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We introduce a flexible parametric family of matrix-valued covariance functions for multivariate spatial random fields, where each con-
stituent component is a Matérn process. The model parameters are interpretable in terms of process variance, smoothness, correlation
length, and colocated correlation coefficients, which can be positive or negative. Both the marginal and the cross-covariance functions are
of the Matérn type. In a data example on error fields for numerical predictions of surface pressure and temperature over the North American
Pacific Northwest, we compare the bivariate Matérn model to the traditional linear model of coregionalization.
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1. INTRODUCTION

Spatial stochastic process models are of ever-increasing im-
portance in a wealth of applications, ranging from the geo-
sciences and atmospheric sciences to environmental monitor-
ing, economics, and other areas. The goals are as varied as
the fields in which spatial models are applied. The modeler
might want to gain scientific insight in the processes studied, in
which case the interpretability of the parameters is of great im-
portance. Environmental risk analysis may require spatial sam-
pling, which depends on the use of a model that allows for fast
simulation. Shared amongst very many applications is the need
for spatial interpolation to sites where no observations are avail-
able. Whatever the goal of the study, it is frequently essential
that several spatial variables be modeled simultaneously. The
critical step then is to identify a suitable spatial dependence
structure, not only within each variable, but between variables
as well. Here we focus on geostatistical formulations that rely
on the fitting of covariance and cross-covariance structures for
Gaussian random fields on a Euclidean space, R

d . In this con-
text, spatial interpolation is often referred to as co-kriging. Ex-
cellent expositions of geostatistical approaches to the model-
ing of spatial data include the monographs by Cressie (1993),
Goovaerts (1997), Chilès and Delfiner (1999), Stein (1999),
Wackernagel (2003), and Banerjee, Carlin, and Gelfand (2004).
Gaussian Markov random fields provide an alternative that is
particularly suited to lattice data (Besag 1974; Mardia 1988;
Rue and Held 2005; Sain and Cressie 2007).

Suppose, for the moment, that we have a single spatial vari-
able, and our univariate data arise from a spatial random field
{Y(s) : s ∈ R

d}, which we assume to be Gaussian and second-
order stationary with mean zero. Hence, the process admits a
covariance function,

C(h) = E(Y(s + h)Y(s)),

Tilmann Gneiting is Professor, Institut für Angewandte Mathematik, Univer-
sität Heidelberg, Germany. William Kleiber is Graduate Student, Department
of Statistics, University of Washington (E-mail: wkleiber@u.washington.edu).
Martin Schlather is Professor, Institut für Mathematische Stochastik, Univer-
sität Göttingen, Germany. We are grateful to Jeff Baars, Clifford F. Mass,
Adrian E. Raftery, the associate editor, and the referees for comments and
discussions and/or providing data. This research was supported by the Alfried
Krupp von Bohlen und Halbach Foundation, the National Science Foundation
under awards ATM-0724721, DMS-0706745, and the VIGRE program, and by
the Joint Ensemble Forecasting System (JEFS) under subcontract S06-47225
from the University Corporation for Atmospheric Research (UCAR). The re-
search of Martin Schlather was supported by DFG grant FOR 916.

which depends on the spatial separation vector, h ∈ R
d , only.

The covariance function is isotropic if C(h1) = C(h2) when-
ever ‖h1‖ = ‖h2‖, where ‖ · ‖ is the Euclidean norm. Clearly,
stationarity along with isotropy are not always realistic as-
sumptions; however, these models are the basic building blocks
of more sophisticated, anisotropic, and nonstationary models.
A class of isotropic covariance functions that has received a
great deal of attention recently is the Matérn family (Matérn
1986; Guttorp and Gneiting 2006), which specifies the covari-
ance function as σ 2M(h|ν,a) where σ 2 > 0 is the marginal
variance and

M(h|ν,a) = 21−ν

�(ν)
(a‖h‖)νKν(a‖h‖) (1)

is the spatial correlation at distance ‖h‖. Here Kν is a mod-
ified Bessel function of the second kind and a > 0 is a spatial
scale parameter, whose inverse, 1/a, is sometimes referred to as
a correlation length. The smoothness parameter ν > 0 defines
the Hausdorff dimension and the differentiability of the sample
paths. If ν equals an integer plus 1

2 , the Matérn function reduces
to the product of an exponential function and a polynomial, in
that

M

(
h
∣∣∣n + 1

2
,a

)
= exp(−a‖h‖)

n∑
k=0

(n + k)!
(2n)!

(
n

k

)
(2a‖h‖)n−k

for n = 0,1, . . . by Equation 8.468 of Gradshteyn and Ryzhik
(2000). This nests the popular exponential model that arises as
M(h| 1

2 ,a) = exp(−a‖h‖).
For a positive integer k, the sample paths of a Gaussian

Matérn field are k times differentiable if and only if ν >

k (Handcock and Stein 1993; Banerjee and Gelfand 2003).
A complementary description of the smoothness of a Matérn
field is via the Hausdorff or fractal dimension of a sample path
in R

d , which equals the maximum of d and d + 1 − ν (Adler
1981; Goff and Jordan 1988). For a differentiable field with
smoothness parameter ν > 1, the Hausdorff dimension of a
sample path equals its topological dimension, d. Generally, the
larger ν, the smoother the process.
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Moving to a multivariate spatial process, let Y(s) = (Y1(s),
. . . ,Yp(s))′, so that at each location, s ∈ R

d , there are p con-
stituent components. We assume that the process is multivari-
ate Gaussian and second-order stationary with mean vector zero
and matrix-valued covariance function

C(h) =
⎛
⎜⎝

C11(h) · · · C1p(h)
...

. . .
...

