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ABSTRACT

The authors introduce two ways to produce locally calibrated grid-based probabilistic forecasts of tem-
perature. Both start from the Global Bayesian model averaging (Global BMA) statistical postprocessing
method, which has constant predictive bias and variance across the domain, andmodify it tomake it local. The
first local method, geostatistical model averaging (GMA), computes the predictive bias and variance at ob-
servation stations and interpolates them using a geostatistical model. The second approach, Local BMA,
estimates the parameters of BMA at a grid point from stations that are close to the grid point and similar to it
in elevation and land use. The results of these two methods applied to the eight-member University of
Washington Mesoscale Ensemble (UWME) are given for the 2006 calendar year. GMA was calibrated and
sharper than Global BMA, with prediction intervals that were 8% narrower than Global BMA on average.
Examples using sparse and dense training networks of stations are shown. The sparse network experiment
illustrates the ability of GMA to draw information from the entire training network. The performance of
Local BMA was not statistically different from Global BMA in the dense network experiment, and was
superior to both GMA and Global BMA in areas with sufficient nearby training data.

1. Introduction

Probabilistic forecasting has experienced a recent surge
of interest in the atmospheric sciences community. Early

on, it was recognized that ensembles of forecasts could
provide a measure of forecasting confidence for a given
variable (Epstein 1969; Leith 1974). There was hope that
ensembles of forecasts would produce an estimate of the
predictive distribution for a specificweather quantity, and
much research has been devoted to methods of generat-
ing representative ensembles (Toth and Kalnay 1993;
Houtekamer and Derome 1995; Molteni et al. 1996;
Stensrud et al. 1999; Hamill et al. 2000; Buizza et al.
2005). However, ensembles are often underdispersed
(Hamill and Colucci 1997) and require postprocessing to
properly calibrate the resulting distribution.
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Recently, work on postprocessing of ensembles has
focused on generating calibrated probabilistic fore-
casts. Some approaches include nonhomogeneous
Gaussian regression (Gneiting et al. 2005; Hagedorn
et al. 2008), the best member method (Roulston and
Smith 2003; Wang and Bishop 2005; Fortin et al. 2006),
and logistic regression (Hamill et al. 2004), all of which
have been recently compared by Wilks and Hamill
(2007). Related approaches include kernel dressing
(Bröcker and Smith 2008), moving average estima-
tion (Johnson and Swinbank 2009), model output
statistics (MOS; Glahn et al. 2009b), ensemble re-
gression (Unger et al. 2009) and extended logistic re-
gression (Wilks 2009). The need for postprocessing of
ensemble output is also discussed in the climate litera-
ture (Kharin and Zwiers 2002; Tebaldi and Knutti 2007;
Smith et al. 2009).
Postprocessing of ensembles using Bayesian model

averaging (BMA), introduced by Raftery et al. (2005),
has enjoyed success in forecasting weather quantities
such as 2-m temperature, sea level pressure, precipita-
tion (Sloughter et al. 2007), and wind speed (Sloughter
et al. 2010), as well as hydrologic streamflow (Duan et al.
2007). BMA is a method of combining predictive den-
sities generated by individual members of an ensemble.
We focus on surface temperature as the variable of in-
terest here, though the methods we introduce can be
adapted to other quantities. If yst is the temperature at
site s, valid at time t, with K forecasts f1st, . . . , fKst, the
BMA predictive density for yst is

p(ystjf1st, . . . , fKst)5 !
K

‘51
w‘g(ystjf‘st), (1)

where g(ystjf‘st) is a normal density with bias-corrected
mean f‘st2 a‘ and variance s

2.We refer to this model for
temperature as Global BMA. Global BMA is a global
model in the sense that it does not adjust the statistical
parameters (such as bias and predictive variance) lo-
cally.
Postprocessing of numerical weather forecasts has

been carried out since the advent of MOS (Glahn and
Lowry 1972). Systematic errors in numerical weather
predictionmodels can be removed usingMOS, but often
these errors (which we refer to as biases; see Dee 2005)
vary spatially. These biases can only be computed at
observation locations. However, recent interest has fo-
cused on removing bias across the entire model grid,
where there are usually no direct observations. Themost
common approach to gridded bias correction is to in-
terpolate relevant information from surrounding ob-
servation stations to a given grid point. Various ways of

doing this interpolation have been proposed in recent
years: Yussouf and Stensrud (2006) interpolated ob-
served biases to the model grid using a Cressman (1959)
scheme.Hacker andRife (2007) interpolated bias analyses
using minimum variance estimates. Glahn et al. (2009a)
described an approach to gridding MOS predictions that
accounts for elevation and the distinction between water-
and land-based model grid points. Mass et al. (2008) in-
troduced an approach to gridded bias correction that is
sensitive to features that affect model bias, such as eleva-
tion, land-use type, and forecast value. Their gridded bias
estimation is based on an interpolation scheme, which we
refer to as the Mass–Baars interpolation method. Mass–
Baars interpolation is used extensively in one of our two
locally adaptive probabilistic approaches, and is described
fully in section 4.
Generally, the two fields of probabilistic forecasting

and grid-based model corrections do not overlap. There
have been some recent developments in combining nu-
merical model output and observational data that sug-
gest a hybrid approach that locally adjusts a statistical
postprocessing model based on observations. Berrocal
et al. (2009) described a statistical model with spatially
varying parameters to downscale average gridcell level
numerical model output for ozone concentration, which
was generalized to the bivariate case in a follow-up
study (Berrocal et al. 2010). A similar, but not fully
Bayesian, approach has been implemented by Liu et al.
(2008).
In this paper we explore postprocessing methodolo-

gies to generate locally calibrated predictive distribu-
tions based on an ensemble of forecasts. We introduce
two approaches, both based on the BMAwork of Raftery
et al. (2005). The first can be thought of as a local gen-
eralization of Global BMA, which we call geostatistical
model averaging (GMA). In particular, GMA will allow
the bias correction and predictive variance parameters to
vary by location. GMA belongs to the general class of
spatially varying-coefficientmodels (Hastie andTibshirani
1993; Gelfand et al. 2003, 2005). Our second method in-
terpolates relevant forecast errors first according to the
Mass–Baars interpolation scheme, and then estimates
the Global BMA model at each model grid point. We
call this approach Local BMA.
The remainder of the paper is structured as follows:

section 2 introduces the GMA model for the case of a
single forecast. This is extended to an ensemble of
forecasts in section 3. Section 4 describes Local BMA.
The following two sections are devoted to illustrating
the models: aggregate results over the Pacific Northwest
are considered in section 5, followed by a detailed case
study at four locations in section 6. We end the paper
with a discussion and possible extensions.
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2. Geostatistical single forecast model

