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Summary. The Lyon–Fedder–Mobarry global magnetosphere–ionosphere coupled model
LFM-MIX is used to study Sun–Earth interactions by simulating geomagnetic storms.This work
focuses on relating the multifidelity output from LFM-MIX to field observations of ionospheric
conductance. Given a set of input values and solar wind data, LFM-MIX numerically solves the
magnetohydrodynamic equations and outputs a bivariate spatiotemporal field of ionospheric
energy and flux. Of particular interest here are LFM-MIX input settings required to match cor-
responding output with field observations. To estimate these input settings, a multivariate spa-
tiotemporal statistical LFM-MIX emulator is constructed. The statistical emulator leverages the
multiple fidelities such that the less computationally demanding yet lower fidelity LFM-MIX is
used to provide estimates of the higher fidelity output. The higher fidelity LFM-MIX output is
then used for calibration by using additive and non-linear discrepancy functions.

Keywords: Dimension reduction; Multivariate computer model; Multivariate emulator; Non-
additive discrepancy

1. Introduction

Coronal mass ejections are a highly energetic body of plasma and magnetic fields released from
eruptions near complex magnetic field configurations on the Sun. When coronal mass ejections
propagate out from the Sun and reach the Earth, the magnetosphere (the area of space that
is controlled by Earth’s magnetic field) prevents most of the particles from hitting the Earth.
However, the interaction of the plasma with the Earth’s magnetosphere can lead to significant
disruption of the near Earth space environment. Such disruptions are referred to as geomagnetic
storms. Severe storms can result in interferences to satellite operations and radio communica-
tions as well as impact the Federal Aviation Administration’s ‘Wide area augmentation system’.
The electric currents driven in these storms can become so intense that they disrupt power
grids, the prime example being the March 1989 ‘Quebec blackout’ that was caused by two large
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geomagnetic storms (see National Research Council Committee on the Societal and Economic
Impacts of Severe Space Weather Events (2008) and Sparks et al. (2013)). As recently as spring
2012, massive coronal mass ejections dumped enough energy into the Earth’s upper atmosphere
to power every residence in New York City for 2 years (Phillips, 2012).

1.1. The LFM-MIX computer model
The Lyon–Fedder–Mobarry global magnetosphere–ionosphere coupled model LFM-MIX is a
computer model that is used at the Center for Integrated Space Weather Modeling (CISWM)
to study geomagnetic storms and is an important piece in an on-going effort to build a space
weather forecasting system. Particularly, LFM-MIX is used to simulate interactions between
the magnetosphere and the ionized portion of the Earth’s upper atmosphere called the iono-
sphere (see Wiltberger et al. (2009) for a complete description of LFM-MIX). LFM-MIX uses
solar wind observations to drive a magnetohydrodynamic simulation of the magnetosphere (the
‘LFM’ piece) and couples it with an electrostatic model of the ionosphere (the ‘MIX’ piece). The
output is a bivariate spatiotemporal field of the ionospheric precipitation energy (in kiloelectron
volts) and flux (per square centimetre second).

Beyond solar wind data, to run the magnetohydrodynamic simulation, LFM-MIX requires
three spatially constant inputs (or initial conditions) given by

E0 =x1ξ
2, .1/

F0 =x2ω
√

E0, .2/

ED0 = x3.FAC/
√

E0

ω
.3/

where E0, F0 and ED0 represent initial precipitation energy, flux and potential energy difference
of electrons flowing from the magnetosphere into the ionosphere respectively. CISWM scientists
treat the values of ξ, ω and FAC as known constants because these are computed within LFM-
MIX. The values for x1, x2 and x3, in contrast, are unknown and are used to ‘tune’ LFM-MIX
so that output roughly matches observations, i.e. scientists run LFM-MIX at various values of
x = .x1, x2, x3/ and choose a value so that resulting output best mimics observations.

The LFM-MIX coupled model is a ‘multiple-fidelity’ computer model (see Qian and Wu
(2008) and Gratiet (2013)), i.e. LFM-MIX can be run at different settings (which we choose
to call ‘fidelity levels’) so that running the model at higher fidelity results in output that
has more realistic spatiotemporal features. However, this added fidelity comes at the cost of
computation—higher fidelity models require more computing time. For this study, we consider
only two fidelity levels which we refer to as ‘double’ and ‘single’ fidelity where the double fidelity
is preferred to the single fidelity. The choice of fidelity only impacts the modelling of the mag-
netosphere, ideally improving the modelling in the LFM component of the coupled LFM-MIX
model.

1.2. Research objectives and challenges
To facilitate proper use of LFM-MIX to study Sun–Earth interactions, the primary goal of
this analysis is to use field data to determine the ‘best’ value of x = .x1, x2, x3/′ such that the
LFM-MIX output of ionospheric energy most accurately mimics observational data. Let χ=
.χ1,χ2,χ3/ represent this best value for x where a Greek letter is used to emphasize the fact
that this setting is unknown. Within the statistical computer modelling literature this problem
is referred to as a computer model inverse problem (Tarantola, 2005) and is closely related to
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‘calibration’ problems (see Kennedy and O’Hagan (2001) and Santner et al. (2003), chapter 2).
Here, the approach is to develop a hierarchical model with two distinct layers:

(a) a layer that predicts LFM-MIX at untried values of x and
(b) a layer that links LFM-MIX output to observations at the calibrated value χ.

The first or ‘emulator’ layer of the model is used to predict LFM-MIX output at untried initial
conditions (Rougier, 2008). Owing to the computational requirements of running LFM-MIX,
the Gaussian process response surface methodology of Sacks et al. (1989) and Kennedy and
O’Hagan (2001) is used to emulate computer model output. However, because the LFM-MIX
output that we use here is 18 time points of a 46 × 36 spatial grid (a total of 29808 output
points per run of LFM-MIX), the matrix inversion and determinant calculation that is required
for a full Gaussian process implementation is computationally taxing. To deal with the issue
of spatial dimensionality, we use Gaussian predictive processes (Banerjee et al., 2008; Finley
et al., 2009) to obtain a low rank Gaussian process LFM-MIX model emulator. The choice
to use predictive processes is primarily from the interpretability of the predictive process as a
kriged spatial surface. Note, however, that the model that is outlined below could be easily
adapted to use other low rank processes including fixed rank kriging (Cressie and Johannesson,
2008; Kang and Cressie, 2011) or discrete kernel convolutions (Higdon et al., 1999; Higdon,
2002; Bhat et al., 2012; Calder et al., 2011). See Sun et al. (2011) for an overview of dimension
reduction methods for spatial problems. Beyond dimension reduction techniques, compactly
supported covariance functions (Kaufman et al., 2011) or functional methods (Higdon et al.,
2008; Fricker et al., 2013; Paulo et al., 2012) could also be considered.

Because LFM-MIX is a multiple-fidelity computer model, our LFM-MIX emulator needs to
be able to emulate both single and double fidelity. Building a multiple-fidelity emulator, although
more complex, is advantageous and can greatly facilitate calibration, i.e., by positing a statistical
emulator which links the double- and single-fidelity outputs (i.e. utilizes correlations between
the two fidelities), the computationally cheap single-fidelity LFM-MIX can be run at more
initial conditions and used to predict the double-fidelity output at those same initial conditions
(saving computation time).