Cp1(h) · · · Cpp(h)

⎞
⎟⎠ , (2)

where each Cii(h) = E(Yi(s + h)Yi(s)) is a univariate covari-
ance function, while Cij(h) = E(Yi(s + h)Yj(s)) is the cross-
covariance function between process components 1 ≤ i �= j ≤ p.
It is difficult to specify nontrivial, valid parametric models for
cross-covariance functions, because of the notorious require-
ment of nonnegative definiteness. Specifically, if � is the co-
variance matrix of the random vector (Y(s1)

′, . . . ,Y(sn)
′)′, then

for any vector a ∈ R
np, the fitted covariance model must sat-

isfy a′�a ≥ 0. The prevalent way of guaranteeing this is to
use the linear model of coregionalization (LMC), where each
component is represented as a linear combination of latent,
independent univariate spatial processes (Goulard and Voltz
1992; Wackernagel 2003). For the LMC, the smoothness of
any component defaults to that of the roughest latent process,
and thus the standard approach does not admit individually dis-
tinct smoothness properties, unless structural zeros are imposed
on the latent process coefficients. More generally, the lack of
flexibility of the LMC and related models for multivariate spa-
tial random fields has been noted by various authors, including
Cressie (1993, p. 141), Goovaerts (1997, p. 123), and recently
Jun, Knutti, and Nychka (2008, p. 945) who study the spatial
structure of climate model biases individually, using Matérn
covariances, rather than jointly, because “we are not aware of
flexible cross-covariance models that would be suitable.”

These challenges motivate the constructions hereinafter,
which preserve the Matérn covariance function marginally,
while allowing nontrivial, flexible cross-covariance structures.
Specifically, in our multivariate Matérn model, each marginal
covariance function,

Cii(h) = σ 2
i M(h|νi,ai) for i = 1, . . . ,p, (3)

is of the Matérn type with variance parameter σ 2
i > 0, smooth-

ness parameter νi > 0 and scale parameter ai > 0. Each cross-
covariance function,

Cij(h) = Cji(h) = ρijσiσjM(h|νij,aij) for 1 ≤ i �= j ≤ p, (4)

is also a Matérn function, with colocated correlation coefficient
ρij, smoothness parameter νij, and scale parameter aij. The key
question then is as to the values of νij, aij, and ρij that result in
a valid, that is, a nonnegative definite, second-order structure.
We provide necessary and sufficient conditions in the bivariate
case, and introduce a parsimonious formulation for any number
of variables.

The remainder of the paper is organized as follows. In Sec-
tion 2 we discuss conditions on the parameter space that re-
sult in a valid multivariate Matérn model. In the bivariate case
(p = 2), we achieve a full characterization, whereas for p > 2
we suggest a parsimonious model which imposes restrictions

on the scale and cross-covariance smoothness parameters. Sec-
tion 3 turns to a data study on error fields for numerical pre-
dictions of surface temperature and pressure over the Pacific
Northwest. For pressure, error fields are known to be smooth,
while for temperature they are rough, with a strongly negative
colocated correlation coefficient, resulting in a situation that is
difficult to accommodate with extant models. The paper closes
in Section 4 with a discussion and hints at extensions.

2. THE MULTIVARIATE MATÉRN MODEL

As noted, we discuss conditions on the multivariate Matérn
model that result in a valid specification for the cross-covariance
functions in (4), ranging from a parsimonious model in a lower
dimensional parameter space to a full bivariate model with the
most flexibility.

2.1 Parsimonious Multivariate Matérn Model

We first consider a parsimonious multivariate Matérn model
with marginal and cross-covariance functions that are of the
form (3) and (4), with natural restrictions on the parameter
space.

Theorem 1. Let d ≥ 1 and p ≥ 2. Suppose that

νij = 1
2 (νi + νj) for 1 ≤ i �= j ≤ p,

and suppose that there is a common scale parameter, in that
there exists an a > 0 such that

a1 = · · · = ap = a and aij = a for 1 ≤ i �= j ≤ p.

Then the multivariate Matérn model provides a valid second-
order structure in R

d if

ρij = βij
�(νi + d

2 )1/2

�(νi)1/2

�(νj + d
2 )1/2

�(νj)1/2

× �( 1
2 (νi + νj))

�( 1
2 (νi + νj) + d

2 )
for 1 ≤ i �= j ≤ p,

where the matrix (βij)
p
i,j=1 with diagonal elements βii = 1 for

i = 1, . . . ,p and off-diagonal elements βij for 1 ≤ i �= j ≤ p is
symmetric and nonnegative definite.

The requirement that the components share the same scale
parameter, a, may seem overly restrictive at first. However,
Zhang (2004) showed that the parameters σ 2 and a of a Matérn
covariance function (with the smoothness parameter, ν, fixed)
in dimension d ≤ 3 cannot be consistently estimated under infill
asymptotics, while the composite quantity σ 2a2ν can be con-
sistently estimated. Du, Zhang, and Mandrekar (2009) study
the corresponding asymptotic distribution, and extend results of
Ying (1991), who showed that if ν = 1

2 then either a or σ 2 can
be fixed arbitrarily and the composite quantity can still be es-
timated consistently and efficiently. Hence, the assumption of
a common scale parameter is not necessarily restrictive, simi-
larly to the reasoning in Zhang and Wang (2010). Finally, the
inclusion of the βij parameter in the colocated correlation coef-
ficient ρij, where 1 ≤ i �= j ≤ p, imparts a significant amount of
flexibility on this class, ranging from independent components
when the βij vanish to strongly correlated components when all
βij = 1, or anticorrelated components when some or all of the
βij are negative. Of course, it is possible to reduce the number
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of parameters, by imposing structure on the βij’s, as directed by
substantive expertise and the application at hand.

The proof of Theorem 1 is constructive, and we present here
the key ideas, with routine calculations deferred to the Appen-
dix. The crux of the argument is contained in the following
statement, which is a variant of a result of Gaspari et al. (2006,
p. 1820) and theorem 1 of Majumdar and Gelfand (2007), and
is also proved in the Appendix. The respective multivariate
Gaussian random field allows a representation as a process con-
volution, with distinct kernel functions, c1, . . . , cp, relative to a
common white noise process.

Theorem 2. Suppose that c1, . . . , cp are real-valued functions
on R

d which are both integrable and square-integrable. If

Cij(h) = (ci � cj)(h) for i, j = 1, . . . ,p, (5)

where the asterisk denotes the convolution operator, the matrix-
valued function defined by (2) is a multivariate covariance func-
tion on R

d .

The convolution approach to the construction of multivari-
ate covariance functions has also been studied by Ver Hoef and
Barry (1998), Gaspari and Cohn (1999), Oliver (2003), and Ver
Hoef, Cressie, and Barry (2004), among other authors. In case
of the ci’s being suitably normalized Matérn functions with
common scale a > 0 and smoothness νi

2 − d
4 , where we require

νi > 0 to ensure integrability and square-integrability, we get

Cij(h) = �(νi + d
2 )1/2

�(νi)1/2

�(νj + d
2 )1/2

�(νj)1/2

× �( 1
2 (νi + νj))

�( 1
2 (νi + νj) + d

2 )
M

(
h
∣∣∣1

2
(νi + νj),a

)
. (6)

In other words, the Matérn family is closed under convolution.
This yields Theorem 1 in the special case in which βij = 1 for
i ≤ i, j ≤ p. The general result then is immediate from Schur’s
Theorem (Horn and Johnson 1985, p. 455).