The basic model for temperature yst at site s valid at
time t is

yst 5 fst 2 as1 «st, (2)

where fst is the corresponding forecast, as is an additive
bias correction, and «st has a normal distribution with
mean 0 and variance s2

s .

a. Estimation

Suppose we have training data at n sites s 5 s1, . . . , sn
with forecasts fst and validating observations yst. For any
given training site s, empirical estimates of bias and var-
iance are

âs 5
1

T
!
T

t51
( fst 2 yst) and ŝ2

s 5
1

T
!
T

t51
( fst2yst2 âs)

2,

where the sum and variance are over some prespecified
training period of length T.
We view the empirical estimates fâsig

n

i51
as a partial

realization from a stationary Gaussian random field in
three dimensions, R3, with mean ma and the covariance
function:

Ca(s1, s2)5Cov(as
1
, as

2
)

5 t2a1 r2a exp

!
2
ks1 2 s2k

ra1
2

jh(s1) 2 h(s2)j
ra2

"
,

(3)

where k!k is the Euclidean norm. The parameter t2a is the
nugget effect, which corresponds to measurement error
or microscale variability; r2a is a variance parameter; ra1
is the range corresponding to horizontal distance; and ra2
is the range corresponding to vertical distance, where
h(s) is the elevation at location s.
We define ys 5 logs2

s , with empirical estimates ŷs 5
logŝ2

s . We view fŷsig
n

i51
as a partial realization from a

stationary Gaussian random field with mean my and the
covariance function:

Cy(s1, s2)5Cov(ys
1
, ys

2
)

5 t2y 1 r2y exp

!
2
ks1 2 s2k

ry1
2

jh(s1)2 h(s2)j
ry2

"
.

(4)

These random field parameters are estimated by maxi-
mum likelihood using the empirical values fâsig

n

i51
and

f̂ysig
n

i51
as data. There is no closed form for these esti-

mates, so they must be found via numerical maximiza-
tion; we use the limited memory quasi-Newton bound
constrained optimization method of Byrd et al. (1995).
We now introduce some notation. First, denote the

maximum likelihood estimates of the random field pa-
rameters by hats (e.g., m̂a). Let Ĉa(!, !) and Ĉy(!, !) be the
covariance functions for the as and ys processes defined
by (3) and (4), respectively, with the maximum likeli-
hood estimates plugged in. Define the covariance ma-
trices Sa 5 fĈa(si, sj)g

n

i, j51 and Sy 5 fĈy(si, sj)g
n

i, j51. For
any site of interest, s0, let ĉa 5 [Ĉa(s0, s1), . . . , Ĉa(s0, sn)]9
and ĉy 5 [Ĉy(s0, s1), . . . , Ĉy(s0, sn)]9 be the vectors of es-
timated covariances for the two processes between the
site of interest and the station locations. Finally, let
â5 (âs1

, . . . , âsn
)9 and ŷ5 (ŷs1 , . . . , ŷsn)9 be the vectors of

empirical estimates of the bias and log variance at the
observation sites.

b. Forecasting

The predictive distribution at site s0 valid at time t is
specified by (1). Unless s0 is a training site, there are no
direct estimates of as0

or s2
s0
, so we use a geostatistical

method of interpolation known as kriging (Cressie 1993;
Stein 1999). Kriging yields the best linear unbiased pre-
dictor under a quadratic loss function. The kriging esti-
mates of as0

and ys0
are

âs
0
5 m̂a1 ĉa9S

21
a (â 2 m̂a1) (5)

and

ŷs
0
5 m̂y1 ĉ9y S

21
y (ŷ2 m̂y1), (6)

where 1 is a vector of ones of length n. In this case, the
kriging estimates correspond to the conditional expec-
tations of as0 and ys0 given â and ŷ, respectively, under
the assumption that the maximum likelihood estimates
of the spatial parameters are the true underlying spatial
parameters (Chilès and Delfiner 1999). The final predic-
tive distribution for ys0t

is then normalwithmean fs0t
2 âs0

and variance ŝ2
s0
5 exp(ŷs0

).

3. Geostatistical model averaging

In the last section we considered the situation where
we have just one forecast for each site and valid time.
We now extend this to the situation where we have an
ensemble of forecasts at each site and valid time.
Suppose that at each of n training sites s 5 s1, . . . , sn,

with s2 R3, we haveK forecasts f1st, . . . , fKst at site s valid
at time t. The BMA approach to combining forecasts is
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described in Raftery et al. (2005), where the predictive
density of temperature, yst, given the K forecasts, is de-
fined by (1), where g(ystjf‘st) is a normal density with
mean f‘st 2 a‘ and variance s2. Here, the additive bias
corrections a‘ and predictive variance s2 are common
among all sites for any time t, and hence define theGlobal
BMA model.
In the GMA formulation, the additive bias term be-

comes, for forecast ‘ at site s, a‘s. Raftery et al. (2005)
suggest the assumption of a common variance among all
component densities is reasonable, so that the GMA
predictive variance becomes cs2

s , where s2
s 5 exp(ys).

The variance deflation factor c is chosen so as to produce
a calibrated predictive density (Berrocal et al. 2007).

a. Estimation

Suppose we have training data consisting of K fore-
casts f f‘stg

K
‘51

along with observations at the n observa-
tion sites. For training site s, empirical estimates of bias
and variance are

â‘s5
1

T
!
T

t51
( f‘st 2 yst) and

ŝs
25

1

KT
!
T

t51
!
K

‘51
( f‘st 2 yst2 es)

2,

where the sum is over a training period, usually of length
T5 25 days, and the variance is over this training period
along with all K forecasts, where es is the average of the
K 3 T errors f‘st 2 yst.
As in the single forecast case, we view the empiri-

cal estimates fâ‘sig
n
i51

as being drawn from stationary
Gaussian random fields with covariance functions of the
form (3), but with forecast-specific parameters ma‘, t