The second or ‘validation’ layer of the model links observations and computer model output
(see Bayarri et al. (2007)). The traditional approach to linking model output to observations
follows Kennedy and O’Hagan (2001) who modelled

observations=high fidelity output at χ+discrepancy+observational error

where the discrepancy term describes deviations of the computer model from reality and ac-
knowledges the possibility that the computer model does not capture all aspects of the physical
process being modelled. Inclusion of a discrepancy presents several issues such as a high correla-
tion between the calibration parameter χ and the discrepancy term which leads to confounding
(see Bayarri et al. (2007, 2009) and Liu et al. (2009) for more discussion). In spite of this con-
founding effect, use of a discrepancy term is necessary because LFM-MIX, even if χ were
known, is not expected to capture all dynamics of the physical process. To alleviate confounding
issues partially, we assume a priori independence between the three components above. Fur-
thermore, we model the discrepancy term by using a low rank Gaussian process. By using a low
rank Gaussian process, the discrepancy term is identified by using relatively few parameters,
leaving more information (degrees of freedom) to estimate χ.

1.3. Contributions and outline of the paper
To conclude and summarize this section, the main contributions of this paper are as follows:
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(a) posit low rank and non-additive methods for dealing with discrepancies between computer
model output and observations

(b) utilize a low rank Gaussian process response surface methodology to implement a fast
computer model emulator and

(c) describe a low rank method for leveraging multiple-fidelity computer model output.
This analysis builds on and extends the work of Kleiber et al. (2013). To contrast this work
with Kleiber et al. (2013), we consider both the energy and the flux LFM-MIX output fields
whereas Kleiber et al. (2013) considered only energy. Kleiber et al. (2013) also did not include
discrepancy between the calibrated LFM-MIX output and the observations. Here, we show that
accounting for this discrepancy is necessary to account for deficiencies in LFM-MIX.

The remainder of this paper is structured as follows. Section 2 describes the output of LFM-
MIX, observations and the experimental design points for initially exploring the space of input
settings. Section 3 describes the statistical model to achieve calibration of LFM-MIX. Section 4
describes the results of a cross-validation study to validate the statistical emulator of Section 3.
Section 5 describes the calibration results and Section 6 summarizes lessons learned and outlines
future research directions.
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Fig. 1. (a) 46 � 36 spatial grid of observations, (b) 27 � 180 spatial grid of LFM-MIX model output and (c)
knot points for the predictive process specifications: each grid is expressed from a polar projection where
.0, 0/ corresponds to the North Pole
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2. Observational data and LFM-MIX model output

For this paper, LFM-MIX is calibrated using data from a geomagnetic storm which occurred
on January 10th, 1997. For this storm, observations of ionospheric energy and energy×flux
(which converts to megawatts per square metre) were drawn from remote sensing instruments
and recorded approximately every 7 min between 2.00 p.m. and 4.00 p.m. Universal Time Co-
ordinated (18 total time points) on the 46 × 36 spatial grid given in Fig. 1(a). For each time
point, however, only a fraction of the grid is observed. The spatial grids in Fig. 1 are from the
viewpoint of looking down on the Earth (for example the point .0, 0/ corresponds to the North
Pole) with larger values of

√
.x2 +y2/ corresponding to lower latitudes. The spatial grid in Fig.

1(a) covers a latitude span from 45◦ to 90◦ (in steps of 1◦ latitude) and all longitudes (from 0◦
to 360◦ in steps of approximately 10◦). Figs 2(a) and 2(d) display an example of the observed
ionospheric energy and energy×flux at the second time point.

Given the solar wind data on January 10th, 1997, the discrete set of time points T corres-
ponding to the observations and an input value x = .x1, x2, x3/′, the LFM-MIX model outputs
ionospheric energy on the 27 × 180 spatial grid given in Fig. 1(b) for all t ∈ T . Expressed in
terms of latitudes and longitudes, the spatial grid in Fig. 1(b) covers a latitude span from 46◦ to
90◦ (with 46◦ latitude corresponding to the outer circle of grid points) along with all longitudes
(steps of 2◦ from 0◦ to 358◦). Owing to the misalignment of the observational and the LFM-MIX
output grid (Figs 1(a) and 1(b)), this analysis follows Kleiber et al. (2013) by a priori using thin
plate splines to krige the LFM-MIX output to the observational grid. Alternatively, this kriging

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a)–(c) Ionospheric energy and (d)–(f) energy � flux at time t D2 according to (a), (d) observations,
(b), (e) single-fidelity LFM-MIX output and (c), (f) double-fidelity LFM-MIX output for xD .0:473, 1:591, 0:030/ :
observed ionospheric energy and energy–flux are observed for only a fraction of the grid in Fig. 1(a) at each
time point
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could be done within the statistical modelling but given the density of the LFM-MIX grid in
Fig. 1(a) a priori kriging to the observation grid introduces little error while greatly reducing
the dimension of the spatial field.

According to the developers and users of LFM-MIX, the set of physically plausible input
values is X ={.x1, x2, x3/ : x1 ∈ .0, 0:5/, x2 ∈ .0, 2:5/, x3 ∈ .0, 0:1/}. To explore X properly to find
the most appropriate value χ∈X which mimics ionospheric observations, we used the following
strategy to choose PS =20 values of x∈X to run the single-fidelity model. The first 16 points were
chosen according to an orthogonal array Latin hypercube design (McKay et al., 1979) following
which an additional four values were chosen (totalling PS =20) according to a maximin space
filling criterion (Johnson et al., 1990). From these 20 values, an additional PD =5 were chosen
according to a geometric space filling design of the original 20 (using cover.design within the
fields package in R; Furrer et al. (2013)) to run the double-fidelity LFM-MIX model resulting
in 25 distinct runs of the computer code. The design points are shown in Fig. 3 in Section 5. One
run of the single-fidelity LFM-MIX model requires approximately 16 h to complete whereas
the double-fidelity LFM-MIX model requires nearly 85 h by using an AMD Opteron 2.4 GHz
Quad-Core processor with 125 Gbytes of random-access memory. Figs 2(b) and 2(e), and 2(c)
and 2(f) display an example of single- and double-fidelity LFM-MIX model output respectively,
at the same time point as in Figs 2(a) and 2(d), using an input value of x= .0:473, 1:591, 0:030/.
Contrasting Figs 2(b) and 2(e), and 2(c) and 2(f), note that the double-fidelity LFM-MIX can
capture finer scale spatial features than the single-fidelity LFM-MIX model, albeit at the cost
of additional computation.