Theorem 1 provides flexible cross-covariance structures for
multivariate random fields with any number, p, of process com-
ponents. In the case p = 2 of two components only, the para-
meter β12 = β21 can take any value between −1 and 1. The

parsimonious bivariate Matérn model thus is given by

C11(h) = σ 2
1 M(h|ν1,a), C22(h) = σ 2

2 M(h|ν2,a), (7)

and

C12(h) = C21(h) = ρ12σ1σ2M
(
h| 1

2 (ν1 + ν2),a
)
, (8)

where

|ρ12| ≤ �(ν1 + d
2 )1/2

�(ν1)1/2

�(ν2 + d
2 )1/2

�(ν2)1/2

�( 1
2 (ν1 + ν2))

�( 1
2 (ν1 + ν2) + d

2 )
. (9)

By Theorem 3 below, this condition is not just sufficient, but
necessary as well. In the case p = 2 and d = 2 of a bivariate
spatial random field on the Euclidean plane, the inequality in
(9) simplifies to

|ρ12| ≤ (ν1ν2)
1/2

1
2 (ν1 + ν2)

. (10)

Thus, the upper limit on the colocated correlation coefficient
equals the ratio of the harmonic mean and the arithmetic mean
of the marginal smoothness parameters.

Figure 1 shows a simulated realization of a bivariate Matérn
field, where the first component is smooth (ν = 3

2 ), while the
second component is rough (ν = 1

2 ). Simulation code will
be made available in an upcoming release of the R package
RANDOMFIELDS (Schlather 2005). Among other methods,
RANDOMFIELDS employs the circulant embedding technique
of Chan and Wood (1999), which relies on the fast Fourier
transform and is both fast and exact.

2.2 Full Bivariate Matérn Model

We now take a closer look at the case p = 2 of a bivariate ran-
dom field on the Euclidean domain R

d , where we expand the
model to include distinct scale and cross-covariance smooth-
ness parameters. The full bivariate Matérn model thus becomes

C11(h) = σ 2
1 M(h|ν1,a1), C22(h) = σ 2

2 M(h|ν2,a2), (11)

and

C12(h) = C21(h) = ρ12σ1σ2M(h|ν12,a12). (12)

By Cramér’s Theorem (Cramér 1940) in its spectral den-
sity version (Yaglom 1987, p. 315; Chilès and Delfiner 1999,

Figure 1. Simulated realization from the parsimonious bivariate Matérn model with variance parameters σ 2
1 = σ 2

2 = 1, smoothness parameters
ν1 = 1.5 and ν2 = 0.5, common scale parameter a = 1, and colocated correlation coefficient ρ12 = 0.5.

http://pubs.amstat.org/action/showImage?doi=10.1198/jasa.2010.tm09420&iName=master.img-000.jpg&w=393&h=173
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p. 326; Wackernagel 2003, p. 152), a bivariate covariance model
is valid if and only if its spectral density matrix is nonnega-
tive definite at almost all spatial frequencies. Cramér’s char-
acterization leads to Theorem 3, where parts (a) through (e)
provide detail in an exhaustive listing of special cases. In the
case a1 = a2 = a12 = a of equal scale parameters, the bounds
in (14) and (16) reduce to (9), as noted above. The special case
in which ν1 = ν2 = ν12 = 1

2 has been studied by Chilès and
Delfiner (1999, p. 330), Vargas-Guzman, Warrick, and Myers
(2002), and Wackernagel (2003, exercise 21.2).

Theorem 3. The full bivariate Matérn model is valid if and
only if

ρ2
12 ≤ �(ν1 + d

2 )

�(ν1)

�(ν2 + d
2 )

�(ν2)

�(ν12)
2

�(ν12 + d
2 )2

× a2ν1
1 a2ν2

2

a4ν12
12

inf
t≥0

(a2
12 + t2)2ν12+d

(a2
1 + t2)ν1+(d/2)(a2

2 + t2)ν2+(d/2)
. (13)

In particular, this can be written as one of the following cases:

(a) If ν12 < 1
2 (ν1 + ν2) the full bivariate Matérn model is

valid if and only if ρ12 = 0.
(b) If ν12 = 1

2 (ν1 + ν2) and a12 ≤ min(a1,a2) the full bivari-
ate Matérn model is valid if and only if

|ρ12| ≤
(

a2
12

a1a2

)d/2 �(ν1 + d
2 )1/2

�(ν1)1/2

�(ν2 + d
2 )1/2

�(ν2)1/2

× �( 1
2 (ν1 + ν2))

�( 1
2 (ν1 + ν2) + d

2 )
. (14)

(c) If ν12 = 1
2 (ν1 +ν2) and min(a1,a2) < a12 < max(a1,a2)

the infimum in (13) is attained either if t = 0, or in the
limit as t → ∞, or if

t2 = (
(2ν2 + d)a2

1a2
12 + (2ν1 + d)a2

2a2
12

− 2(ν1 + ν2 + d)a2
1a2

2

)
/
(
(2ν1 + d)a2

1 + (2ν2 + d)a2
2

− 2(ν1 + ν2 + d)a2
12

)
. (15)

(d) If ν12 = 1
2 (ν1 +ν2) and a12 ≥ max(a1,a2) the full bivari-

ate Matérn model is valid if and only if

|ρ12| ≤
(

a1

a12

)ν1
(

a2

a12

)ν2 �(ν1 + d
2 )1/2

�(ν1)1/2

�(ν2 + d
2 )1/2

�(ν2)1/2

× �( 1
2 (ν1 + ν2))

�( 1
2 (ν1 + ν2) + d

2 )
. (16)

(e) If ν12 > 1
2 (ν1 + ν2) the infimum in (13) is attained either

if t = 0, or in the limit as t → ∞, or if t2 = u where u is
any positive root of(