2
a‘,

r2a‘, ra1‘, ra2‘, for ‘ 5 1, . . . , K. The site-specific log vari-
ances are ys 5 logs2

s , with estimates collapsed across
ensemble members denoted by ŷs 5 logŝ2

s . The model
for ys follows directly from the single forecast case. The
random field parameters are estimated by maximum
likelihood, using the empirical estimates fâ‘sig

n

i51
and

fŷsig
n
i51.

b. Forecasting

As in the single forecast case, the first step is to set up
the predictive densities fg(ys0tj f‘s0t)g

K

‘51
for any site of

interest s0. The kriging equations (5) and (6) yield esti-
mates â1s0

, . . . , âKs0
, and ŷs0 that are plugged into the

component densities. Thus, the final predictive density for
ys0t

is (1), where g(ys0tj f‘s0t) is normalwithmean f‘s0t
2 â‘s0

and variance c exp(ŷs0
), for ‘5 1, . . . ,K. TheBMAweights

w1, . . . , wK and the variance deflation parameter c are

estimated via the expectation-maximization (EM) al-
gorithm (Dempster et al. 1977), which we describe in the
appendix. Once a stopping criterion for the EM algo-
rithm is reached, the estimatesw1, . . . ,wK and c are used
in the predictive density (1).

4. Local Bayesian model averaging

This paper describes two ways to approach the local
prediction problem: GMA first estimates forecast error
characteristics such as bias at the available observation
stations, and then interpolates this information spatially.
Alternatively, forecast errors could be interpolated first,
followed by model estimation; this is the approach be-
hind Local Bayesian model averaging (Local BMA).
Local BMA is currently used operationally in the Uni-
versity ofWashington’s probabilistic forecasting project,
Probcast (Mass et al. 2009); it combines the Mass–Baars
interpolation technique with the Global BMA model to
produce a predictive distribution that adapts to local
characteristics. Mass–Baars interpolation is sensitive to
features that affect model bias, such as elevation, land-
use type, and forecast value, and works as follows.
Given forecasts fst and observations yst at n observation

stations s5 s1, . . . , sn at time t, the goal of theMass–Baars
interpolation scheme is to interpolate past forecast errors
fst 2 yst at observation stations s to grid point s0. The in-
terpolation scheme selects relevant forecast errors using
the following criteria: observation sites must have an el-
evation that is close to the elevation at s0, and must fall
within some prespecified radius of s0, with observing lo-
cations that are closer to s0 given preference over those
farther away. Observation sites must have a similar land-
use category as s0, as forecast biases may have different
characteristics depending on the land-use type of the
forecast site. Land-use types are split into nine groups
sharing similar characteristics, as defined in Mass et al.
(2008). To mitigate the effects of change of meteorolog-
ical regime, the forecast errors must arise from a similar
forecast value; for instance, if the forecast at s0 is 208C,
then the only errors considered come from forecasts
between, say, 188 and 228C. To account for diurnal effects
and differences due to model projection time, only errors
from the same forecast hour as the forecast grid in ques-
tion are used. Only recent errors are considered, and er-
rors beyond a certain magnitude are ignored as they may
be indicative of a problem station. The unspecified pa-
rameters here such as the interpolation radius are ob-
tained using an optimization routine that minimizes mean
absolute error based on training data. The Mass–Baars
bias-correction technique estimates bias at any given grid
point s0 by interpolating forecast errors based on the above
criteria, and averaging the resulting set of interpolated
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errors. The estimated bias may then be removed from
the forecast at s0. Local BMA, on the other hand, uses
interpolated forecast errors from observation stations to
produce a probabilistic forecast.
Local BMA operates as follows: given observations

and an ensemble ofK forecasts at sites s5 s1, . . . , sn, the
Mass–Baars interpolation scheme is used to interpolate
a predefined number of forecast errors f‘st 2 yst to a
model grid point s0, where t runs through some pre-
defined training period, usually of no longer than several
weeks. Then, BMA is applied, using these errors as data,
at eachmodel grid point separately, yielding a predictive
density of the form (1), but with weights w1s0

, . . . ,wKs0
,

bias corrections a1s0
, . . . , aKs0

, and predictive variance
s2
s0
that are all specific to the grid point s0. Finally, to

produce a predictive distribution at any site within the
domain, the locally estimated Global BMA model pa-
rameters are bilinearly interpolated from each of the
surrounding four grid points. The control parameters
that define the interpolation radius, elevation band, and
forecast value band that determine the relevant forecast
errors are chosen by minimizing the domain averaged
mean absolute error on a set of held out station data.
The specific values of these parameters, and the algo-
rithm used to minimize the domain-averaged mean ab-
solute error are described in Mass et al. (2008).

5. Aggregate results

Our twomethods are applied to a temperature dataset
over the North American Pacific Northwest during cal-
endar years 2005–06. We use 48-h forecasts initialized
at 0000 UTC from the 8-member University of Wash-
ingtonMesoscale Ensemble (UWME), described in Eckel
and Mass (2005). First we examine aggregate results
over the entire forecast domain, followed by a focused
study of results at four stations.
Since Local BMA chooses stations based on charac-

teristics other than just station proximity, GMA and
Local BMA usually choose different sets of observa-
tions. Depending on the density of the observation
network, we might expect one of the two methods to be
superior. For instance, if the observation network is very
dense, GMA will focus on the nearest stations for local
adjustments with no concern for features such as land
type. In contrast, the nearby stations that Local BMA
draws from may be more similar in terms of forecast er-
rors, and hence may account for important information
overlooked by GMA. On the other hand, if the observa-
tion network is sparse, Local BMAmay not have enough
‘‘similar’’ stations nearby to make any local corrections
(we always default to the Global BMA predictive density
in these cases), while GMA is able to draw from all

available sites in the network. Below we look at both
scenarios, starting with the sparse network experiment.