3. Methodology

3.1. Single-fidelity model emulator
Owing to the physical constraint that energy and flux are positive values, let Se.l, t; x/ and
Sf .l, t; x/ denote the single-fidelity LFM-MIX output of log.energy/ and log.flux/ run at input
setting x= .x1, x2, x3/, spatial location l and time period t. An exploratory analysis (see the scatter
plots in the on-line supplement) gave evidence towards a linear relationship between Se.l, t; x/

and Sf .l, t; x/ which is in harmony with the mathematical relationship given in equations (1)
and (2). However, this linear relationship varied over space and time. We then choose to model

Se.l, t; x/=μSe.l, t/+wSe.l, t; x/, .4/

Sf .l, t; x/=μSf .l, t/+βSf .l, t/wSe.l, t; x/+wSf .l, t; x/ .5/

where μSe.l, t/ and μSf .l, t/ are spatiotemporal mean terms and determine the average energy
and flux for each spatiotemporal location, βSf .l, t/ is a spatiotemporal slope and wSe.l, t; x/ and
wSf .l, t; x/ are Gaussian random effects where wSe and wSf are independent. Equations (4) and (5)
specify the joint distribution of Se and Sf via the marginal distribution for Se and the conditional
distribution for Sf |Se (Royle and Berliner, 1999). This specification was made for the following
reasons. First, equations (1) and (2) suggest a natural ordering to the energy and flux variables.
Specifically, equation (2) suggests that flux is linearly related to energy on the log-scale. Second,
the conditional specification is a simple way to model a non-stationary relationship between Se
and Sf by allowing the slope and mean parameters to vary over space and time. And, third, the
conditional specification is simpler computationally because computations can now deal with
two smaller covariance matrices rather than a single large matrix. Note, however, that the joint
process specification could also be done by using linear models of coregionalization (Gelfand
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et al., 2004), multivariate covariance functions (see, for example, Gneiting et al. (2010) and
Apanasovich et al. (2012)) or latent dimensions (Apanasovich and Genton, 2010).

The random effects wSe and wSf play the important role of correlating LFM-MIX output
across spatial locations, time periods and input settings. This correlation allows for prediction
to untried input settings. However, from Section 2, recall that available LFM-MIX output
consists of 20 runs of 18 time periods of a 46 × 36 spatial grid resulting in 596160 correlated
data points. Inverting and calculating the determinant of such a large covariance matrix is
not computationally feasible so simplifying assumptions will need to be used. Following, for
example, Bhat et al. (2012), using a separable covariance structure in input setting, time and space
would reduce computation to inverting and calculating the determinant of a 20×20, 18×18 and
a 1656×1656 matrix. Whereas the 20×20 and 18×18 matrix pose no computational challenges,
repeatedly inverting a 1656×1656 matrix within a Markov chain Monte Carlo algorithm does
and requires further dimension reduction. The strategy here, then, is to retain a Kronecker
product structure for the temporal and input setting domain while reducing the dimension of
the spatial covariance matrix. Details are as follows.

Let wÅ
Se

.t; x/ = .wÅ
Se

.lÅ1 , t; x/, : : : , wÅ
Se

.lÅK, t; x//′ be a vector of zero-mean Gaussian random
effects at K spatial knot points lÅ1 , : : : , lÅK. Furthermore, assume that the covariance for any two
points ui = .lÅi , ti; xi/ and uj = .lÅj , tj; xj/ follows a separable form such that

C{wÅ
Se

.ui/, wÅ
Se

.uj/}=σ2
Se

M3{dl.i, j/|φSe} M3{dt.i, j/|ψSe}
3∏

r=1
M3{dxr .i, j/|γSe,r} .6/

where C.·/ denotes covariance, dl.i, j/ =‖lÅi − lÅj ‖, dt.i, j/ =‖ti − tj‖ and dxr .i, j/ =‖xir − xjr‖
denotes the Euclidean distance in the spatial, temporal and input setting domains respectively,
and Mν.d|φ/ is the isotropic Matérn covariance function with smoothness parameter ν and
decay parameter φ at a distance d. From equation (6), note the following assumptions. First, the
covariance function for wÅ

Se
is separable, allowing a computationally feasible Kronecker product

structure for the covariance matrix. The separability of the covariance function is key for produc-
ing a computationally feasible estimation method. Alternatively, non-separable spatiotemporal
covariance functions like those proposed by Gneiting (2002) or Stein (2005) could be used to
capture more complex spatiotemporal dependence structures. However, because the primary
interest here is prediction to new input settings (as opposed to prediction to new spatiotemporal
locations), we opt to use the simpler separable structure to account for space–time dependences.
Separability in the input setting space is a standard choice (Santner et al., 2003). Second, the
smoothness parameters of each Matérn covariance function is fixed at 3. This value for the
smoothness parameter was chosen to allow each of the spatial, temporal and input setting fields
to be mean square differentiable but not infinitely so as is the case of the Gaussian covariance
function (see Stein (1999)). Additionally, because estimating the smoothness is a notoriously
difficult problem, fixing the smoothness is a common practice (Rasmussen and Williams, 2006;
Gneiting et al., 2012). And, third, Euclidean distance is used within each Matérn covariance
function. Whereas Euclidean distance is appropriate for the temporal and input setting domains,
because the spatial domain of interest is the northern hemisphere, it could be argued that such
a distance metric is not appropriate for the spatial domain (see Banerjee (2005) and Jun and
Stein (2007, 2008)). Note, however, that the spatial grid in Fig. 1(a) is not in typical latitude–
longitude co-ordinates but is rather a polar projection. Euclidean distance on the projected polar
grid is more appropriate than Euclidean distance of latitude–longitude co-ordinates because, for
example, Euclidean distance on latitude–longitude co-ordinates would inappropriately quantify
the distance between points at the North Pole. Furthermore, Gneiting (2013) showed that using
great circle distance would not produce a positive definite covariance function with the degree
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of smoothness that is seen in LFM-MIX output. For these reasons, we opted to use Euclidean
distance on the polar project co-ordinates despite its deficiencies.

To reduce the dimension of the spatial domain from 1656 to K �1656, let wSe.l, t; x/ be given
by the modified predictive process of Banerjee et al. (2004) and Finley et al. (2009) such that

wSe.l, t; x/=b′
we

.l/ wÅ
Se

.t; x/+ "e.l, t; x/ .7/

where bwe.l/ = .bwe,1.l/, : : : , bwe,K.l//′ is a K-vector of predictive process basis functions such
that bwe,i.l/ is the ith element of σ′

llÅΣ
−1
lÅ where ΣlÅ = var{wÅ

Se
.t; x/} and σllÅ =σ2

Se
.M3.‖l −

lÅ1 ‖|φSe/, : : : , M3.‖l − lÅK‖|φSe//
′. The "e.l, t; x/ in equation (7) are the variance correction terms

for the predictive process (see Finley et al. (2009)). We alter the framework of Finley et al. (2009)
slightly by correlating the error terms across time and input setting by assuming that "e.l, t; x/

follow a spatially independent zero-mean Gaussian process with covariance function

C{"e.li, ti; xi/, "e.lj, tj; xj/}=σ2
"e

.l/M3{dt.i, j/|ψSe}
3∏

r=1
M3{dxr .i, j/|γSe,d} .8/

if li = lj and C{"e.li, ti; xi/, "e.lj, tj; xj/}= 0 otherwise where σ2
"e

.l/ =σ2
Se

{1 − b′
we

.l/ΣlÅbwe.l/}.
From the predictive process specification in equation (7), note that var{wSe.l, t; x/} = σ2

Se
.