ν12 − ν1 + ν2

2

)
u2 +

((
ν12 − ν2

2
+ d

4

)
a2

1

+
(

ν12 − ν1

2
+ d

4

)
a2

2 −
(

ν1 + ν2

2
+ d

2

)
a2

12

)
u

+
(

ν12 + d

2

)
a2

1a2
2 −

(
ν2

2
+ d

4

)
a2

1a2
12

−
(

ν1

2
+ d

4

)
a2

2a2
12 = 0. (17)

The proof of Theorem 3 is deferred to the Appendix. By
part (a), the cross-covariance smoothness parameter, ν12, must
be greater than or equal to the arithmetic mean of the mar-
ginal smoothness parameters, ν1 and ν2, unless the components
are uncorrelated. This is best explained in the spectral domain,
in that Cramér’s Theorem forces the Fourier transform of the
cross-covariance function to decay at least as quickly as the
geometric average of the spectral densities of the marginal co-
variance functions. Abelian and Tauberian theorems serve to
transfer results in the spectral domain to the spatial domain and
vice versa (Stein 1999), and thus imply a lower limit on the
smoothness of the cross-covariance function. We note a similar
observation by Chilès and Delfiner (1999, p. 327), but avoid the
technicalities that a rigorous statement necessitates.

Figure 2 shows a simulated realization from the full Matérn
model, where the first component is smooth (ν = 3

2 ) and the
second component is rough (ν = 1

2 ). As opposed to the parsi-
monious Matérn field in Figure 1, the components have distinct

Figure 2. Simulated realization from the full bivariate Matérn model with variance parameters σ 2
1 = σ 2

2 = 1, smoothness parameters ν1 = 1.5
and ν2 = 0.5, scale parameters a1 = 1 and a2 = 0.2, ν12 = 1, a12 = 0.6, and colocated correlation coefficient ρ12 = 0.5.

http://pubs.amstat.org/action/showImage?doi=10.1198/jasa.2010.tm09420&iName=master.img-001.jpg&w=393&h=173
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correlation lengths, in addition to individually distinct smooth-
ness parameters.

2.3 Sufficient Conditions via Mixture Representations

It is sometimes possible to use the well-known closure
properties for matrix-valued covariance functions (Reisert and
Burkhardt 2007, proposition 3.1) to find simple sufficient con-
ditions for validity. For example, suppose that for all r ∈ L ⊂ R

l,
Cr : Rd → R is a (univariate) correlation function, while Dr ∈
R

p×p is symmetric and nonnegative definite. Suppose further-
more that for all h ∈ R

d the product DrCr(h) is componentwise
integrable with respect to the positive measure F on L. Then

C(h) =
∫

L
DrCr(h)dF(r), (18)

where the integral is taken componentwise, is the matrix-variate
covariance function of a random field on the Euclidean domain
R

d that takes values in R
p. This approach yields the following

result, which we prove in the Appendix.

Theorem 4. The bivariate full Matérn model is valid if

ν12 ≥ 1
2 (ν1 + ν2), a2

12 ≥ 1
2 (a2

1 + a2
2),

and

|ρ12| ≤ aν1
1 aν2

2

a2ν12
12

�(ν12)

�(ν1)1/2�(ν2)1/2

×
(

e
a2

12 − (1/2)(a2
1 + a2

2)

ν12 − (1/2)(ν1 + ν2)

)ν12−(1/2)(ν1+ν2)

. (19)

If ν12 = 1
2 (ν1 + ν2), the right-hand side of (19) is interpreted

as the respective limiting expression,

|ρ12| ≤ aν1
1 aν2

2

aν1+ν2
12

�( 1
2 (ν1 + ν2))

�(ν1)1/2�(ν2)1/2
.

Theorem 4 gives sufficient conditions only, and hence is a
weaker result than Theorem 3, which achieves a characteriza-
tion. However, the bound in (19) is convenient to apply, and the
mixture approach (18) is generally applicable.

2.4 Estimation

Traditionally, the estimation of a parametric covariance func-
tion or variogram has relied on either a least squares (OLS,
WLS, or GLS) distance to some empirical covariance function,
or a maximum likelihood (ML) approach, as proposed by Mar-
dia and Marshall (1984) in the case of a univariate Gaussian
random field. The matrix-valued empirical covariance function
is

ρ̂(h) = 1

n(h)

∑
i,j

(Y(si) − Ȳ)(Y(sj) − Ȳ)′,

where Ȳ is the multivariate mean of the observation vectors,
and the sum extends over the n(h) instances of paired observa-
tions at sites si and sj with spatial lag in a suitable neighbor-
hood of h ∈ R

d . In the isotropic case, one averages over dis-
tance classes which are typically chosen ad hoc. However, least
squares methods are suboptimal in estimating the smoothness
parameter of the Matérn class (Stein 1999). This is due to the
fact that these methods put equal emphasis on large and small

spatial lags, while the behavior at the origin is critical in esti-
mating smoothness. In this light, we employ the ML method
that does not require any ad hoc decisions, other than the as-
sumption of multivariate Gaussianity. Process components of-
ten differ in orders of magnitude, in which case we compute
the empirical marginal variances and standardize component-
wise, for numerical stability. Following this, ML is performed
by numerically optimizing the likelihood. The final estimate of
each marginal variance parameter, then, is the product of the
empirical variance and the estimate via ML.

The log likelihood function for (Y(s1)
′,Y(s2)

′, . . . ,Y(sn)
′)′

where Y(s) = (Y1(s), . . . ,Yp(s))′ is that of a multivariate nor-
mal distribution in dimension np, whose covariance matrix has
blocks C(si − sj) for i, j = 1, . . . ,n, with C(h) ∈ R

p×p of the
form defined in Equation (2). Hence, an explicit representation
of the likelihood is available, with all second-order parameters
appearing in C(h), for either the parsimonious or full Matérn
models.

If computational efficiency in fitting the full bivariate Matérn
model is critical, one can estimate the marginal models first and,
conditionally on the marginal parameters, estimate the remain-
ing cross-covariance parameters. In our implementation, we
employ the marginal estimates as initial conditions in the joint
numerical maximization of the likelihood, using the limited
memory quasi-Newton bound constrained optimization method
of Byrd et al. (1995) as implemented in R (Ihaka and Gentle-
man 1996).