a. Sparse network

For the sparse network, we restrict attention to ob-
servation stations on land, as exploratory analysis sug-
gested no spatial correlation of forecast biases or
variances over the Pacific Ocean, where there would be
little or no gain in using a geostatistical approach; at
these locations Global BMAwill suffice for probabilistic
predictions. That is, if one were interested in producing
probabilistic forecasts at a station in the Pacific Ocean,
one could use Global BMA (using, say, only training
stations that are also ocean based), without the added
complication of the locally varying model parameters.
Land-based observation stations show strong spatial cor-
relations: see the empirical estimates of the biases as and
the log variances ys for the GFS ensemble member using
a 25-day training period leading up to 7 July 2005 in Fig. 1.
The 294 observation stations in this sparse experiment

were chosen as if they represented a sparse, but reliable
network, having an observation on at least 90% of all
available days. Hence, each station has a nearly com-
plete set of observations across the 2005–06 period, with
very few short periods of missing data. Initially, we
randomly divide the 294 observation stations into 194
for model fitting and 100 for validation. Figure 2 shows
the locations of these two sets of stations. Empirical
estimates of the bias and log variance processes as and ys
require a choice of training period; for both GMA and
Global BMA, we adopt the 25-day training period that
has been recommended in previous studies (Raftery
et al. 2005).
GMA relies on a Gaussian process representation of

the bias as and log variance ys parameters. Exploratory
analysis, such as empirical variograms, suggests that the
functional form of the covariance functions (3) and (4)
is justified, and also that the parameters defining the
Gaussian structure of as and ys are constant across sea-
sons. Thus, we estimate these random field parameters
only once, using 11 independent realizations generated
by disjoint 25-day training periods from 20 January to
31 December 2005, and hold these estimates constant
across the validation year of 2006. This duration is lon-
ger than 11 3 25 days since forecasts are missing on
some days due to machine failure and disruptions in
communications. These maximum likelihood estimates
are presented in Table 1. The second-order parameters
are almost indistinguishable between ensemble mem-
bers, but the mean bias varies between forecasts.
With these estimates in hand, we perform validation

on the entire year 2006. All models use a sliding training
window of the previous T available days where T 5 25
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for GMA andGlobal BMA, andT5 59 for Local BMA.
Other lengths of training periods were considered for
GMA, but 25 days was found to produce the best results
in terms of domain-averaged mean absolute error and
continuous ranked probability score, similar to the ex-
perience of Raftery et al. (2005). The length of training
period for Local BMA was chosen as that which mini-
mized the domain aggregated mean absolute error, and
we refer to Mass et al. (2008) for details. The network is

sparse enough that occasionally Local BMA does not
have enough similar stations near a grid point to in-
terpolate forecast errors (there must be 8 nearby sta-
tions with 11 similar forecasts each for Local BMA to be
available at a grid point). In these situations, we will
substitute the Global BMA predictive density, thereby
always guaranteeing a probabilistic prediction.
To assess the quality of the predictive distributions,

we adopt the principle that probabilistic forecasts aim

FIG. 1. Empirical estimates of (a) the bias process as (in 8C), and (c) the log variance process ys (in log Celsius
2) with

kriged estimates of (b) bias and (d) log variance on the 12-km forecast grid, from the GFS ensemble member, using
a 25-day training period leading up to 7 Jul 2005.
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to maximize sharpness subject to calibration (Gneiting
et al. 2007). Calibration requires statistical consistency
between the predictive distributions and validating ob-
servations, and may be assessed via the probability in-
tegral transform (PIT) histogram (Diebold et al. 1998;
Raftery et al. 2005; Gneiting et al. 2007). If F is the
predictive cumulative distribution function for the ob-
served quantity y, then the PIT histogram is a plot of
F(y) over many instances. A perfectly calibrated distri-
bution will result in a uniform PIT histogram, while an
overdispersed predictive distribution will put more mass
in the center, and finally underdispersion is indicated by

a U-shaped histogram. PIT histograms are a continuous
analog of the rank histogram, which we use to describe
the ensemble’s calibration (Hamill 2001). Figure 3 shows
the PIT histograms for the Global BMA model, Local
BMA, and GMA, with a rank histogram for the raw en-
semble.
It is immediately seen that the raw ensemble is under-

dispersed, a common feature of many types of forecasts
(Hamill and Colucci 1997). The Global BMA model and
GMA show much better calibration, while Local
BMA reduces the underdispersion, but does not re-
move it completely.

FIG. 2. Observation station locations: fitting stations in the sparse network are shown by
black dots, fitting stations in the dense network are shown by both black and green dots, and
validation stations are shown by red dots.
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Sharpness refers to the concentration of the predictive
distribution; the continuous ranked probability score
(CRPS) assesses both sharpness and calibration, and is
defined by

CRPS(F, x)5
ð1‘

2‘
[F(y) 2 I(y$ x)]2 dy, (7)

where F is the predictive distribution and x is the
observed temperature (Matheson and Winkler 1976;
Hersbach 2000; Grimit et al. 2006; Gneiting and Raftery

2007). The CRPS and mean absolute error (MAE) be-
tween the validating observations and median of the
predictive distribution are displayed in Table 2. Global
BMA improves the raw ensemble’s MAE by 4.8%,
Local BMA improves it by 3.5%, while GMA improves
it by 6.3%. Similarly, the raw ensemble’s CRPS is im-
proved by 15.8% using Global BMA, 14.1% by Local
BMA, and 17.3% by GMA. Indeed, GMA improves
the aggregate mean CRPS andMAE over Global BMA;
the standard error of the difference in CRPS between
Global BMA and GMA is 0.0038C and for MAE the
standard error is 0.0058C, indicating that the improve-
ment in both scores is statistically significant. Similarly,
the standard error for difference between Global BMA
and Local BMA is 0.0038 and 0.0058C for CRPS and
MAE, respectively, also indicating that the differences
shown in Table 2 are significantly different, in particular
that Local BMA is performing worse than Global BMA
at an aggregate level.
We also calculate the CRPS value for each model at

each validation station separately, with Fig. 4a summa-
rizing the results. Each validation station is color coded
corresponding to the model with the best local CRPS
value. GMA has the best CRPS value at 47 stations,
while Global BMA has the lowest value at 42, Local
BMA at 10, and the raw ensemble is best at 1 station.
The aggregate scores of CRPS and MAE show im-

provement using all models over the raw ensemble, and

TABLE 1. Maximum likelihood estimates for the additive bias
processes a‘s (in 8C) and the log variance process ys (in log Cel-
sius2), for each member of the UWME. Distance is in km, and el-
evation is in m. The Global Forecast System (GFS) is from the
National Centers for Environmental Prediction (NCEP), the
Global Environmental Multiscale Model from the Canadian Me-
teorological Centre (CMCG), Eta is the limited-area mesoscale
model from NCEP, the Global Analysis and Prediction (GASP)
model is from the Australian Bureau of Meteorology, the Global
Spectral Model is from the Japan Meteorological Agency (JMA),
the Navy Operational Global Atmospheric Prediction System
(NGPS) is from the Fleet Numerical Meteorological and Ocean-
ographic Center, the Global Forecast System is from the Taiwan
Central Weather Bureau (TCWB), and the Unified Model is from
the Met Office.

