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A B S T R A C T

A depth-independent isotropic Gent-McWilliams (GM) transport parameter κ is diagnosed from an idealized
eddy-resolving primitive equation simulation. The optimal depth-independent isotropic GM parameterization is
only able to model less than 50% of the diagnosed total tendency of temperature induced by unresolved me-
soscale eddies. A spatio-temporal stochastic model of the GM parameter is developed based on the diagnosed
values; the graphical lasso is used to estimate the spatial correlation structure. The stochastic model is used as a
stochastic parameterization in low-resolution model simulations. The low-resolution stochastic simulation does a
poor job of reproducing the temporal mean of large-scale temperature. Deterministic GM parameterizations and
multiplicative stochastic GM parameterizations with unrealistic structure result in significantly more-accurate
large-scale temperature in the low-resolution simulations. These results suggest that either the depth-in-
dependence or the isotropy of the GM parameterization are unrealistic as models of the eddy tracer transport, or
that a stochastic GM parameterization should include an additive component.

1. Introduction

Global ocean models (hereinafter GCMs, general circulation models)
are used for a variety of purposes including centennial climate forecasts,
shorter-term ensemble forecasting or reanalysis scenarios, and paleocli-
mate research. For these particular purposes the computational cost as-
sociated with coupled ensemble simulations, long-term simulations, or
simulations with many online tracers (e.g. biogeochemistry) precludes
the use of spatial resolution fine enough to represent the ocean me-
soscale. The models used for these purposes typically have horizontal
spatial resolution on the order of 1° or larger, and will be referred to
hereafter as ‘coarse’ GCMs. The inability to resolve mesoscale eddies is
one of the foremost obstacles to developing accurate coarse GCMs.

The primary impact of unresolved dynamics in coarse GCMs is the
transport of tracers and momentum. In GCMs where mesoscale eddy
dynamics are completely unresolved, the primary subgrid-scale trans-
port is of tracers rather than momentum (Grooms et al., 2011). The
dominant parameterization paradigm for mesoscale tracer transport is
the Gent-McWilliams framework (GM; Gent and McWilliams, 1990;
Gent et al., 1995) which essentially codifies the fact that mesoscale
eddies typically transport tracers along isopycnals in such a way as to
reduce potential energy by flattening isopycnals. Mesoscale eddies also
mix tracers along isopycnal directions; this effect is parameterized

separately from GM, usually by some form of Redi parameterization
(Redi, 1982). The GM parameterization is deterministic in the sense
that subgrid-scale tracer fluxes are modeled as deterministic functions
of the resolved model variables. This approach would lead to realistic
parameterizations if the ocean mesoscale were much smaller and faster
than the dynamics resolved by the GCM. Scale-separation assumptions
of this kind are made in multiscale asymptotic analyses of ocean eddy
dynamics (Grooms et al., 2011; 2012). But in coarse GCMs, with grid
scales on the order of 1° or larger, mesoscale eddies are not significantly
smaller than the grid. As a result, the true subgrid-scale tracer fluxes are
not completely determined by the resolved-scale variables; the large
variability in tracer flux that remains even after averaging over square
cells of width approximately 85 km was demonstrated by
Grooms (2016). The turbulent mesoscale dynamics generate chaotic
fluxes that are spatially and temporally correlated, and are dependent
on, but not entirely determined by, the large-scale flow.

The fact that the subgrid-scale tracer fluxes are chaotic implies that
parameterizations should be stochastic. The idea of using random
numbers in numerical climate models goes back at least to
Lorenz (1975). A major development in the practical use of stochastic
parameterizations in atmospheric and oceanic GCMs came when a
stochastic parameterization was implemented in the operational
ECMWF Ensemble Prediction System (Buizza et al., 1999). Since then
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stochastic parameterizations have been adopted by operational centers
almost exclusively for use in atmospheric ensemble prediction systems
because they increase ensemble spread, leading to better calibrated
probabilistic forecasts (Berner et al., 2017; Leutbecher et al., 2017).

Many stochastic parameterizations (too numerous to list) have been
developed for both atmosphere and ocean applications, but operational
use of stochastic parameterizations has been dominated by the style of
parameterization advocated by Buizza et al. (1999). Buizza et al. (1999)
advocated taking the terms in tracer and momentum budgets that are
associated with parameterizations (the ‘parameterization tendencies’)
and multiplying them (‘perturbing’ them) by + e(1 ) where e is a
random field with zero mean. This approach has come to be called
‘Stochastically-Perturbed Parameterization Tendencies’ (SPPT).
Christensen et al. (2017) recently explored an alternative whereby
different parameterizations are multiplied by different independent
random fields in an approach called indepdent SPPT (iSPPT). SPPT is
not conservative of tracers or momentum, and it has recently been
found to dry out the atmosphere in long-running simulations
(Davini et al., 2017). Conservation within the context of SPPT can be
enforced using a method proposed by Leutbecher et al. (2017). As an
alternative the parameters within a parameterization can be perturbed,
rather than the tendency produced by the parameterization, and this
approach is called ‘Stochastically-Perturbed Parameters’ (SPP).
(Grooms, 2016 used SPP but incorrectly called it SPPT.)