Furthermore, if wSe is the stacked vector of {wSe.l, t; x/} ordered by spatial locations, tem-
poral locations and input settings locations, then var.wSe/ = σ2

Se
.Rx ⊗ RT ⊗ RL/ where

Rx = {Π3
r=1M3{dxr .i, j/}}i,j is the 20×20 correlation matrix across input settings, RT =

{M3{dt.i, j/}}i,j is the 18×18 correlation matrix across time periods and RL =BweΣlÅB′
we

+D"e

controls the spatial correlation where Bwe is a 1656×K matrix with ith row b′
we

.li/ where li is
the ith spatial location and D"e =σ−2

Se
diag{σ2

"e
.l1/, : : : ,σ2

"e
.l1656/}. Note that the rank of RL is

K and RL can be inverted by using the Sherman–Morrison–Woodbury formula (see Harville
(1997), section 4). Reducing the dimension of the spatial field resulted in, approximately, 80%
savings in computation time.

To emphasize, by correlating the variance correction factors {"e.l, t; x/} across time and input
setting, the predictive process specification in equation (7) reduces only the dimension of the
spatial domain (not the temporal and input setting domains). Because we are data poor in the
temporal and input setting domains, dimension reduction is neither necessary nor desirable.
The predictive process was used here mainly for interpretability, i.e. the predictive process knot
vector wÅ

Se
.t; x/ is interpreted as the original spatial surface at the knot points.

Having developed a computationally feasible specification for wSe , the random effects for the
flux variable wSf in equation (5) were assumed to follow the same process structure as wSe in
equation (7) but parameters were changed to be variable specific (i.e. all single-fidelity energy-
specific parameters are replaced by single-fidelity flux-specific parameters).

3.2. Double-fidelity model emulator
As with single-fidelity LFM-MIX output, let De.l, t; x/ and Df .l, t; x/ denote log.energy/ and
log.flux/ for the double-fidelity model. Key pieces for an emulator of the double-fidelity model
are

(a) leveraging the information in the single-fidelity model to predict the double fidelity and
(b) correlating the double-fidelity model across space, time and input setting.

Exploratory analysis suggests that the relationship between the single and double fidelity is
linear but varied over the space–time domain. Hence, we model

De.l, t; x/=μDe.l, t/+βDe.l, t/wSe.l, t; x/+wDe.l, t; x/, .9/
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Df .l, t; x/=μDf .l, t/+βDf .l, t/wSf .l, t; x/+θDf .l, t/wDe.l, t; x/+wDf .l, t; x/ .10/

where μDe.l, t/ and μDf .l, t/ are spatiotemporal mean fields that determine the mean energy and
flux for the double-fidelity model across space and time, βDe.l, t/, βDf .l, t/ and θDf .l, t/ are spa-
tiotemporal slope fields, and wDe.l, t; x/ and wDf .l, t; x/ are random effects with wDe⊥⊥wDf for
all .l, t; x/. Note that equations (4), (5), (9) and (10) conditionally define a valid joint distribution
[Se, Sf , De, Df ] by using our assumptions. Hence, these equations define a full statistical emula-
tor for single- and double-fidelity LFM-MIX output and appropriately leverage single-fidelity
information.

For the double-fidelity emulator in equations (9) and (10), note that we are data poor. Recall
from Section 2 that the double-fidelity LFM-MIX was only run at a total of PD =5 input set-
tings compared with PS = 20 for the single-fidelity model. So few data points give only a few
degrees of freedom to estimate all the parameters in equations (9) and (10). To increase the
amount of information in the data to estimate the parameter surfaces, this analysis models the
spatiotemporal mean and slope surfaces (i.e. μDe , βDe , μDf , βDf and θDf ) by using predictive
process basis functions. By using a basis function expansion, the dimension of these parameter
surfaces is reduced and strength can be borrowed across spatiotemporal locations for estimation
purposes. For example, if βDe.l, t/=b′

βe
.l, t/βÅ

De
where b′

βe
.l, t/ is a set of basis functions (in this

case predictive process basis functions arising from the covariance function given in equation
(6)) and βÅ

De
is the corresponding reduced dimension vector of coefficients, then estimating an

entire surface reduces to estimating the coefficients βÅ
De

. Under this predictive process specifi-
cation, βÅ

De
is then given a zero-mean Gaussian process prior with a covariance function that

corresponds to the covariance function that is used to build the basis functions.
Our construction of a multiple-fidelity emulator follows most closely that of Qian and Wu

(2008). Rather than the conditional specification in equations (9) and (10), however, Cumming
and Goldstein (2009) proposed an alternative strategy for multiple-fidelity computer models,
i.e. they used the same set of regressors for the single- and double-fidelity models (the bwe.l/ in
equation (7)) but correlated the coefficients (wÅ

Se
.t; x/). We note that this approach may reduce

the dimension of the coefficient surfaces βDe.l, t/, βDf .l, t/ and θDf .l, t/ and result in a more
parsimonious model structure.

3.3. Observation model
Let Ye.l, t;χ/ and Yf .l, t;χ/ denote the observed log.energy/ and log.energy×flux/ at time t and
spatial location l. Recall that χ= .χ1,χ2,χ3/′ represents the unknown best input setting for the
double-fidelity LFM-MIX model output to mimic field data. To emphasize, we wish to calibrate
to the double-fidelity output as it represents a more accurate representation of the underlying
physical processes in the observations. To estimate χ, relate the observations to double-fidelity
LFM-MIX output at χ via

Ye.l, t;χ/=De{R.λt/l, t;χ}+ δe.l, t/+ ζYe.l, t/, .11/

Yf .l, t;χ/=De{R.κt/l, t;χ}+Df {R.κt/l, t;χ}+ δf .l, t/+ ζYf .l, t/ .12/

where δe.l, t/ and δf .l, t/ are independent spatiotemporal discrepancy functions, and ζYe and ζYf

are Gaussian white noise random variables with variance σ2
Ye

and σ2
Yf

respectively. The R.λt/

and R.κt/ are clockwise rotation matrices given by

R.λt/=
(

cos.λt/ sin.λt/

− sin.λt/ cos.λt/

)
, .13/

such that R.λt/l rotates the location l clockwise by an angle λt .
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According to equations (11) and (12), discrepancies between LFM-MIX and observations
occur in two places. First, LFM-MIX differs from observations by a non-linear rotational bias
of angle λt (for energy) and κt (for energy×flux). This rotational discrepancy is apparent from
Fig. 2 as the modes of LFM-MIX and the observations are misaligned. Furthermore, on the
basis of personal discussions with the scientists at the CISWM, this rotational bias is highly
informational in developing future versions of LFM-MIX. Second, after rotation, any remaining
discrepancy between LFM-MIX and the observations is captured by the additive discrepancy
terms δe and δf .