Forecast

Bias processes, a‘s

ma t2a r2a ra1 ra2

GFS 20.21 0.48 3.36 307 2159
CMCG 0.14 0.46 3.40 287 2090
ETA 0.10 0.52 3.64 356 2429
GASP 20.43 0.43 3.57 304 2139
JMA 20.47 0.46 3.35 300 1992
NGPS 20.47 0.44 3.67 321 2240
TCWB 20.69 0.44 3.76 333 2193
UKMO 20.16 0.45 3.37 301 2109

Log variance process, ys

my t2y r2y ry1 ry2

1.78 0.0076 0.23 136 2800

FIG. 3. Sparse network experiment: (a) rank histogram for the raw ensemble, and PIT histograms for (b) Global BMA, (c) Local BMA,
and (d) GMA.

TABLE 2.MAE andmean CRPS (both in 8C) for the raw ensemble,
Global BMA, Local BMA, and GMA over the calendar year 2006.

Sparse network Dense network

MAE CRPS MAE CRPS

Raw ensemble 1.958 1.603 1.958 1.603
Global BMA 1.865 1.350 1.875 1.356
Local BMA 1.889 1.377 1.883 1.375
GMA 1.834 1.326 1.849 1.333
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suggest further improvement over Global BMA using
a locally adaptive model. Indeed, GMA improves MAE
at 54% of stations over Global BMA and improves the
local CRPS at 55% of validation stations. Local BMA
improves MAE and CRPS over Global BMA at 30%
and 26% of validation stations, respectively. To assess
local calibration and sharpness of the postprocessing
models, Fig. 5 shows box plots for the validation-station-
based coverage and average width for the nominal 80%,
90%, and 95% prediction intervals. Locally, we see that
Local BMA is underdispersed at most stations while
GMA and Global BMA are closer to nominal coverage
at most validation stations. The box plots of average
widths in the second row illustrate the effect of a con-
stant predictive variance parameter as in the Global
BMAmodel, all average prediction intervals are nearly of
equal width at every station. GMAandLocal BMAallow
the prediction interval widths to vary substantially be-
tween locations, and both produce much narrower pre-
diction intervals at most validation stations than Global
BMA.
While CRPS takes account of both sharpness and

calibration, the former may be checked directly by ex-
amining the width of the predictive intervals. Table 3

provides average width and coverage of the 80%, 90%,
and 95% prediction intervals for Global BMA, Local
BMA, and GMA. As the PIT histogram suggests, Global
BMA produces globally calibrated prediction intervals;
for instance the 80% interval covers the verifying value in
80.6% of cases. GMA yields only slightly underdispersed
but significantly sharper prediction intervals, consistently
narrowing each of the 80%, 90%, and 95% intervals by
approximately 8% relative to Global BMA. Local BMA
displays the underdispersion seen in its PIT histogram
with the average interval coverages generally being 8%–
10% lower than nominal, but narrows the predictive
intervals by approximately 20% over Global BMA on
average.
The greater accuracy of GMA than Global BMA

displayed in the MAE is a result of a locally varying bias
correction, while the better calibration and sharper
prediction intervals are also influenced by the locally
varying predictive variance. The ability to adjust pa-
rameters locally should result in better-calibrated dis-
tributions at each given site, which is not necessarily
guaranteed using Global BMA. We examined the dis-
crepancy criteria at each validation station, that is, the
deviation of the PIT histogram from uniformity, and we

FIG. 4. Station-based CRPS with color corresponding to model with the lowest (best) value. Color codes are black
for the raw ensemble, blue for Global BMA, green for Local BMA, and red for GMA. Scores are shown for (a) the
sparse training network and (b) the dense training network.

2638 MONTHLY WEATHER REV IEW VOLUME 139



found that GMA improved calibration over Global
BMA in 66% of cases.
Local BMA suffers from the lack of available infor-

mation using the sparse training network, and must in-
terpolate forecast errors fromgreat distances becauseof the
sparsity of fitting stations. In fact, Local BMAwas available
at only 85 of the 100 validation sites; we substituted in
Global BMA’s predictive density at the remaining 15 lo-
cations where Local BMA was not available.

b. Dense network

For the dense network, we allow any station available
during the 2005–06 time period to be included as a fitting

station. This yields 1457 fitting stations on land, with an
additional 263 water-based stations; we use the same 100
validation stations as for the sparse network, which are
held out of the training set.
Table 2 displays the MAE and CRPS scores for the

dense network experiment. The order of performance of
the three methods is the same as for the sparse method,
with GMA best, followed by Global BMA and then
Local BMA. The standard errors for differences be-
tween Global BMA and GMA or Local BMA are the
same as in the sparse experiment (i.e., 0.0038C for CRPS
and 0.0058C for MAE). In this case, the differences
in CRPS between all three methods are statistically

FIG. 5. Station-based prediction interval coverage and average width for Global BMA, Local BMA, and GMA for the nominal 80%,
90%, and 95% prediction intervals. The first row contains coverage while the second row shows predictive interval width. Coverages and
width are calculated at each validation station separately and summarized by box plots. The box shows the interquartile range, while the
whiskers extend to no more than 1.5 times the interquartile range.

TABLE 3. Average prediction interval coverage and width (in 8C) for 2006.