SPPT and SPP have recently been applied to coarse GCMs in ocean-
only and coupled simulations. Brankart et al. (2015) and
Andrejczuk et al. (2016) used SPPT in a coarse GCM but only applied
the perturbations to mixing parameterizations and not to the GM
parameterization. Juricke et al. (2017) and Juricke et al. (2018) used
SPP with the GM parameterization. There are a few other stochastic
parameterizations for coarse GCMs that are not based on SPP or SPPT.
These include the stochastic equation of state developed by
Brankart (2013), and the addition of stochastic noise forcing to the
temperature equation of a GCM by Williams et al. (2016).
Grooms (2016) developed a framework for stochastic GM para-
meterizations and developed a preliminary non-Gaussian stochastic GM
parameterization, albeit in an idealized model.

The goal of the present investigation is to push the SPP approach to
GM parameterization to its limits by choosing the multiplicative per-
turbation structure to be as realistic as possible. Recall that the SPP
approach requires specifying the structure of the random field e where

+ e(1 ) is used to perturb the parameter of interest. The random field is
usually specified via some sort of pattern generator with tunable time
and length scales (see, e.g. Leutbecher et al., 2017, for examples). In the
present investigation the parameter κ in the standard isotropic GM
parameterization is estimated directly from eddy-resolving simulations,
and is allowed to vary in time and horizontally in space. The results are
then used to develop a random-field model for κ, which is equivalent to
modeling the perturbation e in the SPP approach. This model is then
used in an implementation of a stochastic GM parameterization, which
is compared to deterministic GM parameterizations and to a less-rea-
listic SPP-GM parameterization.

We begin in Section 2 by diagnosing the GM parameter from an
eddy-resolving simulation in an idealized domain. This section includes
a description of the results of the diagnosis, while the next section,
Section 3, develops the stochastic model for κ. Section 4 briefly de-
scribes the configuration of parameterized coarse-model simulations,
and then compares the results of various coarse-model simulations with
deterministic and stochastic GM parameterizations. Results are dis-
cussed in Section 5, and conclusions are offered in Section 6.

2. Diagnosing the GM parameter

2.1. Gent-Mcwilliams background

Before detailing the method used to diagnose the GM parameter we

begin with a brief review of the deterministic GM framework (Gent and
McWilliams, 1990; Gent et al., 1995). In the GM framework the di-
vergence of the subgrid-scale tracer flux is parameterized by a bolus
velocity advection

=u u·( ¯ ) · .† (1)

Throughout this section resolved-scale variables have no primes and
subgrid-scale variables are denoted by a prime ′. The overbar ( ·̄ ) de-
notes a spatial average to the coarse grid scale. In the above expression
τ denotes a tracer concentration, and the bolus velocity is

= ×u† (2)

where = ( , , 0)x y T is a vector streamfunction. Eq. (2) guarantees
that the bolus velocity is incompressible, which is a key property of the
GM framework, namely that the flux is non-mixing, i.e. adiabatic.

In the standard isotropic version of the GM parameterization the
vector streamfunction Ψ is linearly related to the local isopycnal slope

=s /h z where = ( , )h x y
T and ρ is the density :

= =s s, .x y y x (3)

(When using a nonlinear equation of state s should be replaced by the
slope of neutral surfaces (McDougall, 1987).) When κ>0 Eq. (3)
guarantees that the parameterization acts to remove potential energy
by tilting isopycnal surfaces towards horizontal (Gent et al., 1995).

There are two difficulties associated with this formulation of the GM
parameterization: how to deal with unstratified or convectively-un-
stable regions (∂zρ≥0), and how to guarantee that the vertical part of
the bolus velocity w† is zero at the ocean surface or floor. The vertical
bolus velocity is

=w .x
y

y
x†

The vertical component of the bolus velocity can be set to zero at a
given depth by setting = 0 at that depth. Ferrari et al. (2010) pro-
posed a simple and elegant approach that simultaneously ensures im-
penetrability at the ocean surface and deals with unstratified or con-
vectively-unstable regions: the vector streamfunction is specified as the
solution of the following two-point boundary value problem

+ =c g g ,z
z y

x
2 2

0 0 (4)

+ =c g g
z

z x
y

2 2

0 0 (5)

with boundary conditions = = 0x y . When c2 is chosen appro-
priately the streamfunction approximates (3), and the solutions
smoothly transition through unstratified and convectively unstable re-
gions. In practice the density gradient ∂zρ that appears in these equa-
tions is truncated to negative values; here the value of

=N z g( ) /z
2

0 is truncated for values less than 10 24 s 2.
Ferrari et al. (2010) chose the following specification for c

=c c N z zmax , ( )d
H

min
1

0 (6)

where the ocean depth is H, and cmin is a tunable parameter, here set to
1m/s.