The additive discrepancy functions δe and δf are highly correlated with χ, i.e. a change of
input setting (and, hence, a change of LFM-MIX output) necessarily changes the value of
these discrepancy functions, leading to confounding of the input parameter χ (see Bayarri
et al. (2007)). Thus, to identify χ, let δe and δf be determined by a set of predictive process
basis functions such that δe.l, t/= b′

δe
.l, t/δÅ

e and δf .l, t/= b′
δf

.l, t/δÅ
f . Using basis functions not

only gives dimension reduction for the spatiotemporal discrepancy fields but also restricts the
flexibility of the discrepancy function. By so restricting the discrepancy surfaces, confound-
ing of χ is partially alleviated because the calibrated LFM-MIX output is forced to capture
more of the spatiotemporal structure in the observations. As seen in Section 5, however, the
discrepancy functions are still sufficiently flexible to capture the remaining structure in the
observations.

Details on calculating the likelihood of observations and LFM-MIX output are provided in
Appendix A.

3.4. Prior assumptions
The general strategy in selecting prior distributions was to be non-informative and to allow the
data to inform the parameter value except in cases where prior information is necessary. We
assumed χ1 ∼U.0:0, 0:5/, χ2 ∼U.0, 2:5/ and χ3 ∼U.0, 0:1/ which accurately reflect the applied
scientist’s understanding of these parameters. Each variance term (e.g. σ2

Ye
and σ2

Se
) was assumed

to follow an inverse gamma distribution with shape parameter 2.01 and rate parameter 1.01 (such
that the prior expectation is 1 and the prior variance is 100) with the exception of σ2

Ye
and σ2

Yf
which were fixed at known measurement error values obtained from CISWM scientists. Priors
for the mean and slope surfaces of the single-fidelity emulator (e.g. μSe.l, t/ in equation (4)) were
assumed to be independent (over space and time) and uniform over a wide interval centred at
zero. Alternatively, these surfaces could be given a prior that accounts for the spatiotemporal
structure but smoothing these surfaces is not of interest in this study so we assume independence
to facilitate computation.

For the double- and single-LFM-MIX output, the priors for the decay parameters within the
covariance function in equation (6) were induced by assuming a discrete uniform distribution at
ranges of 10%, 25%, 50%, 75% and 90% of the maximum corresponding distance. For example,
consider γSe,2 which corresponds to the correlation range in the dimension of x2 ∈ .0, 2:5/. The
prior for γSe,2 was induced by assuming that the correlation range (the distance at which the
correlation decays to 0:05) is distributed uniformly at distances of 10%, 25%, 50%, 75% and 90%
of 2.5 (which is the maximum distance between two points on (0,2.5)). Such highly informative
priors for the decay parameters are necessary because of equivalence of probability measures
(see Zhang (2004)).

In contrast with the decay parameters in the covariance function of single- and double-LFM-
MIX output, we chose to fix the decay parameters in specifying the predictive process basis
functions for the mean and slope surfaces in equations (9) and (10) and for the discrepancy
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functions (i.e. δe and δf ) in equations (11) and (12). The values of the decay parameters for
the mean and slope surfaces were chosen such that the corresponding ranges were 50% of the
maximum distance between spatiotemporal grid points to increase the amount of information
borrowed between neighbouring points. For the discrepancy functions, however, we chose the
decay parameters such that the spatial and temporal ranges were 10% of the maximum distance
between spatiotemporal grid points. We chose a smaller range for the discrepancy surfaces to
ensure that the discrepancies accounted for less spatiotemporal structure in the observations
than the LFM-MIX output (thus, as discussed above, partially alleviating confounding be-
tween the discrepancy surfaces and χ). For each of these mean, slope and discrepancy surfaces,
however, we estimated a separate prior variance parameter which, according to Zhang (2004),
provides sufficient flexibility to fit a wide variety of surfaces.

Because geomagnetic storms evolve smoothly over time, the rotation angles λt and κt are also
expected to be a smooth function over time. To account for this, λt and κt were assumed to
follow a natural cubic spline with 3 degrees of freedom (two knots). For example,λt =Σ3

i=1ni.t/νi

where ni.t/ are the natural cubic spline basis functions and νi is the corresponding coefficient.
Vague Gaussian priors were used for the coefficients of the spline bases.

4. Validating the emulator

The performance of the emulator that was described in Sections 3.1 and 3.2 is vital to the
overall calibration of LFM-MIX, i.e. because the emulator will be used to predict the double-
fidelity LFM-MIX output at untried input settings, if the prediction of the emulator is wrong,
LFM-MIX will not be well calibrated. Thus, before calibration of LFM-MIX, a series of cross-
validation studies were performed to validate the prediction performance of the emulator.

For the cross-validation studies, each of the PD =5 double-fidelity runs were sequentially left
out and the emulator was used to predict the held-out run. For the first cross-validation study
(study ‘A’), the emulator was fitted by using the remaining four double-fidelity runs along with
all PS = 20 single-fidelity runs. For the second cross-validation study (study ‘B’), the emulator
was fitted by using the remaining four double-fidelity runs and 19 of the single-fidelity runs
excluding the single run at the same input setting as the held-out double-fidelity run. Study B is
more realistic than study A because neither a single- nor a double-fidelity run will be available
at the best input setting. For the final study (study ‘C’), the emulator was fitted by using only the
remaining four double-fidelity runs (i.e. ignoring all information contained in the single-fidelity
runs). By comparing study C with the other two, the value of leveraging the single-fidelity runs
to predict the double-fidelity runs is exposed.

In specifying each predictive process, K =317 spatial knots were used with locations in Fig.
1(c). These locations were chosen by placing a 212 grid over the spatial domain of LFM-MIX
and removing locations outside the circular spatial region in Fig. 1(b). An informal analysis (the
results are not shown) in selecting the number of knots was performed before running the cross-
validation study from which K =317 was chosen on the basis of an adequate trade-off between
computational expense and accuracy. A more formal analysis following that of Guhaniyogi et al.
(2011) could have been used to select the number and location of knots but the computational
expense of doing so was too great in this case. Recall that, even though the same spatial grid is
used to define each predictive process, we estimate separate decay parameters in the covariance
function for each variable.

2500 draws from the posterior were retained for analysis after an initial burn-in of 1000
draws using a Gibbs sampler with Metropolis–Hastings steps where required. Although these
are very few iterations for a Markov chain Monte Carlo algorithm, trace plots, empirical auto-
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Table 1. Empirical bias, root-mean-square error RMSE, 95% prediction interval coverage and 95% pre-
diction interval width when predicting the hold-out sample in the cross-validation study for energy E and
energy�flux EF †

Parameter Study Results for the following leave-out samples:

1 2 3 4 5

E EF E EF E EF E EF E EF

bias A −0.01 −0.01 0.01 0.04 0.07 −0.03 −0.23 −0.06 0.02 0.02
B −0.50 −0.21 −0.54 −0.17 −0.07 −0.10 −0.32 −0.24 0.06 0.02
C −4.71 −4.13 0.86 0.23 0.07 −0.08 0.99 0.39 0.22 0.11