Sparse network Dense network

Coverage (%) Width (8C) Coverage (%) Width (8C)

80% 90% 95% 80% 90% 95% 80% 90% 95% 80% 90% 95%

Global BMA 80.6 89.4 93.5 5.92 7.59 9.03 81.9 90.2 94.1 6.17 7.91 9.41
Local BMA 70.0 80.5 86.7 4.77 6.08 7.20 68.6 79.4 85.7 4.64 5.92 7.00
GMA 77.2 86.6 91.4 5.45 6.98 8.30 77.4 86.8 91.8 5.50 7.06 8.39
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significant, but unlike the sparse experiment, the MAE
is not significantly different between Local BMA and
Global BMA. Hence, the skill of Local BMA has im-
proved over the sparse experiment, largely because of
the higher density of training stations. Whereas Local
BMAwas available at 85 of the 100 validation stations in
the sparse experiment, it is available at 99 in the dense
network case.
We examine local CRPS values for the dense training

network in Fig. 4b, where Global BMA is best at 31
stations, and the locally adaptive methods Local BMA
and GMA are superior at 19 and 49 stations, respec-
tively. Local calibration can be assessed similar to Fig. 5
for the sparse training network, and the results are
similar to those of Fig. 5 (not shown). While Global
BMA shows aggregate calibration, GMA displays local
calibration and substantially shrinks the predictive in-
terval widths. For this network, GMA improves the lo-
cal CRPS value at 57% of stations over Global BMA,
while Local BMA improves local CRPS at 45% of sta-
tions over Global BMA.
The PIT histograms for this training network are

displayed in Fig. 6. Local BMA still displays some un-
derdispersion, reflected in Table 3, with lower coverage
percentages and narrower prediction intervals. Global
BMA is now slightly overdispersed. The PIT histogram
for GMA does not indicate either overdispersion or
underdispersion.
Figure 7 shows the predictive temperature fields for

Global BMA, GMA, and Local BMA valid on 22 May
2006. Each point is the median of the predictive distri-
bution at the corresponding grid location. Global BMA
and GMA are available everywhere, but Local BMA is
not available in areas of sparse observations. Local
BMA and GMA both decrease the median forecasts
compared to Global BMA in the Puget Sound region
east of the Olympic Peninsula inWashington, and Local
BMA shows greater adjustment. The observations in the
Puget Sound region are generally cooler than Global

BMA’s median forecast on 22 May 2006, while GMA
and Local BMA identify and adjust for the local bias.

6. Case study

We now present four stations in detail: Peony Creek,
Washington; Roberts Field, Oregon; Franklin Falls,
Washington; and Friday Harbor Airport, Washington.
The following results are under the conditions of the
sparse training network.

a. Peony Creek

The first case study station is at Peony Creek in north-
east Washington State; see Fig. 8. The black time series in
Fig. 9a consists of the forecast errors of the GFS en-
semble member forecast at Peony Creek in 2006. The
red line is the bias correction for the GFSmember equal
to the kriged value of as from GMA, the blue line rep-
resents Global BMA’s bias correction, while the green
line is Local BMA’s bias correction. The bias correction
of Global BMA is constant across all sites. Figure 9b
illustrates GMA’s ability to adapt to bias locally, pre-
dicting the local bias at Peony Creek significantly more
accurately than Global BMA.
Similar behavior is seen in the predictive standard

deviation, shown in Fig. 9c. Global BMA’s predictive
standard deviation was nearly constant across 2006. In
contrast, GMA’s predictive standard deviation was able
to identify and adapt to periods of changing uncertainty,
as indicated by the vertical dashed line. Local BMA is
not available every day thatGMAandGlobal BMAare;
there is a slight gap at day 54 in the bias correction and
predictive standard deviation. On these days there were
not enough nearby stations that met the requirements of
the Mass–Baars interpolation scheme (see section 4).
The stations on which Local BMA’s interpolation is

based change from day to day, while GMA uses every
available station. To get a sense of which stations were
chosen on a particular day, see Fig. 8. On 22 May 2006,

FIG. 6. Dense network experiment: (a) Rank histogram for the raw ensemble, and PIT histograms for (b) Global BMA, (c) Local BMA,
and (d) GMA.
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eight stations were available to interpolate to the near-
est grid point adjacent to Peony Creek and Roberts
Field for Local BMA; these are represented by green
points. The eight nearest stations used by GMA are
colored red, while the stations shared by both are in
purple. At Peony Creek, the biases from the nearby
stations used by GMA reflect the empirical bias more
accurately than those stations chosen by Local BMA, as
seen in Fig. 9b. This is partially due to the fact that two of
the nearest stations selected by GMA are of the same

land type as that at Peony Creek, namely forest, while
the land type of the stations chosen by Local BMA
(which are of the same land type as the nearest grid point
to Peony Creek but not as Peony Creek itself) are
grassland.
Calibration may again be assessed by looking at the

PIT histograms generated by predictive distributions
at Peony Creek for the year 2006; these are displayed
in Fig. 10. As expected, the raw ensemble is under-
dispersed, while the PIT histogram for Global BMA

FIG. 7. Median of predictive density on 22 May 2006 for Global BMA, GMA, and Local BMA using the dense
network for training, with observed values.
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puts more mass at higher values, suggesting a tendency
to underpredict at Peony Creek. Local BMA improves
the calibration of Global BMA, but also has the ten-
dency to underpredict. The PIT histogram for GMA

showsmuch better calibration, which is a result of locally
accurate bias correction and predictive variance.
Predictive densities for 11 September 2006 and

28 December 2006 are shown in Fig. 11. The ensemble

FIG. 8. The eight nearest training stations chosen by GMA in red and Local BMA in green on 22 May 2006, with
shared stations in purple. The case study stations are in black with corresponding codes PEONY for Peony Creek,
KRDM for Roberts Field, TFRAN for Franklin Falls, and KFHR for Friday Harbor airport.
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spread does not capture the realizing value in either
case. On 11 September 2006 we see the local bias cor-
rection of GMA shifting the predictive distribution to-
ward higher temperatures, centering exactly around the
realizing value. In both cases, GMA’s 80% predictive
interval was much narrower than that of Global BMA.

This is most easily seen on 28 December where GMA’s
interval was completely contained within that of Global
BMA, while both intervals captured the realizing value.
Table 4 shows the MAE and CRPS for the raw en-

semble, Global BMA, GMA, and Local BMA at Peony
Creek for the 2006 calendar year.Global BMAperformed

FIG. 9. (a) Time series of GFS member forecast errors (forecast minus observation) for 2006 at Peony Creek in black, with bias
corrections from Global BMA (blue), Local BMA (green), and GMA (red). (b) Empirical bias of GFS member at Peony Creek in black
with bias corrections from Global BMA (blue), Local BMA (green), and GMA (red). (c) Empirical standard deviation of GFS member
forecast errors at Peony Creek in black with predictive standard deviations from Global BMA (blue), Local BMA (green), and GMA
(red). The vertical dashed line marks the beginning of a period of greater predictive uncertainty, as seen in the empirical standard
deviation.
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better than the raw ensemble, whileGMA showed further
improvement. LocalBMAdid not improve over the global
model; this is due to a lack of available training stations
nearby whose forecast errors follow the same behavior
as the grid points surrounding Peony Creek. GMA was
calibrated and at the same time provided sharper pre-
diction intervals, narrowing the average interval width
of Global BMA by 7.6%, as seen in Table 5. This table
also indicates that Local BMA was underdispersed at
these three intervals.