2.2. Eddy-resolving model configuration

The eddy-resolving simulation uses the MITgcm (Marshall et al.,
1997) with a linear equation of state based solely on temperature (no
salinity); the expansion coefficient for temperature is = ×1.5 10T

4

K 1. The model domain is 3,200 km square and 4 km deep. A Cartesian
tangent plane approximation is used, with the Coriolis parameter taking
the value = ×f 5 100

5 s 1 at the southern edge of the domain and
increasing to 10 4 s 1 at the northern edge. The vertical viscosity is
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=A 10v
3 m2/s and the horizontal biharmonic viscosity is

= ×A 2 10h4,
10 m4/s. The momentum boundary conditions are no-slip

at the sides and bottom, with a rigid lid. The vertical diffusivity is
= 10v

4 m2/s except in regions where ∂zT≤0, in which case it in-
creases to 10 m2/s. The horizontal diffusivity of temperature is set to

= 50h m2/s.
The model is forced by an asymmetric double-gyre zonal wind stress

of the form y L0.2 sin( / /6)y N/m2, and by an interactive heat flux
(out of the ocean) equal to T T( )0 where = 35 W/m2K 1 and T0 is a
half-period cosine varying from 22° C at the southern boundary to 2° C
at the northern boundary. The heat flux is converted to a temperature
flux using a heat capacity of 4000 J K 1 kg 1. No heat flux is allowed
through the bottom or side boundaries.

The initial condition was taken from an equilibrated solution of the
‘deterministic GM’ model described in Grooms (2016), which has grid
size of 40 km and 61 vertical levels with depths varying linearly from
25m at the surface to 106m at depth. This low-resolution equilibrated
state was interpolated to the eddy-resolving resolution of 8 km. The
circulation exhibits a large subtropical gyre and a weaker subpolar
gyre, with strong eddies along the western boundary and into the in-
terior, very similar to the simulations of Henning and Vallis (2004). A
snapshot of the sea surface temperature and the sea surface height
anomaly in the statistically steady state are shown in Fig. 1.

2.3. Diagnosing the GM parameter

The GM parameter κ is diagnosed by minimizing the integral of the
square of the error between the true eddy density flux divergence and
the modeled divergence

= u u u xarg min ( ·( )¯ ·( ¯ ¯) · ¯) d† 2
(7)

where the notation ‘arg min’ indicates that κ is the value that minimizes
this expression, the integral is over the volume, and κ is allowed to vary
horizontally but not vertically. The restriction that κ is depth-in-
dependent is perhaps overly severe (cf. Abernathey et al., 2013), but it
significantly reduces the size and computational cost of the optimiza-
tion problem; limitations of the model are discussed further below.
Minimizing the error in the flux divergence avoids problems related to
gauge freedom that would arise if one instead minimized the error in
the flux itself (Mak et al., 2016). Because the bolus velocity u† depends
linearly on κ, this is a linear least squares problem. Solving the least-
squares problem requires computing the true eddy density flux

divergence, which requires defining a low-pass spatial filter ·̄. This was
implemented as a moving average with a Gaussian kernel

= =
+ +

u x y z t
Z

e u z t Z e¯ ( , , , ) 1 ( , , , )d d , d d .
x y

L L
( ) ( )

2 2

2 2

2

2 2

2

The kernel width L was 60 km and Z is a normalization constant. Values
outside the boundaries were computed using periodic extensions of the
interior values of the fields. The density and vertical velocity used even
extensions at all boundaries. The zonal velocity used even extensions at
the northern and southern boundaries and odd extensions at the eastern
and western boundaries, while the meridional velocity used odd ex-
tensions at the northern and southern boundaries and even extensions
at the eastern and western boundaries.

A kernel length scale of 60 km is arguably close enough to typical
eddy length scales that it is possible that it fails to make a clear se-
paration between the eddies and the scales resolvable by the coarse
model (though one could argue that the length scale is actually ×2 60
km ≈85 km, which is comparable to a typical eddy radius). Repeating
the analysis with a variety of filter widths involves prohibitive com-
putational expense, so as an alternate way to test this, the power
spectral density of the filtered, large-scale part of temperature was
computed over a period from the 98th year of the eddy-resolving si-
mulation to the 208th year, with data taken every tenth day. The power
spectral density of sea surface temperature at a point 380 km west of
the eastern boundary and 1580 km north of the southern boundary (at
the location marked × (a) in Fig. 5) is shown as a function of the
oscillation period in Fig. 2. Most of the power is clearly associated with
long time scales on the order of 10 weeks or longer; this slow variability
is characteristic of location and depth where the power spectral density
was computed. Eddy variability dominates the total variability and is
expected to occur on timescales of at most a few weeks, so the fact that
the temporal variability of the large-scale part of temperature occurs on
much longer time scales implies that the low-pass spatial filter is ef-
fective at removing eddy length scales.

The eddy-resolving simulation was allowed to run for 200 years
after initializing from the low-resolution model before taking the data
used to compute κ. The fields in Eq. (7) were computed on the coarse-
model grid of 40 km, and the optimal value of κ was computed by
solving the normal equations. The results are extremely rough; the left
panel of Fig. 3 shows the optimal κ computed at a single time. It may be
the case that the extreme values of κ evident in the left panel of Fig. 3
result from locations where the GM model predicts a near-zero flux-

Fig. 1. A snapshot of sea surface temperature (color) and sea surface height
anomaly (contours) from the high-resolution reference simulation. The contour
interval is 10 cm; negative contours are dashed and positive contours are solid.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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divergence (e.g. in regions of small isopycnal slope) while the true flux-
divergence is large, and κ becomes large to compensate. Regardless of
their origin, extreme values of κ on the order of 105 m2/s would ne-
cessitate extremely small time steps to avoid numerical instability in a
low-resolution model.