RMSE A 0.11 0.02 1.96 0.76 1.20 0.27 1.76 0.59 0.93 0.34
B 1.15 5.83 2.83 1.04 1.24 0.42 3.32 3.56 0.95 0.35
C 8.63 12.72 3.31 1.06 1.54 0.48 3.34 3.88 1.67 0.58

coverage A 0.92 0.95 0.96 0.95 0.96 0.96 0.97 0.96 0.97 0.97
B 0.66 0.87 0.98 0.99 0.96 0.98 0.99 0.99 0.96 0.98
C 0.17 0.02 0.30 0.29 0.54 0.61 0.21 0.37 0.43 0.45

width A 0.18 0.02 2.94 0.71 1.92 0.40 3.08 0.81 1.75 0.40
B 1.83 0.94 5.77 2.21 2.71 0.80 5.90 2.75 1.91 0.50
C 1.12 1.58 1.40 0.30 0.73 0.18 1.27 0.47 0.68 0.12

†The studies correspond to the emulator predictive performance when A the single-fidelity LFM-MIX output at
the cross-validated input setting is retained, B the single-fidelity LFM-MIX output at the cross-validated input
setting is discarded and C all the single-fidelity LFM-MIX output is discarded (i.e. the emulator is fitted to only the
double-fidelity LFM-MIX output). Using the single-fidelity LFM-MIX output increases the emulator prediction
performance according to bias and RMSE. Practically useful errors are 5% of the variability of the observations
which equates to biases of 0.77 and 0.27 for energy and energy×flux respectively.

correlation functions and Gelman–Rubin diagnostics (Gelman and Rubin, 1992) indicated that
this was sufficient for convergence.

Table 1 compares the predictive performance of the emulator across studies in terms of bias,

bias= 1
NT

N∑
n=1

T∑
t=1

{D̂.ln, t; x/−D.ln, t; x/},

where D̂.l, t; x/ is the mean of the posterior predictive distribution for the double-fidelity output
D.l, t; x/ (either energy or energy×flux), root-mean-square error

RMSE=
√[

1
NT

N∑
n=1

T∑
t=1

{D̂.ln, t; x/−D.ln, t; x/}2
]

,

95% central predictive interval coverage

coverage= 1
NT

N∑
n=1

T∑
t=1

I{D̃
.0:025/

.ln, t;x/�D.ln, t;x/}I{D̃
.0:975/

.ln, t;x/�D.ln, t;x/},

where IA is an indicator for the set A and D̃
.q/

.l; x/ is the qth quantile of the posterior predictive
distribution for D.l, t; x/, and average 95% central predictive interval width

width= 1
NT

N∑
n=1

T∑
t=1

{D̃
.0:975/

.ln, t; x/− D̃
.0:025/

.ln, t; x/}:

According to Table 1 the bias and RMSE for studies A and B are smaller than those for study



Lyon–Fedder–Mobarry Magnetosphere–Ionosphere Model 105

C, suggesting that leveraging single-fidelity output to predict double-fidelity output is beneficial.
Furthermore, note that, across the hold-out samples, study A had less or equal RMSE than
study B, again, pointing to the importance of using the single-fidelity model output to predict
untried input settings for the double-fidelity LFM-MIX. This result is also encouraging because
exploration of input setting space can be accomplished by using the computationally cheap
single-fidelity model (recall that the single-fidelity model requires approximately 0:5 days to run
whereas the double-fidelity model requires approximately 3.5 days).

Note, also, that the coverage rates for study C are very poor whereas the corresponding rates
for studies A and B are more acceptable. This result arises in that our experimental design
includes only PD = 5 double-fidelity runs of the computer model. As demonstrated by Table
1, five points are far from adequate for exploring the input setting space. However, given the
additional 20 runs of the single-fidelity model, the space is more adequately explored. The
coverage rates for the first leave-out sample in study B seem to be lower than for the other hold-
out samples. This is because the LFM-MIX output at this input setting is drastically different
from that at any other observed output. Hence, the single-fidelity run is highly informative
about the output from the double-fidelity run such that coverage rates for study A are superior
to coverage rates under study B.

5. Calibration of LFM-MIX

For the calibration of LFM-MIX to observations, the grid given by Fig. 1(c) was again used to
define each of the predictive processes. For analysis, 10000 draws from the posterior distribution
of model parameters were obtained after an initial burn-in of 10000 draws and thinning to every
10th draw to decrease auto-correlation (i.e. the Markov chain Monte Carlo algorithm was run
for a total of 10000 + 10000 × 10 = 110000 draws). Five separate Markov chain Monte Carlo
chains were run with well-dispersed starting locations for χ to detect possible multimodality in
the posterior distribution. A final (sixth) Markov chain Monte Carlo chain was run by using
a proposal distribution that was a mixture of Gaussian distributions constructed from the
previous five chains and a random walk. Specifically, for the final chain, proposal values for χ
were generated from

0:95 N .χ.t−1/, S.t−1/
χ /+ 0:05

5

5∑
c=1

N .mc, Sc/

where χ.t−1/ was the current value for χ in the Markov chain Monte Carlo chain, S.t−1/
χ is the

current estimate of var.χ|Y/ adapted according to Andrieu and Thoms (2008) and mc and Sc

are the estimate of E.χ|Y/ and var.χ|Y/ according to the results from original chain c=1, : : : , 5.
By using this proposal distribution, the final chain can adequately jump between possible modes
discovered from the original five chains.

Fig. 3 displays the marginal and bivariate posterior kernel density estimates for χ. For χ1 and
χ3 the posterior distributions suggest values that are near the edge of the respective parameter
space with posterior means of χ̂1 = 0:47 and χ̂3 = 0:02 where we use the ‘hat’ notation to
denote posterior mean. The value of χ2, however, is centred closer to the centre of possible
values with a posterior mean of χ̂2 = 1:59. We re-emphasize that the tuning parameters x1, x2
and x3 describe the state of precipitating electrons from the magnetosphere to the ionosphere.
Rigorously characterizing this precipitation process, however, is outside the scope of LFM-
MIX. As such, the posterior mean χ̂ cannot be interpreted in terms of LFM-MIX but, rather,
is interpreted as physically plausible conditions for this precipitation process such that LFM-
MIX output resembles observational data as closely as possible.
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Fig. 4. Estimated counterclockwise rotations to align (a) the energy and (b) the energy � flux double-fidelity
LFM-MIX output at χ with the observations: , posterior mean; – – –, 95% credible interval limits

We note that our estimate of the calibration value is near an observed run (run 4) of the double-
fidelity LFM-MIX model. With only five runs of the double-fidelity model, having the good
fortune of running the double-fidelity model near the ‘correct’ value is unlikely. Investigating
this issue further, we determined that our estimate of χ was near a design point for the following
two reasons:

(a) short-range dependence across the input x-space and
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(b) insufficient detail in the single-fidelity model.

First, our estimates of the decay parameters (the γ-parameters in equation (6)) were large,
suggesting a small correlation range across x∈X . These large estimates for the decay parameters
suggest that LFM-MIX is highly variable as a function of x. Hence, moving away from an
observed LFM-MIX run results in predictions that resemble the mean field μ.s, t/ (which is
inadequate). The best alternative is then to settle near an observed LFM-MIX run. Second,
the single-fidelity LFM-MIX model lacked sufficient spatial detail to match the observations.
This can be seen, partly, from Fig. 2 wherein the double-fidelity model has more spatial features
than the corresponding single-fidelity output. Therefore, the double-fidelity LFM-MIX model
is preferred to the single-fidelity model.