Alternative approaches to estimation are of interest, such as
likelihood approximations for large spatial datasets (Stein, Chi,
and Welty 2004; Fuentes 2007), and some of the recent develop-
ments for the linear model of coregionalization (LMC), namely
GLS and the EM algorithm (Pelletier et al. 2004; Zhu, Eickhoff,
and Yan 2005; Zhang 2007). Bayesian approaches have become
popular over the past two decades (Handcock and Stein 1993;
Berger, De Oliveira, and Sansó, 2001) and allow for extensions
to multivariate settings (Schmidt and Gelfand 2003; Reich and
Fuentes 2007).

3. DATA EXAMPLE: PRESSURE AND
TEMPERATURE FORECAST ERRORS

OVER THE PACIFIC NORTHWEST

We illustrate the use of the multivariate Matérn model on a
meteorological dataset which consists of temperature and pres-
sure observations and forecasts at 157 locations in the North
American Pacific Northwest, as shown in Figure 3. The fore-
casts are from the GFS member of the University of Washing-
ton regional numerical weather prediction ensemble (Eckel and
Mass 2005); they are valid on December 18, 2003 at 4 p.m.
local time, at a forecast horizon of 48 hours.

The bivariate (p = 2) spatial random field which we consider
is the error field that arises as forecast minus observation. Our
applied motivation lies in probabilistic weather field forecast-
ing (Gel, Raftery, and Gneiting 2004; Berrocal, Raftery, and
Gneiting 2007, 2008), which relies on the ability to fit and sam-
ple spatially correlated error fields. Here, we aim to fit a ran-
dom field model for pressure and temperature errors that hon-
ors the salient features of these fields. It is customary to assume
Gaussian fields with mean zero. Forecast fields are smooth,
so the error fields inherit their properties from the observation
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Figure 3. The North American Pacific Northwest with the locations
of 157 weather observing sites in the Canadian provinces of British
Columbia (BC) and Alberta (AB), and the U.S. states of Washington
(WA), Oregon (OR), Idaho (ID), California (CA), and Nevada (NV).
Sites over the Pacific Ocean correspond to buoys and ships.

fields, which are rough for temperature and smooth for pres-
sure, except for measurement error. Furthermore, temperature
and pressure errors are strongly negatively correlated (Rabier et
al. 1998; Ingleby 2001); indeed, the colocated empirical corre-
lation coefficient for this dataset is −0.47.

For concreteness, we consider the mean zero Gaussian ran-
dom field Y(s) = (YP(s),YT(s))′, where s ∈ R

2 and the sub-
scripts refer to pressure and temperature. We first fit the par-
simonious bivariate Matérn model, which we augment with
nugget effects, to account for measurement error. Our bivariate
covariance model thus becomes

CPP(h) = σ 2
PM(h|νP,a) + τ 2

P1(h = 0),

CTT(h) = σ 2
T M(h|νT ,a) + τ 2

T1(h = 0),

and

CPT(h) = CTP(h) = ρPTσPσTM
(
h| 1

2 (νP + νT),a
)
.

Numerical optimization of the Matérn likelihood leads to the
estimates in Table 1, which agree well with substantive exper-
tise. The pressure and temperature standard deviations are es-
timated at σP = 264.0 Pascal and σT = 2.63 degrees Celsius,

and there is a small nugget effect for pressure, but none for
temperature. Indeed, with the spatial structure of temperature
errors being rough, it is difficult to disentangle small-scale vari-
ability and measurement error, unlike for pressure, where there
is a clear distinction. The smoothness parameter is estimated
at νP = 1.67 for pressure, which corresponds to a smooth, dif-
ferentiable field, and at νT = 0.60 for temperature, not unlike
the situation in Figures 1 and 2. The estimate of the common
correlation length is 1/a = 92.3 kilometers, and the estimate
of the colocated correlation coefficient is strongly negative, at
ρPT = −0.51, which satisfies the constraint (10). Thus, we ap-
pear to be capturing the salient features of the joint spatial dis-
tribution of the two variables. For comparison purposes, Table 1
also shows the maximum likelihood estimates for the indepen-
dent Matérn model, where temperature and pressure are con-
sidered to be independent Gaussian processes with mean zero
and Matérn covariance functions. The marginal estimates un-
der both models show good agreement and support the assump-
tion of a common scale parameter in the parsimonious bivariate
Matérn model.

We also fitted the full Matérn model, whose estimates are
displayed in Table 1. Here, the bivariate covariance model be-
comes

CPP(h) = σ 2
PM(h|νP,aP) + τ 2

P1(h = 0),

CTT(h) = σ 2
T M(h|νT ,aT) + τ 2

T1(h = 0),

and

CPT(h) = CTP(h) = ρPTσPσTM(h|νPT ,aPT).

The estimates for the marginal scale parameters, 1/aP =
99.0 km and 1/aT = 98.4 km are nearly identical, suggesting
again that the assumption of common scale in the parsimonious
model is justified for these data. Generally, the estimates agree
well between the parsimonious and the full model.

We now compare to the linear model of coregionalization
(LMC), which is the most popular extant approach. The LMC
represents each process component as a linear combination of
independent latent, univariate spatial processes (Goulard and
Voltz 1992; Wackernagel 2003; Gelfand et al. 2004). Alter-
natively, a conditional interpretation is available (Royle and
Berliner 1999). To facilitate comparison to the multivariate
Matérn model, we use the LMC with two latent Matérn fields,
and augment with nugget effects. The marginal covariance
functions thus become

CPP(h) = b2
11M(h|ν1,a1) + b2

12M(h|ν2,a2) + τ 2
P1(h = 0),

CTT(h) = b2
21M(h|ν1,a1) + b2

22M(h|ν2,a2) + τ 2
T1(h = 0),

Table 1. Maximum likelihood estimates of parameters for independent, parsimonious and full bivariate Matérn models, applied to the pressure
and temperature data. Units are Pascal for pressure, degree Celsius for temperature, and kilometer for distances. The independent model

fixes ρPT = 0, whence νPT and aPT become meaningless. The parsimonious model enforces νPT = 1
2 (νP + νT ) = 1.14