b. Roberts Field

Our second case study station is at Roberts Field for
which Fig. 12 shows empirical errors, biases, and pre-
dictive standard deviations for the 2006 calendar year.
The situation here is the opposite of that at Peony
Creek. GMA pulled information mainly from the sta-
tions shown in Fig. 8, which are geographically closer
to Roberts Field, but the information interpolated by
Local BMA from the further stations represent the

FIG. 10. (a) Rank histogram for the raw ensemble, and PIT histograms for (b) Global BMA, (c) Local BMA, and (d) GMA. Each row is
a case study station with codes PEONY for Peony Creek, KRDM for Roberts Field, TFRAN for Franklin Falls, and KFHR for Friday
Harbor airport.
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behavior of the GFS member forecast errors at Roberts
Field more accurately. This can be seen in Fig. 12b,
where the bias estimation by GMA is consistently too
low during most of 2006, while Local BMA’s correction
tends to follow the empirical trend more closely. The
interpolated standard deviation of GMAagrees with the
empirical variability of the GFS member, similarly to
the situation at Peony Creek.
The PIT histograms in Fig. 10 show that the raw

forecast tended to overpredict, Global BMA usually
underpredicted, and GMA and Local BMA were better

calibrated. Local BMA was slightly underdispersed, as
seen in Table 5, but it gave significantly sharper pre-
diction intervals at Roberts Field than Global BMA and
GMA, by approximately 22% on average. This is re-
flected in the superior CRPS score for Local BMA, see
Table 4.
Local BMA performed well at Roberts Field because

there were appropriate training stations nearby for it to
select. Indeed, all 8 stations chosen by Local BMA were
within 280 m of the elevation at Roberts Field, and these
stations were characterized as grassland, the same land
use asRoberts Field. GMAchose stations of up to 507 m
different in elevation, and only 3 of the nearest locations
were grassland, while the other 5 were either cropland or

FIG. 11. Predictive densities for (a) 11 Sep 2006 and (b) 28 Dec 2006 at Peony Creek. The blue density is Global
BMA, the red density is GMA, the green density is Local BMA, the black vertical line is the verifying observation,
while the dashed vertical lines correspond to the 80%prediction intervals. The dots show the eight ensemblemember
forecasts, with a horizontal line to illustrate ensemble spread.

TABLE 4. MAE and mean CRPS (both in 8C) for the raw en-
semble, Global BMA, GMA, and Local BMA over the calendar
year 2006 at four stations with codes PEONY for Peony Creek,
KRDM for Roberts Field, TFRAN for Franklin Falls, and KFHR
for Friday Harbor airport.

Model MAE CRPS

PEONY Raw ensemble 2.007 1.703
Global BMA 1.877 1.339
Local BMA 1.950 1.400
GMA 1.760 1.283

KRDM Raw ensemble 1.948 1.550
Global BMA 1.843 1.303
Local BMA 1.804 1.274
GMA 1.785 1.289

TFRAN Raw ensemble 1.716 1.400
Global BMA 1.750 1.262
Local BMA 1.732 1.243
GMA 1.552 1.135

KFHR Raw ensemble 1.404 1.132
Global BMA 1.400 1.054
Local BMA 1.373 0.992
GMA 1.375 1.009

TABLE 5. Average prediction interval coverage and width at four
stations with codes PEONY for Peony Creek, KRDM for Roberts
Field, TFRAN for Franklin Falls, and KFHR for Friday Harbor
airport.

Coverage (%) Width (8C)

80% 90% 95% 80% 90% 95%

PEONY Global BMA 82.4 89.7 94.0 5.81 7.46 8.88
Local BMA 71.7 85.3 91.0 5.32 6.81 8.08
GMA 81.4 89.0 92.4 5.37 6.89 8.20

KRDM Global BMA 84.2 91.9 95.2 6.04 7.72 9.17
Local BMA 74.4 85.8 90.6 4.74 6.02 7.12
GMA 86.1 90.6 92.9 6.03 7.72 9.15

TFRAN Global BMA 82.0 89.8 94.2 5.92 7.59 9.03
Local BMA 73.8 85.7 91.5 5.02 6.40 7.58
GMA 80.0 87.5 92.5 5.14 6.60 7.85

KFHR Global BMA 88.5 93.1 96.4 5.71 7.32 8.72
Local BMA 81.9 91.1 96.1 4.74 6.06 7.20
GMA 81.6 87.2 93.1 4.31 5.52 6.57
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forest, leading to a poorer estimate of the forecast bias at
Roberts Field.
However, Local BMA’s approach to station selection

can also lead to difficulty in obtaining predictions. Of the
100 validation stations used in section 5, only 85 had
sufficient training stations nearby to give a Local BMA
predictive distribution. This behavior in areas of a sparse
observation network is overcome by GMA, which is avail-
able everywhere, while still locally adjusting forecasts.

c. Franklin Falls and Friday Harbor Airport

The final two case study stations serve to illustrate the
applicability of GMA and Local BMA to regions of com-
plex terrain. Franklin Falls is only a few hundred meters
away from Snoqualmie Pass in the Cascade Mountain
range, and sits at an elevation of 829 m. Indeed the sen-
sitivity of both methods to elevation is important in the
mountains, and Table 4 displays the importance of local

FIG. 12. (a) Time series of GFS member forecast errors (forecast minus observation) for 2006 at Roberts Field in black, with bias
corrections from Global BMA (blue), Local BMA (green), and GMA (red). (b) Empirical bias of GFS member at Roberts Field in black
with bias corrections from Global BMA (blue), Local BMA (green), and GMA (red). (c) Empirical standard deviation of GFS member
forecast errors atRoberts Field in blackwith predictive standard deviations fromGlobalBMA(blue), Local BMA(green), andGMA(red).
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adjustments in different types of terrain. Both methods
produce significantly sharper prediction intervals that are
calibrated for GMAand only slightly undercalibrated for
Local BMA (see Table 5).
Friday Harbor Airport is located on the San Juan Is-

land chain in the Puget Sound. The airport itself is only
approximately 200 m from the ocean, and experiences
vastly different climate than the three other case study
stations. The local methods improve the point estimate
of the median of the predictive distribution over Global
BMA, but all are seen to have comparable CRPS values
(see Table 4). Notice that Global BMA is slightly
overdispersed at Friday Harbor Airport, while GMA
and Local BMA display good calibration, and narrow
the predictive interval widths (at all levels) relative to
Global BMA by 17% on average for Local BMA and by
25% on average for GMA (seen in Table 5). Both local
methods choose coastal stations, as shown in Fig. 8, for
improving local bias and predictive variance, whileGlobal
BMA equally weights all coastal, mountain, grassland,
cropland, forest, and other land-type-based stations for
parameter estimation at Friday Harbor Airport.