The relationship between χ1, χ2 and χ3 is an important factor in selecting appropriate initial
conditions for LFM-MIX. The estimate of the posterior correlation matrix for χ is

ĉorr.χ|Y/=
( 1:00 0:00 −0:10

0:00 1:00 0:10
−0:10 0:10 1:00

)
:

A posteriori, the correlations between the parameters are fairly small, suggesting that each
input value may be set independently of one another and each controls a different aspect of
LFM-MIX.

Fig. 4 displays the counterclockwise rotation that is necessary to align LFM-MIX and the
observations (λt and κt). From Fig. 4, rotation of LFM-MIX is certainly required and, for
some time periods, a counterclockwise rotation of about 60◦ is required. Whereas both the
energy and the energy×flux fields are misaligned with the observations, the energy×flux field
seems to be misaligned by an approximately time constant constant rotation. The rotation for
the energy field, in contrast, requires a time varying rotation to align it with the observations.
The requirement of a rotation of LFM-MIX to align with the observations is a previously
unknown model discrepancy to CISWM scientists and current efforts are under way to explore
this discrepancy in more detail.

Finally, Fig. 5 displays the calibrated LFM-MIX output to the observed ionospheric energy
and energy×flux. Figs 5(b) and 5(e) display the rotated LFM-MIX output at the calibrated
value χ without the discrepancy term δ.s, t/. Comparing Figs 5(b) and 5(e) with the observations
(Figs 5(a) and 5(d)), the rotational discrepancy is clearly aiding in aligning LFM-MIX with the
observations. However, this comparison also clearly shows that the rotational discrepancy is
insufficient given the large disparity between rotated LFM-MIX output and the observations.
Figs 5(c) and 5(f) show the LFM-MIX output after rotations plus the discrepancy term δ.s, t/. By
construction, the discrepancy term δ.s, t/ models the disparity between raw LFM-MIX output
and the observations (hence, Figs 5(a) and 5(d), and 5(c) and 5(f) are nearly identical).

6. Conclusions

To use LFM-MIX to study space weather appropriately, proper initial conditions must be found.
However, emulating and calibrating LFM-MIX to ionospheric observations poses several sta-
tistical challenges including high dimension, space–time correlations, multiple-fidelity output
and non-additive discrepancies. To deal with these issues, this paper employed predictive pro-
cesses as a low rank approach to emulate and leverage the multiple fidelities of LFM-MIX.
Additionally, rotational and low rank discrepancies were introduced to account for differences
between the LFM-MIX output and field observations.

Kleiber et al. (2013) also considered calibration of LFM-MIX but their results differed from
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those found here. Specifically, Kleiber et al. (2013) found that χ2 was not well identified and
χ1 ≈ 0:3 and χ3 ≈ 0:4 were appropriate calibration values. First, as suggested by equation (2),
learning of χ2 comes largely from the flux variable which was included in this analysis and not
included in Kleiber et al. (2013). Second, the difference between the calibration results for χ1
and χ3 is mostly contingent on the choice of discrepancy function that is used. Here, rotations
were used to align LFM-MIX output with observations more appropriately whereas Kleiber
et al. (2013) chose not to use any discrepancy. Fundamentally, different discrepancies equate to
different loss functions for evaluating the fit of LFM-MIX to the observations. Hence, it is not
surprising to find different results based on different loss functions. This, inherently, raises the
question about what discrepancy (loss function) is most appropriate to use here. This question
is currently under investigation.

The fit of the statistical model identified appropriate settings for the three input values to
LFM-MIX. However, the results herein are based only on the initial design described in Section
2. On-going work continues to run LFM-MIX at new design points to confirm these results
and to explore new regions of the input parameter space. As computation is expensive in this
application, future runs of LFM-MIX will require the use of more sophisticated sequential
design techniques such as those proposed by Kleiber et al. (2013).

This paper used data from a single geomagnetic storm to calibrate LFM-MIX. However,
a key question yet remains in how LFM-MIX reacts to different storms, i.e. would the same
value for χ be found by using data from multiple storms? In other words, are the results that
are discussed in this paper specific to this storm or do they generalize to all storms? The answer
to this question is beyond the scope of this paper as only the single storm was available to us.
Yet, continued work in calibrating LFM-MIX will consider this question.
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Appendix A: Details on likelihood calculation

Let Se and Sf denote the vector of single-fidelity LFM-MIX output of log.energy/ and log.flux/ stacked
according to spatial locations, temporal locations and input settings, i.e. Se is a .1656×18×20/×1 vector.
Similarly, define De and Df as the double-fidelity LFM-MIX output. Let Ye and Yf denote the vector of
observations of log.energy/ and log.energy×flux/. Let SÅ

e , SÅ
f , DÅ

e and DÅ
f denote the LFM-MIX output

of log.energy/ and log.flux/ run at the ‘best’ input setting χ. Finally, let Θ denote all model parameters
and [·] denote a general distribution function.

Given observations and the runs of LFM-MIX as described in Section 2, the likelihood for Θ is given
by

[Ye, Yf , DÅ
f , DÅ

e , SÅ
f , SÅ

e , Df , De, Sf , Se|Θ]= [Ye, Yf |OÅ, O, Θ][OÅ|O, Θ][O|Θ]

where OÅ ={DÅ
f , DÅ

e , SÅ
f , SÅ

e } is the LFM-MIX output at χ and O={Df , De, Sf , Se} is the set of observed
LFM-MIX runs. According to equations (11) and (12), Ye and Yf are independent normally distributed
random variables with means
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E.Ye|OÅ, O, Θ/=Rλ.DÅ
e /+δe,

E.Yf |OÅ, O, Θ/=Rκ.DÅ
f /+Rκ.DÅ

e /+δf

and var.Ye|OÅ, O, Θ/=σ2
Ye

I and var.Yf |OÅ, O, Θ/=σ2
Yf

I where δe and δf are the vectors of discrepancy
terms and Rλ.·/ and Rκ.·/ appropriately rotate DÅ

e and DÅ
f to align with the observations. Subsequently,

by equations (4), (5), (9) and (10), the joint distribution [OÅ|O, Θ] is factored as