and 1/aPT = 1/aP = 1/aT = 1/a = 92.3 kilometers

Model σP σT νP νT νPT 1/aP 1/aT 1/aPT ρPT τP τT

Full 261.5 2.67 1.50 0.59 1.41 99.0 98.4 82.2 −0.54 68.4 0
Parsimonious 264.0 2.63 1.67 0.60 1.14 92.3 92.3 92.3 −0.51 70.1 0
Independent 264.2 2.60 1.71 0.60 – 88.9 90.3 – 0 68.9 0
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Table 2. Maximum likelihood estimates of parameters for the LMC model applied to the pressure and temperature data. Units are Pascal for
pressure, degree Celsius for temperature, and kilometer for distances

b11 b12 b21 b22 ν1 ν2 1/a1 1/a2 τP τT

Full LMC 269.0 −25.9 −1.35 2.39 1.97 0.57 81.2 86.3 69.2 0
LMC with a1 = a2 264.5 −26.6 −1.30 2.38 1.96 0.59 80.8 80.8 69.1 0
LMC with b12 = 0 259.6 0 −1.72 2.30 1.80 0.53 81.8 97.8 69.1 0
LMC with a1 = a2 and b12 = 0 281.0 0 −1.82 2.26 1.68 0.53 92.9 92.9 67.5 0

and the cross-covariance function is

CPT(h) = CTP(h) = b11b21M(h|ν1,a1) + b12b22M(h|ν2,a2).

Notice that bi1 and bi2 implicitly define two variance parame-
ters for i = 1,2, and hence all are identifiable. If any single
coefficient bij is set to zero, the process components may have
distinct degrees of smoothness. However, in the most general
case where all coefficients are nonzero, the smoothness of the
process components defaults to the lowest of any of the latent
fields. It is worth noting that there is a more general formulation
of the LMC, where the cross-covariance function involves two
additional multiplicative correlation parameters. Furthermore,
one can use an arbitrary number of latent terms. An EM algo-
rithm for these formulations is developed by Zhang (2007).

Table 2 shows ML estimates for various types of LMC mod-
els. The full LMC model favors the smooth component for
the pressure field, putting the greater weight, b11 = 269.0, on
the first, smooth latent process (ν1 = 1.97), and conversely for
temperature, where the greater weight, b22 = 2.39, is on the
rougher latent process (ν2 = 0.57). The fit suggests that the
latent processes have approximately the same scale parame-
ter, so we also fit the LMC model under the constraint that
a1 = a2. Furthermore, we consider the condition that b12 = 0,
which allows for distinct degrees of smoothness for pressure
and temperature, at the cost of decreased flexibility in the cross-
covariance structure. Thus, our most parsimonious LMC model

with a1 = a2 and b12 = 0 includes eight parameters, as does the
parsimonious bivariate Matérn model.

Figure 4 shows the empirical and fitted marginal and cross-
covariance functions under the parsimonious bivariate Matérn
and the full LMC model. The fits seem nearly identical, even
though they differ conceptually in the behavior at the origin.
Note that there is a discrepancy between the empirical covari-
ance function and the ML fits, which both use means fixed at
zero. This type of disagreement is commonly seen in practice,
as well as in the simulation setting described below, and is likely
due to dependencies in the empirical covariance function and
biases (Cressie 1993, p. 71).

Table 3 continues the comparison between the bivariate
Matérn and LMC fits. The full Matérn model achieves the high-
est likelihood but adds an extra parameter over the most general
LMC; the parsimonious Matérn model has higher likelihood
than the latter with the fewest number of parameters. Its para-
meters are physically interpretable, and the estimates conform
with subject matter expertise. While not shown in the table, we
also fitted the aforementioned more general version of the LMC
with two additional multiplicative correlation parameters. The
corresponding log likelihood of −1265.79 does not reach that
of the parsimonious Matérn model, which has four fewer para-
meters.

We turn to a small simulation study that illustrates typical
finite sample variability in the estimation of the multivariate
Matérn model. Specifically, we generate 500 realizations from

Figure 4. Empirical covariance and cross-covariance functions for the pressure and temperature data, with maximum likelihood fits under
the parsimonious bivariate Matérn model (MM; solid red line) and the full linear model of coregionalization (LMC; broken blue line). Units are
Pascal for pressure, degree Celsius for temperature, and kilometer for distances. The disagreement between empirical estimates and ML fits is
commonly seen in practice, as well as in simulation settings, and can in part be attributed to dependencies and biases in the empirical estimators.
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Table 3. Comparison of features of the full, parsimonious, and
independent bivariate Matérn models and the LMC models

for the pressure and temperature data

Number of
parameters Log likelihood

Full Matérn 11 −1265.53
Parsimonious Matérn 8 −1265.76
Full LMC 10 −1265.84
LMC with a1 = a2 9 −1265.88
LMC with b12 = 0 9 −1266.72
LMC with a1 = a2 and b12 = 0 8 −1266.80
Independent Matérn 8 −1276.75

the parsimonious bivariate Matérn model with parameter val-
ues of Table 1. The simulations are done on a 47 by 47 lat-
tice with a spacing of 24 kilometers, to reflect the maximal
interpoint distance of about 1600 kilometers over our Pacific
Northwest domain. For each realization, we retain the values
at 157 randomly chosen lattice points and fit the parsimonious
Matérn model by maximum likelihood. The results are summa-
rized by the boxplots in Figure 5. Of particular interest is the
ability to distinguish between differing degrees of smoothness
between variables. As expected, a majority of the estimates for
the smoothness parameter are above 1 for pressure, and below
1 for temperature. The wider interquartile range for νP suggests
that it is more difficult to discriminate values of the smoothness
parameter which are greater than 1; this is unsurprising, though,
and conforms with common experience in the univariate case,
where generally it is difficult to identify values of the smooth-
ness parameter greater than 2 (Handcock and Stein 1993; Stein
1999).

We now supplement these finite sample results with a view
towards the two common forms of spatial asymptotics, infill and
increasing domain (Zhang and Zimmerman 2005). For infill as-
ymptotics, we retained the 47 by 47 lattice with grid spacing
of 24 kilometers, but tripled the number of sample locations (to
471). For increasing domain asymptotics, we increased the do-
main size in both coordinate directions by a factor of

√
3, while

tripling the number of sample locations (to 471), so as to retain
the original sampling density. Boxplots of the corresponding
estimates are also included in Figure 5. Generally speaking, pa-
rameter estimates are seen to be tighter under both asymptotic
frameworks, with the exception of the standard deviation para-
meters under infill asymptotics. However, this is not surprising
as both the variance and scale parameters are not consistently
estimable under infill asymptotics in spatial dimension d ≤ 3
(Zhang 2004).