In order to avoid such extremely-rough solutions, a term was added
to the least squares problem that penalizes the gradient of κ

= +u u u xarg min ( ·( )¯ ·( ¯ ¯) · ¯) | | d .h
† 2 2

(8)

After some investigation a value of = ×5 10 17 was deemed sufficient
to improving the smoothness of κ without overly damaging the accu-
racy. The center panel of Fig. 3 shows the value obtained from the
penalty-smoothed least-squares problem. The optimal value of κ was
computed every 10 days for 1590 days (approximately 4.36 years) both
with and without the smoothing penalty term.

Negative values of κ appear in the smoothed results almost every-
where, excepting only in the extreme north end of the domain, and
negative values occur on average in various parts of the domain. There
are mathematical difficulties with partial differential equations (PDEs)
with negative viscosity, and one might want to impose a non-negativity
condition on the least-squares problem to avoid this. Numerically sol-
ving a PDE with negative viscosity is problematic because the computed
solution depends strongly on the discretization and need not converge
as the grid is refined (Durran, 2010). On the other hand the negative
viscosity exists here because a specific, fixed coarse resolution and as-
sociated spatial filter was chosen for the diagnosis of κ and it would not
make sense to use that same negative value of κ with increased re-
solution and decreased filter scale. There are no mathematical problems

with the discretized model with negative viscosity at fixed coarse re-
solution, so negative values are retained here to make the GM para-
meterization as accurate as possible.

The optimal value of κ reduces the norm of the error (technically the
‘residual’) on the right hand side of Eq. (7) below the value it would
have if = 0. One can measure the goodness-of-fit using the relative
residual: the norm of the error in Eq. (7) using the optimal value of κ
divided by the norm of the error with = 0. This relative residual is
shown as a function of time for both the original and penalty-smoothed
versions of κ in the right panel of Fig. 3; in the penalty-smoothed re-
lative residual the penalty term is not included in the error, so that the
comparison to the original least-squares problem is more precise and
physically relevant. The un-smoothed κ has errors of about 60% on
average, while the smoothed κ has errors of about 72% on average.
Neither of these is very accuate, which suggests that the isotropic,
depth-independent GM parameterization is simply a poor model of the
true eddy density flux divergence. This should not be overly surprising
since Abernathey et al. (2013) directly diagnosed the GM parameter κ in
a differently-configured simulation and observed significant vertical
variation. Smith and Marshall (2009) and Bachman and Fox-
Kemper (2013) and others have similarly observed depth-dependent
isopycnal and diapycnal mixing parameters.

3. A random-field model for κ

This section describes the construction of a random-field model for κ
based on the diagnosed values described in the preceeding section.
Fig. 4 shows the median (upper row) and standard deviation (lower

Fig. 2. Power spectral density of the large-scale part of sea surface temperature (SST) at the point marked × (a) in Fig. 5: 380 km east of the western boundary and
1580 km north of the southern boundary.

Fig. 3. Left: A snapshot of κ computed using Eq. (7); units are m2/s; axis units are kilometers. Center: a snapshot of κ computed using Eq. (8) at the same time as the
left panel; note the different color scale compared to the left panel. Right: Relative residuals as a function of time for the κ computed using Eqs. (7) (blue) and (8)
(orange). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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row) of the diagnosed values of κ using the un-smoothed results of
Eq. (7) (left column) and the smoothed results from Eq. (8) (right
column). There is clearly large variability in κ, particularly for the un-
smoothed results, which is why the median is used as a central esti-
mator for the field instead of the mean. The median is much less than
one standard deviation from the mean, and is robust to outliers; also the
median is somewhat smoother spatially than the mean (not shown).
The grainy quality of the median and standard deviation of the un-
smoothed κ suggest that these statistics are hard to estimate accurately
from the time series of 159 points. This consideration, together with the
extreme roughness of the un-smoothed fields shown in the left panel of
Fig. 3 motivates us to focus henceforth on the smoothed version of κ. In
both the smoothed and unsmoothed versions of κ the increased varia-
bility shown in the lower row of Fig. 3 is associated with and pre-
sumably driven by the increased eddy energy along the western
boundary.

We will develop a random field model for the smoothed version of κ.
The mean and standard deviation will be given by the values shown in
the right column of Fig. 4. The following two sections study the spatial
and temporal correlation structure of the smoothed version of κ.

