaco, Palma and Posa (2013) developed space–
time versions of the linear model of coregionalization.
Gelfand, Banerjee and Gamerman (2005) used a dy-
namic approach for multivariate space–time data using
coregionalization.

Based on the concept of latent dimensions described
in Section 2.3, Apanasovich and Genton (2010) have
extended a class of spatio-temporal covariance func-
tions for univariate random fields due to Gneiting
(2002) to the multivariate setting. Specifically, if ϕ1(t),
t ≥ 0, is a completely monotone function and ψ1(t),

ψ2(t), t ≥ 0, are positive functions with completely
monotone derivatives, then

C(h, u,v) = σ 2

[ψ1{u2/ψ2(‖v‖2)}]d/2{ψ2(‖v‖2)}1/2

(13)

· ϕ1

[ ‖h‖2

ψ1{u2/ψ2(‖v‖2)}
]
,

is a valid stationary covariance function on R
d+1+k

that can be used to model cross-covariance functions
with v = ξ i − ξ j . When ψ2(t) ≡ 1, Gneiting’s class

is retrieved. The case v = 0 yields a common spatio-
temporal covariance function for each variable that can
be made different through a LMC-type construction.
Also judicious choices of the functions in (13) allow
one to control nonseparability between space and time,
between space and variables, and between time and
variables; see Apanasovich and Genton (2010) for var-
ious illustrative examples.

To further introduce asymmetry in spatio-temporal
cross-covariance functions, Apanasovich and Genton
(2010) have proposed two approaches based on latent
dimensions. Using the notation of Section 2.3, the first
type of asymmetric spatio-temporal cross-covariance is

Ca
ij (h, u) = C

(
h, u − λT

ξ (ξ i − ξ j ), ξ i − ξ j

)
,(14)

h ∈ R
d, u ∈ R, where C is a valid covariance func-

tion on R
d+k of a univariate random field and λξ ∈ R

k ,
1 ≤ k ≤ p, controls the delay in time that creates asym-
metry. There is no time delay if and only if λξ = 0 or
i = j . The second type of asymmetric spatio-temporal
cross-covariance is

Ca
ij (h, u) = C(h − γ hu,u, ξ i − ξ j − γ ξu),(15)

h ∈ R
d, u ∈ R, where the velocity vectors γ h ∈ R

d

and γ ξ ∈ R
k are responsible for the lack of symme-

try. When u �= 0, this model is spatially anisotropic.
Combinations of models (14) and (15) are possible.

7.3 Physics-Constrained Cross-Covariance
Functions

Especially for geophysical processes, often there
are physical constraints on a system of variables that
must be obeyed by any stochastic model. For instance,
Buell (1972) explored valid covariance models for
geostrophic wind that must satisfy physical relation-
ships for isotropic geophysical flow including geopo-
tential, longitudinal wind components and transverse
wind components.

In a similar vein, a number of physical processes,
especially in fluid dynamics, involve fields with spe-
cialized restrictions such as being divergence free.
Scheuerer and Schlather (2012) developed matrix-
valued covariance functions for divergence-free and
curl-free random vector fields, which are based on
combinations of derivatives of a specified variogram
and extend earlier work by Narcowich and Ward
(1994).

Constantinescu and Anitescu (2013) introduced a
framework for building valid matrix-valued covariance
functions when the constituent processes have known
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physical constraints relating their behavior. By ap-
proximating a nonlinear physical relationship between
variables through series expansions and closures, the
authors develop physically-based matrix covariance
classes. They explored large-scale geostrophic wind as
a case study, and illustrated that physically motivated
cross-correlation models can substantially outperform
independence models.