We close the section with a leave-one-out cross-validation
study for the Pacific Northwest data. For this experiment, we
hold out data from one location and estimate the parameters of
the independent, parsimonious, and full Matérn models, as well
as all variations on the LMC by maximum likelihood using only
the remaining 156 locations. Then, we perform co-kriging to
predict at the held out point, and repeat until each location has
been held out once.

To compare predictive performance, we use two popular
scoring rules (Gneiting and Raftery 2007). The mean absolute
error (MAE) assesses point forecast performance and is com-
puted as the average absolute error between the realization and

Figure 5. Results of the simulation study for the parsimonious bi-
variate Matérn model, summarized by boxplots of the ML estimates
for σP, σT , νP, νT , 1/a, ρPT , τP, and τT . The boxes range from the
lower to the upper quartile, and the whiskers extend to the most ex-
treme data point that is no more than 1.5 times the interquartile range
from the box. The solid horizontal lines are at the true values.

the co-kriging point predictor, that is, the mean (and median)
of the Gaussian predictive distribution. The continuous ranked
probability score (CRPS) is a proper scoring rule for the evalu-
ation of predictive distributions. It is defined by

CRPS(F, x) =
∫ +∞

−∞
(F(y) − 1(y ≥ x))2 dy, (20)

http://pubs.amstat.org/action/showImage?doi=10.1198/jasa.2010.tm09420&iName=master.img-002.png&w=250&h=525
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Table 4. Co-kriging cross-validation results comparing mean absolute
error (MAE) and mean continuous ranked probability score (CRPS)

Pressure Temperature
(Pascal) (degrees Celsius)

MAE CRPS MAE CRPS

Full bivariate Matérn 71.50 55.72 1.11 0.797
Parsimonious bivariate Matérn 71.68 55.79 1.12 0.800
Full LMC 71.52 55.68 1.11 0.795
LMC with a1 = a2 71.54 55.73 1.11 0.796
LMC with b12 = 0 71.37 55.07 1.10 0.791
LMC with a1 = a2 and b12 = 0 70.98 55.07 1.10 0.792
Independent Matérn 72.89 57.17 1.15 0.820

where F is the cumulative predictive distribution function and x
is the realized value. With x as the held out value of the tem-
perature or pressure error at a given location, conditional on
the remaining 312 observations (156 for both temperature and
pressure) and thinking of the maximum likelihood estimates
as truth, the predictive distribution F is Gaussian with the co-
kriging point predictor as the mean, and the standard condi-
tional variance (Cressie 1993).

Table 4 displays the MAE and mean CRPS values for all
Matérn and LMC models. The best predictive models tend to be
the most parsimonious, subject to the physical key characteris-
tics being honored, including the negative dependency between
the two process components. The prevalence of the more par-
simonious models is not surprising, given that this is an ubiq-
uitous theme in the forecasting literature (see, e.g., Makridakis
and Taleb 2009). That said, to get a rough sense of the chance
variability in the performance measures, we estimated the stan-
dard error of the difference in MAE and mean CRPS between
the independent Matérn model and the full Matérn model in a
conservative way, by assuming independence between the lo-
cations. For pressure, the standard error is 1.16 for the MAE
and 0.92 for the mean CRPS, in units of Pascal. For temper-
ature, the standard error is 0.018 for the MAE and 0.010 for
the mean CRPS, in degrees Celsius. This suggests that the gen-
uinely bivariate techniques outperform the univariate (indepen-
dent) kriging approach, whereas the differences in the bivariate
model scores are not statistically significant.

4. DISCUSSION

Covariance models for multivariate spatial data are of de-
mand in a rapidly growing number of applications, ranging
from air quality (Brown, Le, and Zidek 1994; Schmidt and
Gelfand 2003) to weather forecasting (Rabier et al. 1998; Re-
ich and Fuentes 2007), climate change (Jun, Knutti, and Ny-
chka 2008), ecology (Royle and Berliner 1999), forestry (Fin-
ley et al. 2008), and economics (Gelfand et al. 2004; Sain and
Cressie 2007), among others. We have introduced the multi-
variate Matérn model, which allows each process component
to maintain its distinct smoothness properties, while admitting
flexible degrees of cross-correlation. Both the marginal and the
cross-covariance functions are of the Matérn type, and the pa-
rameters have physically meaningful, straightforward interpre-
tations. We use R (Ihaka and Gentleman 1996) to perform es-
timation and simulation, with the latter employing the circulant

embedding technique, which is both fast and exact (Chan and
Wood 1999). Code will be made available in an upcoming re-
lease of the R package RANDOMFIELDS (Schlather 2005).

In our meteorological data example, the parsimonious Matérn
model compares well to the most popular extant approach, the
linear model of coregionalization (LMC), in that it yields the
highest likelihood with the fewest number of parameters. In a
cross-validation experiment, the most parsimonious LMC ap-
proach showed the best predictive performance, much in line
with a wealth of experiences reported in the forecasting liter-
ature. However, the differences in predictive performance be-
tween the genuinely bivariate methods were small and not sta-
tistically significant.

The most flexible multivariate Matérn model is presented in
the bivariate scenario in Theorem 3, which is the most common
in practice. The parsimonious formulation of Theorem 1 holds
for any number of components, but imposes restrictions on the
scale parameter and cross-covariance smoothness. Whether or
not an LMC formulation with structural zeros is more restric-
tive than the assumption of a common scale parameter in the
parsimonious multivariate Matérn model, depends on the ap-
plication at hand. When the number of component processes
is small, individually distinct βij parameters in Theorem 1 of-
fer increased flexibility. In higher dimensions, the application
at hand may suggest simplifying assumptions. For example, in
the climate model bias problem studied by Jun, Knutti, and Ny-
chka (2008), the covariance matrix function would require βij
terms for 20 different climate models. However, often a sin-
gle scientific group develops multiple climate models, adjust-
ing only model resolution or partial process specifications (such
as atmospheric dynamics, but not ocean dynamics), and so we
expect biases among within-group models to behave similarly.
Thus, one might put βij = γg(i)g(j) where g(i) refers to the sci-
entific group that developed climate model i.