3.1. Temporal structure

The temporal structure in particular is hard to accurately estimate
with a time series with spacing of 10 days. In particular, the correlation

drops to 0 in less than 10 days near the western boundary because of
the increased eddy energy and variability in that region. So the eddy-
resolving simulation was extended by a further 201 days keeping daily
snapshots. The left panel of Fig. 5 shows the largest time lag for which
the temporal autocorrelation of κ is greater than 0.5 (in this section κ
should be understood to be the smoothed version computed from
Eq. (8)). The center panel of Fig. 5 shows the empirical autocorrelation
function at the location marked × (a) in the left panel, and the right
panel shows the empirical autocorrelation function at the location
marked × (b) in the left panel. The autocorrelation function in the
right panel of Fig. 5 was estimated using the original time series of
length 1590 days with 10-day gaps. There is clearly huge variability in
the temporal correlation structure of κ, with decorrelation times on the
order of a few days near the center of the subtropical gyre and dec-
orrelation times longer than 3 weeks in the northeast corner of the
domain. It is doubtful that the slow behavior seen in the northeast
corner is eddy-driven, since eddies presumably decorrelate far more
rapidly. Instead, this low frequency variability in κ may instead be re-
flecting low-frequency variability in the large-scale structure of the
density field itself; such low-frequency variability is not uncommon in
this kind of model (Arzel et al., 2006).

3.2. Spatial structure

To investigate the spatial correlation structure of κ (in this section κ

Fig. 4. Top Row: Median value of κ. Bottom row: Standard Deviation (STD) of κ.
Left column: κ obtained from Eq. (7), i.e. without a smoothing penalty term. Right
column: κ obtained from Eq. (8)), i.e. with a smoothing penalty term. Units of
median and standard deviation are m2/s. Axis units are kilometers. The color map
in the top column has been chosen to make negative values more obvious. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 5. Left: The longest time lag, in days, for which the autocorrelation of κ remains above 50%. Axis units are kilometers. Center: The empirical autocorrelation
function of κ at the point marked (a) in the left panel. The blue line shows the level at which the autocorrelation is not statistically significantly different from zero.
Right: The empirical autocorrelation function of κ at the point marked (b) in the left panel. Note the range of x-axis values on the sample autocorrelation functions
differ. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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should be understood to be the smoothed version computed from
Eq. (8)) we first subtract the pointwise time average and divide by the
standard deviation to achieve a centered field with unit variance. This is
called the ‘centered, scaled’ version of κ, and it is the subject of analysis
in this section.

The spatial structure is estimated using the original time series of
length 159 with 10-day spacing, plus every tenth day of the time series
of length 201 with 1-day spacing. This yields a time series of length 180
with 10 day spacing. As noted in the previous section, κ displays low-
frequency variability in the northeast corner of the domain that is
probably not directly the result of eddy variability. To avoid modeling
this low-frequency variability a high-pass time filter is applied to κ
before examining the spatial structure. This high-pass filter simply
consists in removing a moving average from the data with weights
[0.25 0.5 0.25], and the first and last points are removed leaving a time
series of length 178. Since the time series has a 10 day spacing and most
of the variability in κ has time scales on the order of 10 days or less (left
panel of Fig. 5), the high-pass filter only removes time scales sig-
nificantly longer than 10 days and leaves the primary eddy variability
intact.

The centered, scaled field is anisotropic and highly inhomogeneous
and cannot be described by any of the standard homogeneous random
field models, i.e. it cannot be accurately modeled using the kinds of
pattern generators typically used for SPP (Leutbecher et al., 2017). A
standard technique for dealing with inhomogeneous fields is to com-
pute empirical orthogonal functions (EOFs). EOFs are approximations
to the eigenvectors of the covariance matrix of the field, and are ob-
tained through a singular value decomposition of the data. Each EOF
explains a component of the total variance of the field, and EOF analysis
is particularly useful when a small number of EOFs describe most of the
variance. Unfortunately, as shown in Fig. 6, each EOF accounts for only
a small amount of the total variance of the centered, scaled field; the
leading EOF only accounts for 6% of the total variance. Moreover, an
EOF-based model for κ would have at most 177 degrees of freedom
while the field itself (on the 80× 80 coarse grid) has 6400 degrees of
freedom.

The ‘graphical lasso’ (Friedman et al., 2008) is a method to estimate
the precision matrix of a set of variables (the precision matrix is the
inverse of the covariance matrix). It generates a sparse approximation
to the precision matrix by minimizing a cost function that is the sum of
a rank-deficient L2 term measuring the mismatch between the precision
matrix and the data and an L1 penalty term that regularizes the problem
and enhances sparsity of the result. In the statistical literature, it is well
known that the precision matrix (inverse covariance matrix) encodes a
graphical structure on the random field, and is typically expected to be
a sparse matrix that relays information on a conditional dependence
structure (Rue and Held, 2005). A penalty parameter λ≥0 determines

the sparsity of the estimate: large λ leads to a very sparse but less-
accurate approximation while small λ leads to a more dense estimate
( = 0 results in the un-penalized empirical covariance estimate). In
particular, we use the graphical lasso to estimate a random field model
as it imposes no assumptions of homogeneity.