7. Discussion

We have presented two different ways to produce
locally calibrated probabilistic grid-based forecasts, us-
ing station observations. Local calibration refers to sta-
tistical calibration at an individual location, while global
calibration refers to calibration over all locations. Both
models are based on the Bayesian model averaging
method of Raftery et al. (2005). Geostatistical model
averaging first estimates the statistical parameters of
the BMA model at each station and then interpolates
the parameter estimates using a geostatistical model.
Local BMA estimates the bias at a grid point as an av-
erage of the observed forecast errors at stations that are
close to the grid point and have similar elevation and
land use.
The two methods have advantages and disadvantages.

GMA yields local adjustments everywhere, putting
the most weight on information from the nearest sta-
tions, irrespective of land use or other characteristics.
Local BMA uses only stations with similar land type,
elevation, and forecast value, and thus provides a more
physical interpolation; however, it has the disadvantage
of not always being available everywhere. This problem
is related to station density—for a dense observation
network, Local BMA performs well at locations with
sufficiently many nearby stations, while GMA is better
adapted to a sparse network. However, occasionally the
similarity of bias in a certain land type reflects the true
bias at a model grid point more so than the nearest

stations; in these situations Local BMAwill estimate the
local parameters more accurately than GMA.
There is no guarantee that the predictive distribution

from a global model at any single location will be cali-
brated, whereas locally adaptive procedures can pro-
duce locally calibrated forecasts. GMA was locally
calibrated and sharp, and Local BMA was significantly
sharper than Global BMA and GMA on average, but
was underdispersed.
Our example of 48-h temperature forecasts illustrates

a strength of GMA relative to the Global BMA model.
The predictive densities generated by bothmethods lead
to calibrated probabilistic forecasts. However, GMA
yields sharper predictive densities than Global BMA,
due to the locally varying predictive variance. At the
second case study station, Roberts Field, Oregon, we see
Global BMA and GMA producing essentially equiva-
lent sharpness, where Local BMA yields much sharper
densities, narrowing the predictive intervals as much as
22%. Both methods perform well and improve over
Global BMA in areas of complex terrain, as seen with the
final two case study stations: one in the Cascade Moun-
tains and the other on an island in the Puget Sound.
The example section focused on 48-h temperature

forecasts, but we also evaluated the models’ 36- and 42-h
forecasts, finding similar results to those described above.
In particular, GMA and Local BMA substantially re-
duced the predictive interval width over Global BMA,
but GMA displayed slight underdispersion and Local
BMAhadmore pronounced underdispersion than at the
48-h horizon. For 36- and 42-h forecasts, GMA reduced
the domain aggregatedMAE and CRPS over bothGlobal
BMA and the raw ensemble. Local BMA reduced the
domain-aggregated scores over Global BMA, except for
the CRPS in the 36-h experiment.
We have specified GMA in terms of a specific geo-

statistical model with an exponential covariance func-
tion. However, any other geostatistical model could be
used, and other specifications could provide better perfor-
mance. Also, GMA and Local BMA both have strengths,
and it might be profitable to combine them, for example by
restricting the estimation of GMA parameters for a grid
point to stations that are similar to the grid point in location,
elevation, and land use.
Local BMA relies on the Mass–Baars interpolation

algorithm, whose interpolation parameters are esti-
mated by minimizing the domain-aggregated mean ab-
solute error. The parameters used in our experiments
are described in Mass et al. (2008). However, these pa-
rameters are likely to differ depending on the region of
interest, so reoptimization is likely required in a differ-
ent setting. It alsomay be profitable to consider allowing
these parameters to vary by location. For example, in
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areas of dense observations the forecaster may want
stricter rules on what errors are interpolated, while in
areas of sparse network coverage, there may be benefit
to relaxing the forecast error selection criteria.
Gridded bias correction is built into both GMA and

Local BMA.Gel (2007) investigated two other approaches
to gridded bias correction that are similar to our methods.
The first, local observation-based (LOB) bias removal,
defines neighborhoods based on the spatial structure of
historical biases at observing locations. However, rather
than using all available bias information, Gel (2007)
defined a neighborhood based on the spatial parameters.
Her other method is a nonlinear regression method that
uses classification and regression trees (CART) and al-
ternating conditional expectations (ACE). Gel (2007)
pointed out that her CART–ACEmethod works well in
areas of sparse data, but it requires a long training period
and is not fully automated. Both LOB and CART–ACE
only result in deterministic gridded bias estimates, rather
than a calibrated probabilistic prediction.
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APPENDIX

EM Algorithm

We describe the EM algorithm of section 3. The EM
algorithm is an iterative process that finds amaximum of
the log likelihood function:

‘(w1, . . . ,wK, c)5!
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log
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One cannot guarantee that the algorithm converges to
a global maximum, but using different initial values can
assist in avoiding local maxima.
We introduce latent variables z‘st, which can be thought

of as being 1 if the ‘th forecast is best for site s and time t,
and 0 otherwise. In the jth E (expectation) step of the EM
algorithm, we start with current estimates fw( j)

‘ gK‘51 and
c( j), and, based on these, calculate estimates
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for every ensemble member, where g( j)(ystj f‘st) is a nor-
mal density with mean f‘st 2 â‘s and variance c( j) exp(ŷs).
In theM (maximization) step, we update the weights via
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and c via
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!
K

‘51
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where N is the number of station and time pairs, and â‘s
and exp(ŷs) depend on time t, though we have not in-
cluded the subscript t here for simplicity. The algorithm
is iterated between the E and M steps until some stop-
ping criterion is reached.
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