While the condition that ν12 ≥ 1
2 (ν1 + ν2) for the smooth-

ness parameter of the Matérn cross-covariance function (4) may
seem restrictive, Cramér’s Theorem provides intuition as to its
physical necessity. If f11 and f22 are the marginal spectral den-
sities and f12 is the Fourier transform of the cross-covariance
function, then Cramér’s Theorem implies that f11(ω)f22(ω) ≥
f12(ω)2 at almost all frequencies ω. Thus, if f11(ω) decays like
‖ω‖−α1 and f22(ω) like ‖ω‖−α2 , then necessarily f12 decays like
‖ω‖−(α1+α2)/2 or faster, which is reflected in the above condi-
tion.

A restriction shared by the Matérn model and the LMC is an
imposed symmetry property on the cross-covariance structure,
in that Cij(h) = Cji(h), or equivalently Cij(h) = Cij(−h) for all
h ∈ R

d , which need not hold in general (Wackernagel 2003,
p. 146). Apanasovich and Genton (2010) discuss some solu-
tions to the symmetry problem, as well as propose a class of
cross-covariance functions for multivariate random fields based
on the approach of Gneiting (2002). Symmetry and other struc-
tural properties of multivariate, spatial and spatio-temporal co-
variance functions can be tested using the procedures proposed
by Li, Genton, and Sherman (2008).

Our work has focused on covariance models for station-
ary and isotropic multivariate Gaussian spatial random fields.
Extensions to nonstationary settings are available along the
lines of Stein (2005) and Schlather (2010). Similarly, spatio-
temporal domains are of topical interest, as in the works of Mar-
dia and Goodall (1993), Haas (2002), De Iaco, Myers, and Posa
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(2003), De Iaco, Palma, and Posa (2005), and Calder (2007),
among others. Non-Gaussian settings can be accommodated by
the model-based approach of Diggle, Moyeed, and Tawn (1998)
that combines geostatistics and generalized linear models.

APPENDIX

Many of our arguments proceed in the spectral domain, in which
the convolution operator corresponds to pointwise products. Hence, we
recall that the Fourier transform of the (univariate) Matérn correlation
function (1) in R

d is the isotropic function

f (ω|ν,a) = �(ν + d
2 )a2ν

�(ν)πd/2

1

(a2 + ‖ω‖2)ν+(d/2)
, (A.1)

where ω ∈ R
d .

Proof of Theorem 1

We apply Theorem 2 with

ci(h) = σi
�(νi + d

2 )1/2�(
νi
2 − d

4 )(πa2)d/4

�(νi)
1/2�(

νi
2 + d

4 )
M

(
h
∣∣∣νi

2
− d

4
,a

)
,

so that Cij = ci ∗ cj is the inverse Fourier transform of the product fifj,
where

fi(ω) = σi
�(νi + d

2 )1/2aνi

�(νi)
1/2πd/4

1

(a2 + ‖ω‖2)(νi/2)+(d/4)
.

In view of (A.1), the convolution yields (6), which proves the theorem
in the special case in which βij = 1 for i, j = 1, . . . ,p. The general
result then is immediate from Schur’s Theorem (Horn and Johnson
1985, p. 455).

Proof of Theorem 2

By Cramér’s Theorem in its spectral density version (Yaglom 1987,
p. 315; Chilès and Delfiner 1999, p. 326; Wackernagel 2003, p. 152),
a matrix-valued covariance model with integrable components is valid
if and only if its spectral density matrix is nonnegative definite at al-
most all spatial frequencies. By assumption, the kernel functions ci
are integrable, in addition to being square-integrable, so the marginal
and cross-covariance functions defined by (5) are integrable. Let fi
denote the Fourier transform of ci, where i = 1, . . . ,p. The spectral
density matrix of the matrix-valued function (2), with entries defined
by (5), at the spatial frequency ω ∈ R

d then is F(ω) = (fij(ω))
p
i,j=1,

where fij(ω) = fi(ω)fj(ω) for i, j = 1, . . . ,p. Hence, if we write f(ω) =
(f1(ω), . . . , fp(ω))′ then F(ω) = f(ω)f(ω)′, which shows that F(ω) is
nonnegative definite.

Proof of Theorem 3

Again, we apply Cramér’s Theorem in its spectral density ver-
sion, according to which the covariance model is valid if and only if
the spectral density matrix is nonnegative definite at almost all spa-
tial frequencies. Here p = 2, so we need the respective determinants
to be nonnegative. This translates into |f12(t)|2 ≤ f11(t)f22(t) for all
t = ‖ω‖ ≥ 0, where f11, f22, and f12 = f21 are the Fourier transforms
of C11, C22, and C12 = C21, as defined in (11) and (12), respectively.
This yields (13). The special cases in (a) through (e) depend on the
infimum of the function

g(t) = (a2
12 + t2)2ν12+d

(a2
1 + t2)ν1+(d/2)(a2

2 + t2)ν2+(d/2)

over the positive halfaxis, which appears on the right-hand side of (13).
The remainder of the proof is tedious but straightforward calculus,
which we omit.

Proof of Theorem 4

We apply (18) with F the Lebesgue measure on L = (0,∞) ⊂ R,

Dr =
⎛
⎝ (a2

1/4)ν1 1
�(ν1)

r−1−ν1 e−a2
1/(4r)

ρ12(a2
12/4)ν12 1

�(ν12)
r−1−ν12 e−a2

12/(4r)

ρ12(a2
12/4)ν12 1

�(ν12)
r−1−ν12 e−a2

12/(4r)

(a2
2/4)ν2 1

�(ν2)
r−1−ν2 e−a2

2/(4r)

⎞
⎠

and Cr(h) = exp(−r‖h‖2), where r > 0. By Equation 3.471.9 of Grad-
shteyn and Ryzhik (2000), componentwise integration in (18) yields
the bivariate Matérn model. The proof is completed by noting that Dr
is nonnegative definite for all r > 0 if

ρ2
12 ≤ a2ν1

1 a2ν2
2

a4ν12
12

�(ν12)2

�(ν1)�(ν2)
inf
r>0

(
(4r)2ν12−ν1−ν2 e(2a2

12−a2
1−a2

2)/(4r)).
The infimum on the right-hand side vanishes if ν12 < 1

2 (ν1 + ν2) or

if a2
12 < 1

2 (a2
1 + a2

2). Otherwise, the infimum is positive and occurs at
r = (2a2

12 − a2
1 − a2

2)/(4(2ν12 − ν1 − ν2)), which leads to (19).
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