A key benefit of the graphical lasso is that the precision matrix that
it produces is invertible, i.e. full-rank, unlike the sample covariance
matrix associated with EOF analysis. While the EOF analysis produces
177 spatial patterns of variability (EOFs) from a time series of length
178, the graphical lasso produces a complete set of 6400 spatial pat-
terns of variability. The spatial patterns associated with the graphical
lasso are the eigenvectors of the precision matrix; these are not the
same as the EOFs, but they are approximating the same thing: the ei-
genvectors of the true covariance matrix. Fig. 7 shows that the first two
EOFs are essentially the same as the corresponding eigenvectors of the
graphical lasso precision matrix with penalty parameter = 0.01.

Like in EOF analysis, each of the graphical lasso spatial patterns
explains a component of the total variance: the amount of variance
explained is the inverse of the eigenvalue of the precision matrix as-
sociated with the spatial pattern. Fig. 6 shows the percentage of the
total variance that is explained by each spatial pattern for the EOF
analysis and for the graphical lasso analysis with both = 0.1 and

= 0.01. The variances associated with the leading patterns of varia-
bility are equal in the two approaches and for both values of λ, but
while the EOF analysis fits the total variance into 177 spatial patterns
the graphical lasso pushes much of the variance into 6400 separate
spatial patterns. At = 0.1 the graphical lasso underestimates the var-
iance in several of the leading patterns of variability, and instead puts
this variance into the long tail of patterns that is associated with spa-
tially-incoherent noise. As λ decreases the estimation becomes more
accurate and the graphical lasso agrees with the EOF analysis for most
of the leading patterns of variability. Nevertheless, at = 0.01 some of
the total variance is associated with a long tail of patterns that is as-
sociated with spatially-incoherent noise. The EOF and graphical lasso
agree at large scales, but by forcing all the variance into 177 global
spatial patterns the EOF analysis attributes too much long-range spatial
coherence to the noise at small scales.

3.3. A stochastic model for κ

This section formulates a stochastic model that attempts to ap-
proximate the spatial and temporal structure discussed in the pre-
ceeding two sections. The approach is similar to that used by
Berloff (2005).

We begin with the spatial structure. The graphical lasso yields a
spatial precision matrix =P C 1 where C is an approximation to the
spatial covariance matrix. Let =LL PT be the Cholesky decomposition

Fig. 6. Percent of total variance explained by (i) EOFs (blue), (ii) eigenvectors of the graphical lasso (GLASSO) precision matrix at (orange) and = 0.10 (yellow).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of P and let x be a vector of zero-mean, unit-variance independent
random variables. Then =z xL T is a vector with covariance matrix C.
This shows how to construct a random field with a spatial correlation
structure that mimics κ: compute the Cholesky factorization of the
precision matrix computed by the graphical lasso, and use it to give
spatial correlation to a field of independent random variables.

A simple approach to modeling the temporal correlation structure is
to construct an AR-1 (first order autoregressive) process at each spatial
location on the coarse grid. AR-1 processes are unable to model nega-
tive correlations, but the autocorrelation functions diagnosed across the
domain are all similar to those shown in the center and left panels of
Fig. 5, i.e. they are monotonically decreasing until they become sta-
tistically insignificant. In a more general setting AR-2 or higher pro-
cesses could be used. The decorrelation time of this process can be
tuned to match the observed decorrelation time of κ. It is not
straightforward to combine the two foregoing ideas (Cholesky plus AR-
1 processes) into a model that accurately reflects the full spatiotemporal
correlation structure of the true field κ. Our model takes the following
form: At each point of the coarse grid the centered, scaled version of κ is
modeled as an AR-1 process in the form

= ++ r r^ ^ 1n n n1
2 (9)

where χn are unit-variance, zero-mean random variables that are in-
dependent from one time to the next (the subscript n indicates time),
and r governs the local decorrelation time. Specifically, r is chosen so
that the AR-1 process reaches a correlation of 50% at a lag time given
by the 50% lag time shown in the left panel of Fig. 5, with one caveat:
The times shown in Fig. 5 are in one-day increments which leads to
sharp jumps in the decorrelation time. The field shown in Fig. 5 is
therefore smoothed by applying a moving average with weights
[0.25 0.5 0.25] in each direction before being used to set r for the AR-1
processes.

Spatial structure is given to the centered, scaled ^ by endowing the
innovations χn with spatial correlation. This is achieved using the
Cholesky method described above, with the precision matrix produced
by the graphical lasso with = 0.01. The final value of κ is obtained by
multiplying the scaled-centered version ^ by the standard deviation
shown in the lower right panel of Fig. 4 and then adding the median
shown in the upper right panel of Fig. 4.

4. Coarse model simulations

Coarse model simulations are configured as in Grooms (2016) and
using parameter values from Section 2.2, with the following exceptions.
The horizontal grid size is 40 km and diffusion of temperature is ac-
complished by a third-order upwind scheme rather than by an explicit
diffusivity. The horizontal viscosity is Laplacian rather than bi-
harmonic; the value 8000 m2/s is applied to the baroclinic part of the
flow and the value 1000 m2/s is applied to the barotropic part. Different
values are used in an effort to make the barotropic and baroclinic vis-
cous boundary layers both have widths on the order of one grid cell.
The time-mean state of the large-scale part of the eddy-resolving si-
mulation described in Section 2.2 was used as an initial condition for
the coarse model simulations.