[DÅ
f |DÅ

e , SÅ
e , SÅ

f , O, Θ][DÅ
e |SÅ

f , SÅ
e , O, Θ][SÅ

f |SÅ
e , O, Θ][SÅ

e |O, Θ]: .14/

Each conditional distribution in expression (14) is Gaussian with

DÅ
f |DÅ

e , SÅ
e , SÅ

f , O, Θ∼N{μDf
+βDf

� S̃
Å
f +θDf � D̃

Å
e + .rχxR−1

x ⊗ I18 ⊗ I1656/D̃f ,
σ2

Df
.1− rχxR−1

x r′
χx/.RT ⊗RL/},

DÅ
e |SÅ

f , SÅ
e , O, Θ∼N{μDe

+βDe
� S̃

Å
e + .rχxR−1

x ⊗ I18 ⊗ I1656/D̃e,σ2
De

.1− rχxR−1
x r′

χx/.RT ⊗RL/},
SÅ

f |SÅ
e , O, Θ∼N{μSf

+βSf
� S̃

Å
e + .rχxR−1

x ⊗ I18 ⊗ I1656/S̃f ,σ2
Sf

.1− rχxR−1
x r′

χx/.RT ⊗RL/},
SÅ

e |O, Θ∼N{μSf
+ .rχxR−1

x ⊗ I18 ⊗ I1656/S̃e,σ2
Se

.1− rχxR−1
x r′

χx/.RT ⊗RL/},

where ‘�’ denotes the Hadamard (pointwise product), rχx is a vector denoting the correlations across input
settings (i.e. the correlations between LFM-MIX run at χ and those run at the observed input settings).
Note that, in each conditional distribution above, the values for the covariance function were assumed
to be fidelity specific (see Sections 3.1 and 3.2 for more details). The final piece of the likelihood is the
joint distribution [Se, Sf , De, Df |Θ]. This distribution is factored and expressed in a similar manner to
expression (14) above.
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Gneiting, T., Ševčı́ková, H. and Percival, D. B. (2012) Estimators of fractal dimension: assessing the roughness of

time series and spatial data. Statist. Sci., 27, 247–277.
Gratiet, L. L. (2013) Bayesian analysis of hierarchical multi-fidelity codes. J. Uncertn. Quantificn, 1, 244–269.
Guhaniyogi, R., Finley, A. O., Banerjee, S. and Gelfand, A. E. (2011) Adaptive Gaussian predictive process

models for large spatial datasets. Environmetrics, 22, 997–1007.
Harville, D. A. (1997) Matrix Algebra from a Statisticians Perspective. New York: Springer.
Higdon, D. (2002) Space and space-time modeling using process convolutions. In Quantitative Methods for Current

Environmental Issues (eds C. Anderson, V. Barnett, P. C. Chatwin and A. H. El-Shaarawi), pp. 37–56. New York:
Springer.

Higdon, D., Gattiker, J., Williams, B. and Rightley, M. (2008) Computer model calibration using high-dimensional
output. J. Am. Statist. Ass., 103, 570–583.

Higdon, D., Swall, J. and Kern, J. (1999) Non-stationary spatial modeling. In Bayesian Statistics 6 (eds J. M.
Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), pp. 761–768. Oxford: Oxford University Press.

Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990) Minimax and maximin distance designs. J. Statist. Planng
Inf., 26, 131–148.

Jun, M. and Stein, M. L. (2007) An approach for producing space-time covariance functions on spheres. Techno-
metrics, 49, 468–479.

Jun, M. and Stein, M. L. (2008) Nonstationary covariance models for global data. Ann. Appl. Statist., 2, 1271–
1289.

Kang, E. L. and Cressie, N. (2011) Bayesian inference for the spatial random effects model. J. Am. Statist. Ass., 106,
972–983.

Kaufman, C. G., Bingham, D., Habib, S., Heitmann, K. and Frieman, J. A. (2011) Efficient emulators of computer
experiments using compactly supported correlation functions, with application to cosmology. Ann. Appl. Statist.,
5, 2470–2492.

Kennedy, M. C. and O’Hagan, A. (2001) Bayesian calibration of computer models (with discussion). J. R. Statist.
Soc. B, 63, 425–464.

Kleiber, W., Sain, S. R., Heaton, M. J., Wiltberger, M., Bingham, D. and Reese, C. R. (2013) Uncertainty quantifi-
cation for a multi-fidelity dynamical model of the magnetosphere. Ann. Appl. Statist., 7, 1286–1310.

Liu, F., Bayarri, M. J. and Berger, J. O. (2009) Modularization in Bayesian analysis with emphasis on analysis of
computer models. Baysn Anal., 4, 119–150.

McKay, M. D., Beckman, R. J. and Conover, W. J. (1979) A comparison of three methods for selecting values of
input variables in the analysis of output from a computer code. Technometrics, 21, 239–245.

National Research Council Committee on the Societal and Economic Impacts of Severe Space Weather Events
(2008) Severe Space Weather Events—Understanding Societal and Economic Impacts: a Workshop Report. Wash-
ington, DC: National Academies Press.

Paulo, R., Garcia-Donato, G. and Palomo, J. (2012) Calibration of computer models with multivariate output.
Computnl Statist. Data Anal., 56, 3959–3974.

Phillips, T. (2012) Solar storm dumps gigawatts into Earth’s upper atmosphere. In Science News, Mar. 22nd.
National Aeronautics and Space Administration. (Available from http://science.nasa.gov/science-
news/science-at-nasa/2012/22mar saber/.)

Qian, Z. G. and Wu, C. F. (2008) Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy
experiments. Technometrics, 50, 192–204.

Rasmussen, C. and Williams, C. K. I. (2006) Gaussian Processes for Machine Learning, vol. 1. Cambridge: MIT
Press.

Rougier, J. C. (2008) Efficient emulators for multivariate deterministic functions. J. Computnl Graph. Statist., 17,
827–843.

Royle, J. A. and Berliner, L. M. (1999) A hierarchical approach to multivariate spatial modeling and prediction. J.
Agric. Biol. Environ. Statist., 4, 29–56.

Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989) Design and analysis of computer experiments (with
discussion). Statist. Sci., 4, 409–423.

Santner, T. J., Williams, B. J. and Notz, W. I. (2003) The Design and Analysis of Computer Experiments. New York:
Springer.

Sparks, R. S. J., Aspinall, W. P., Chapman, N. A., Hill, B. E., Kerridge, D. J., Pooley, J. and Taylor, C. A. (2013)
Technological facilities, infrastructure and hazardous materials. In Risk and Uncertainty Assessment for Natural
Hazards (eds J. Rougier, S. Sparks and L. J. Hill), pp. 445–480. Cambridge: Cambridge University Press.

Stein, M. L. (1999) Interpolation of Spatial Data: Some Theory for Kriging. New York: Springer.
Stein, M. L. (2005) Space-time covariance functions. J. Am. Statist. Ass., 100, 310–321.
Sun, Y., Li, B. and Genton, M. (2011) Geostatistics for large datasets. In Space–Time Processes and Challenges



Lyon–Fedder–Mobarry Magnetosphere–Ionosphere Model 113

Related to Environmental Problems (eds E. Porcu, J. M. Montero and M. Schlather), pp. 55–77. New York:
Springer.

Tarantola, A. (2005) Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia: Society
for Industrial and Applied Mathematics.

Wiltberger, M., Weigel, R. S., Lotko, W. and Fedder, J. A. (2009) Modeling seasonal variations of auroral particle
precipitation in a global-scale magnetosphere-ionosphere simulation. J. Geophys. Res., 114, article A01204.

Zhang, H. (2004) Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J.
Am. Statist. Ass., 99, 250–261.

Supporting information
Additional ‘supporting information’ may be found in the on-line version of this article:

‘Emulating and calibrating the multiple-fidelity Lyon–Fedder–Mobarry magnetosphere–ionosphere coupled com-
puter model’.