North, Wang and Genton (2011) studied spatio-
temporal correlations for temperature fields arising
from simple energy-balance climate models, that is,
white-noise-driven damped diffusion equations. The
resulting spatial correlation on the plane is of Matérn
type with smoothness parameter ν = 1, although
rougher temperature fields are expected due to terrain
irregularities for example. Derivations for temperature
fields on a uniform sphere were presented as well.
Whether these results can be extended to other vari-
ables such as pressure and wind fields, and possibly
lead to Matérn cross-covariance models of type (10), is
an open question.

7.4 Open Problems

Finally, there are many open problems that call for
more research. The most fundamental question is the
theoretical characterization of the allowable classes
of multivariate covariances. For instance, given two
marginal covariances, what is the valid class of pos-
sible cross-covariances that still results in a nonneg-
ative definite structure? Such a characterization is an
unsolved problem. Additional to characterization, the
companion theoretical question is the utility of cross-
covariance models. Given the two data examples in
this review, a natural question is: for the purposes of
co-kriging, in what situations are the use of nontrivial
cross-covariances beneficial? Although it is traditional
to focus on kriging and co-kriging in the geostatistical
literature, we wish to additionally emphasize the util-
ity of these models for simulation of multivariate ran-
dom fields. Indeed, without flexible cross-covariance
models, it is impossible to simulate multiple fields with
nontrivial dependencies.

The power exponential class of covariances is a use-
ful marginal class of covariances, but to the best of our
knowledge, a characterization of parameters for the va-
lidity of the multivariate version

ρij (h) = βij exp
{
−

(‖h‖
φij

)κij
}
, h ∈ R

d,

is not known. Although we believe that the multivari-
ate Matérn model (10) has more flexibility, this is still

an interesting question, especially as this set of covari-
ances requires no calculations involving Bessel func-
tions.

The extension of spatial extremes to the case of
multiple variables has not been explored yet except
for the recent proposal of Genton, Padoan and Sang
(2015) who considered multivariate max-stable spa-
tial processes. The aim of that research is to describe
the behavior of extreme events of several variables
across space, such as extreme rainfall and extreme
temperature for example. This requires flexible and
physically-realistic cross-covariance models and there-
fore the families described herein may play an impor-
tant role for such applications.

Recently, there has been some new interest in other
types of random fields than the usual Gaussian case.
Mittag–Leffler fields contain the Gaussian case as a
subset, but are specified in terms of an infinite se-
ries expansion that is unwieldy for applications (Ma,
2013b). Another option is a multivariate extension of
the Student’s t distribution, a t-vector distribution (Ma,
2013a); these seem to be more promising for applica-
tions, and some exploration of the utility of these types
of models is called for. Finally, hyperbolic vector ran-
dom fields contain the Student’s t as a limiting case,
although model interpretation, estimation and imple-
mentation remain unexplored (Du et al., 2012).

There is also a need for valid multivariate cross-
covariance functions for spatial data on a lattice. Al-
though one can apply any of the models mentioned in
this manuscript to lattice data, the extension of univari-
ate Markov random field models is another route. For
instance, Gelfand and Vounatsou (2003) have studied
proper multivariate conditional autoregressive models.
Daniels, Zhou and Zou (2006) proposed a class of con-
ditionally specified space–time models for multivariate
processes geared to situations where there is a sparse
spatial coverage of one of the processes and a much
more dense coverage of the other processes. This is
motivated by an application to particulate matter and
ozone data. Sain and Cressie (2007) also developed
Markov random field models for multivariate lattice
data.

Many additional open questions remain, including
theoretical development of estimation in the multi-
variate context (Pascual and Zhang, 2006). Vargas-
Guzmán, Warrick and Myers (1999) looked at the
relationship between support size and relationship
between variables, but relatively few have explored
this phenomenon in the multivariate case. Finally,
there is a need to better understand and explore
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the intimate connection between multivariate spline
smoothers, co-kriging and multivariate numerical anal-
ysis (Beatson, zu Castell and Schrödl, 2011; Fuselier,
2008; Narcowich and Ward, 1994; Reisert and Burk-
hardt, 2007).
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