We run simulations with a constant value of = 6000 m2/s for
comparison to the stochastic GM scheme described in the preceeding
section; this simulation is called the ‘deterministic GM’ simulation. In
addition, we run simulations where the GM parameter κ is perturbed by
multiplying by + e1 where e is a unit-variance, zero-mean Gaussian
random field. The temporal structure of e is an AR-1 process with
decorrelation time of 10 days, and the spatial structure results from
applying a moving average with weights [0.25 0.5 0.25] in each di-
rection to an uncorrelated field (see Grooms, 2016 for more details).
This simulation is called the ‘SPP-GM’ simulation. The simulation using
the model described in Section 3 is simply called the ‘stochastic GM’
simulation.

The temperature field in the coarse model simulations is compared
to the large-scale part of the temperature field from the eddy-resolving
simulation described in Section 2.2. The large-scale part of the tem-
perature is obtained by the Gaussian kernel smoother described in
Section 2.3; it was computed every 10 days starting in year 98 of the
eddy-resolving simulation and ending in year 208 – a 110 year time
series.

Fig. 8shows the time-mean sea surface temperature (SST) from the
eddy-resolving simulation (top left), from the deterministic GM simu-
lation (top right), from the SPP-GM simulation (lower left), and from
the stochastic GM simulation (lower right). The deterministic and SPP-
GM schemes provide reasonably accurate predictions for the mean SST,
while the tuned stochastic GM simulation is badly incorrect. The true
SST has a steady decrease of SST with latitude, with very little zonal
variability. The stochastic GM simulation has a plume of warm water
originating near the southwest corner of the domain and extending

Fig. 7. Left column: Empirical orthogonal functions (EOFs). Right column:
Eigenvectors of the graphical lasso (GLASSO) precision matrix. Upper row:
leading spatial pattern of variability. Lower row: secondary spatial pattern of
variability. Axis units are kilometers. The spatial patterns are dimensionless and
their amplitudes are arbitrary, though they have been scaled consistently for ease
of visual comparison.
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north and east up through the center of the domain. The mean tem-
perature structure in the SPP-GM simulation is similarly inaccurate
throughout the main thermocline (not shown). In view of the very poor
accuracy of the optimized stochastic GM parameterization that is the
primary focus of the investigation, there is little point in proceeding to
test whether the scheme generates accurate variability, or in tuning
other parameters of the deterministic and SPP-GM simulations.

5. Discussion

The ultimate goal of this research is to formulate a GM para-
meterization that produces an accurate coarse model simulation, and
there are two routes to achieve this. One route, not taken here, involves
tuning the parameterization by running repeated coarse model simu-
lations and comparing the results to known reference data; this process
is costly because of the infinite number of possible ways to tune the
parameterization. The other route, taken here, involves studying the
process or quantity that is being parameterized and attempting to build
an accurate model thereof. This route is based on the assumption that a
parameterization that accurately models the true eddy flux divergence
should result in an accurate coarse model simulation. The primary re-
sult of the foregoing section is the fact that a simulation using a sto-
chastic GM parameterization that is configured to match as closely as
possible the GM parameter diagnosed from a high resolution reference
experiment yields significantly worse results than a basic simulation
with a constant value for κ. If the underlying assumption is true then the
contrapositive must also be true: a parameterization that yields an in-
accurate coarse model simulation must be an inaccurate model of the
true eddy flux divergence. The stochastic GM parameterization derived
in Section 3 must therefore be an inaccurate model of the true eddy flux
divergence. (The converse, i.e. if a parameterization yields an accurate
simulation then it must also be an accurate model of the true eddy flux
divergence, is clearly false since Section 2 shows that constant κ gives a
less-accurate model of the eddy flux divergence while Section 4 shows
that constant κ yields a more-accurate coarse model simulation.)

There are many ways in which the stochastic GM model developed
in Section 3 might be inaccurate. For example, as with all SPP stochastic
parameterizations the modeled variations in κ are independent of the
large-scale temperature, whereas the real variations in κ might depend
on the large-scale temperature. Alternatively it might be the case that
despite the care taken in developing a model with realistic spatial and

temporal variabilty, some crucial aspect of the true variability of κ has
been missed in the stochastic model of κ. But the results of Section 2
indicate a more fundamental problem: the isotropic GM parameteriza-
tion with depth-independent κ yields a very poor fit to the true eddy
flux divergence, so that no matter how well the diagnosed κ is re-
presented with a stochastic model it will never be an accurate model of
the true eddy flux divergence. (Recall that the optimal κ computed
using this configuration reduced the error between the parameterized
eddy tracer flux divergence and the true eddy tracer flux divergence by
only 30 to 40% as compared to = 0 (see Fig. 3).) It is possible that an
anisotropic formulation (Smith and Gent, 2004) or a depth-dependent κ
(Abernathey et al., 2013) might yield a better fit to the flux-divergence.
In particular allowing arbitrary depth dependence would significantly
increase the number of degrees of freedom available for fitting the true
eddy flux divergence. But at a more general level it may be the case that
it is simply not possible to model the true eddy flux divergence purely
by varying κ (or the flux tensor in anisotropic GM) in a GM para-
meterization.

Recall that the advective formulation of the GM parameterization
implies that the GM parameterization models the eddy tracer flux di-
vergence as =u u·( ) ·† † where u†τ is the GM advective flux.
Griffies (1998) demonstrated that one can alternatively parameterize
the eddy tracer flux divergence by the divergence of ‘skew’ flux that
equals the advective flux u†τ plus a non-divergent gauge; the GM skew-
flux has the form

= ×F .skew (10)

For a standard isotropic configuration of GM the horizontal part of the
skew flux of density has the form

= =F F, .x
x

y
yskew skew (11)

Grooms (2016) showed that stochastic GM parameterizations could
be built by producing stochastic parameterizations of the skew flux of
density. Denoting a stochastic parameterization of the horizontal den-
sity flux by F ,stoch one can invert Eq. (10) to obtain the corresponding
stochastic parameterization of the GM vector streamfunction:

= =F F
, .y

x

z

x
y

z
stoch

stoch
stoch

stoch

(12)

The stochastic GM model developed in Section 3, as well as the SPP-GM
approach of Juricke et al. (2017, 2018), fits within this framework; in

Fig. 8. Time-mean sea surface temperature for the eddy-resolving simulation (upper left), the deterministic GM simulation (upper right), the SPP-GM simulation
(lower left) and the stochastic GM simulation (lower right). Temperature is in degrees Celsius and axis units are kilometers.
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these parameterizations the stochastic parameterization of the skew
flux takes the form of Eq. (11) with a stochastic κ. As shown in
Section 2, a stochastic GM model of this form does not fit the diagnosed
eddy flux divergences well.

A more successful approach to building a stochastic GM para-
meterization that accurately models the eddy flux divergence might
need to break out of this paradigm of randomizing κ. For example, one
might find more success in both fitting the true eddy flux divergence
and in coarse model simulations by using the following more general
form for the eddy skew flux of density

= + = +F F,x
x

x y
y

y
stoch stoch (13)

where χx and χy are components of a random eddy flux. This type of
parameterization has both a multiplicative component associated with κ
and an additive component associated with the random eddy flux. Such
a parameterization would, for example, easily generate an eddy flux in
regions with small isopycnal slope, whereas the multiplicative approach
requires large κ to generate eddy fluxes in regions of small isopycnal
slopes. The additive terms are qualitatively similar to the nonlocal
transport term in the KPP parameterization (Large et al., 1994).
Williams et al. (2016) developed an additive stochastic parameteriza-
tion in the temperature tendency of an ocean GCM; the additive terms
above would have a similar effect, but would guarantee that the para-
meterization remains adiabatic by remaining within the GM frame-
work. The development of the details of such a parameterization is
beyond the scope of this article, though preliminary strides in that di-
rection were made by Grooms (2016).

6. Conclusions

This paper addresses the question of parameterizing the tracer flux
divergence associated with unresolved mesoscale eddies in non-eddying
ocean models. We begin by diagnosing the parameter κ in an isotropic
Gent-McWilliams parameterization (Gent and McWilliams, 1990; Gent
et al., 1995) by comparing to eddy-resolving simulations. Rather than
estimate κ by comparing the diagnosed fluxes to the parameterized
fluxes (cf. Eden et al., 2007; Bachman and Fox-Kemper, 2013), we use a
least-squares approach to fit the parameterized eddy flux divergence to
the diagnosed eddy flux divergence (cf. Mak et al., 2016). The diag-
nosed κ displays huge variability with values as large as ± 30, 000
m2/s. Crucially, the optimal value of κ leads to a parameterization that
only accounts for less than 50% of the diagnosed eddy flux divergence.
A stochastic model is developed that carefully models the spatial and
temporal structure of the diagnosed κ. Coarse model simulations are
then run using the new stochastic model for κ, constant κ, and constant κ
perturbed by simple stochastic noise. The coarse model simulations
with constant κ and with the simple stochastic model are far more ac-
curate than simulations with the new stochastic model. We argue that
the poor agreement of the optimal diagnosed κ with the diagnosed eddy
flux divergence explains the failure of the new stochastic model to
produce accurate coarse model simulations, and suggest that future GM
parameterizations might be more successful, both in terms of modeling
the true eddy flux divergence and in terms of producing realistic coarse
model simulations, if they include an additive component to the skew
flux rather than relying solely on variations in κ. Of course the κ diag-
nosed here was constrained to be depth-independent, and significant
improvements might still be obtained by allowing depth dependence or
anisotropy (Smith and Gent, 2004; Abernathey et al., 2013).

These results demonstrate that accurate coarse model simulations
can be produced using parameterizations that are not accurate models
of the true eddy flux divergence. It may therefore be possible to im-
prove coarse model simulations with a stochastically perturbed GM
parameter κ by tuning the structure of the perturbations of κ, as in
Juricke et al. (2017, 2018). But these improvements to the coarse model
simulations will not come as a result of making the modeled eddy flux

divergence a more accurate model of the true eddy flux divergence.
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