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[11 A daily stochastic spatiotemporal precipitation generator that yields spatially consistent
gridded quantitative precipitation realizations is described. The methodology relies on a
latent Gaussian process to drive precipitation occurrence and a probability integral
transformed Gaussian process for intensity. At individual locations, the model reduces to a
Markov chain for precipitation occurrence and a gamma distribution for precipitation
intensity, allowing statistical parameters to be included in a generalized linear model
framework. Statistical parameters are modeled as spatial Gaussian processes, which allows
for interpolation to locations where there are no direct observations via kriging. One
advantage of such a model for the statistical parameters is that stochastic generator
parameters are immediately available at any location, with the ability to adapt to spatially
varying precipitation characteristics. A second advantage is that parameter uncertainty,
generally unavailable with deterministic interpolators, can be immediately quantified at all
locations. The methodology is illustrated on two data sets, the first in lowa and the second

over the Pampas region of Argentina. In both examples, the method is able to capture the
local and domain aggregated precipitation behavior fairly well at a wide range of time

scales, including daily, monthly, and annually.
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1. Introduction

[2] Stochastic precipitation generators have been key
features of downscaling, climate impact studies, hydrologic
models and agricultural models for a number of decades.
At individual locations, these random generators often rely
on a Markov chain to describe the temporal dependence of
precipitation occurrence [Katz, 1977] and either an expo-
nential distribution, gamma distribution or some mixture
thereof to model the intensity of rainfall given its occur-
rence [Richardson, 1981; Stern and Coe, 1984; Woolhiser
and Pegram, 1979]. Recent reviews of statistical downscal-
ing, including use of stochastic precipitation generators,
have been covered by Maraun et al. [2010] and Wilks
[2010]. Wilks and Wilby [1999] give a thorough introduc-
tion and history of stochastic weather generators (i.e., for
which precipitation is one component).

[3] Recent interest in this field has moved away from
individual location models to spatial models that are able to
generate spatially and temporally correlated fields of pre-
cipitation. This is especially difficult, given the highly vari-
able nature of precipitation over small spatial and temporal

"Institute for Mathematics Applied to Geosciences, National Center for
Atmospheric Research, Boulder, Colorado, USA.

’Department of Civil, Environmental and Architectural Engineering,
University of Colorado at Boulder, Boulder, Colorado, USA.

3Cooperative Institute for Research in Environmental Sciences, Univer-
sity of Colorado at Boulder, Boulder, Colorado, USA.

Copyright 2012 by the American Geophysical Union
0043-1397/12/2011WR011105

scales, including its intermittency. It is critical to capture
the domain aggregate behavior of precipitation intensity
and dry or wet spells, which play important roles in hydro-
logic planning and water resource management. There are
a number of approaches to spatial-temporal modeling of
precipitation, including hidden Markov models for occur-
rence [Hughes and Guttorp, 1999] and intensity [Ailliot
et al., 2009; Charles et al., 1999], resampling based on
nearest neighbors [Apipattanavis et al., 2007; Buishand
and Brandsma, 2001 ; Rajagopalan and Lall, 1999], gener-
alized chain-dependent processes [Zheng and Katz, 2008
Zheng et al., 2010], power transformation of precipitation
to normality [Sanso and Guenni, 2000; Yang et al., 2005],
artificial neural networks [Cannon, 2008], or copula-based
approaches [Bdrdossy and Pegram, 2009]. One of the main
advantages of stochastic precipitation generators is uncer-
tainty quantification over a spatial domain, which is used,
for example, in assessment of impacts of climate change
[Kilsby et al., 2007 ; Mehrotra and Sharma, 2010]; see also
Burton et al. [2008] for recent spatiotemporal precipitation
simulation software. While herein we focus on daily simula-
tion, there is a large body of literature on simulation at finer
temporal scales [see, e.g., Onof et al., 2000; Rodriguez-
Iturbe et al., 1988 ; Valdes and Rodriguez-Iturbe, 1985].

[4] The early work of Wilks [1998] paved the way for
many current approaches to this problem, relying on corre-
lated latent multivariate normals and transformed multivar-
iate normals to generate correlated occurrence and intensity
fields. Recent advances have been made by Brissette et al.
[2007] and Thompson et al. [2007] who discuss efficient
simulation and more sophisticated estimation approaches,
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respectively. Mehrotra et al. [2006] compared the resam-
pling, hidden Markov model, and Wilks [1998] approaches
and found that all are flexible, but the approach of Wilks
[1998] has the advantage of replicating the observed spatial
dependence while still allowing for significant flexibility in
temporal dependence at individual locations.

[s] Most spatial precipitation generators only simulate
precipitation at locations with observations. In order to gener-
ate simulations between observation sites, model parameters
are required over the entire simulation domain. Assuming
spatially constant model parameters is typically unjustified
because of variable orography, so various authors have pro-
posed estimating these parameters at observation locations,
and interpolating this information to any location usually
with a type of weighted regression [Johnson et al., 2000,
Wilks, 2008]. While these methods yield parameters through-
out the domain, they do not produce estimates of parameter
uncertainty at ungauged locations. Developing a gridded pre-
cipitation generator with locally varying parameters and
uncertainty characterization is crucial for applications such
as crop modeling and water resource modeling, especially
since data are usually not available at all locations of interest.

[6] We propose a parametric model for spatially corre-
lated precipitation occurrence and intensity that is similar
to the approach of Wilks [1998]. Seasonal variation and
other covariates can be included in a generalized linear
model (GLM) framework, which imparts significant flexi-
bility in the statistical model [ Yang et al., 2005 ; Furrer and
Katz, 2007]. Along with seasonally varying occurrence rate
and intensities, we are also able to capture seasonally vary-
ing spatial correlation within our parametric framework.
The basic probabilistic structure we use involves Gaussian
processes, which are simply stochastic processes whose fi-
nite dimensional distributions are multivariate normal. The
attraction of Gaussian processes is that they can be com-
pletely described by very few parameters, and have dis-
played a wide array of flexibility in numerous scientific
contexts. In particular, we use a two-stage model, where
precipitation occurrence is driven by a latent spatial process
and precipitation intensity is modeled as a transformed
Gaussian process. At individual stations, our model reduces
to a Markov chain for occurrence and a gamma distribution
for intensity.

[7] Parameters, those coefficients in the GLM frame-
work, are modeled as Gaussian processes. Applying our
statistical model with the same GLM coefficients at all
locations is inappropriate, especially in regions of complex
terrain [Johnson et al., 2000]. Using a stochastic model for
the statistical parameters allows for a locally varying pre-
cipitation model that is available at any point of interest,
and in particular gridded simulations are readily produced.
The Gaussian process representation lends itself to the flex-
ible method of spatial interpolation known as kriging. An
equally important benefit of using a stochastic model for
the parameters is that parameter uncertainty is immediately
available at all locations, which has been emphasized by
Lima and Lall [2009]. Incorporating parameter uncertainty
can also reduce the common problem of overdispersion in
precipitation generators [Katz and Zheng, 1999].

[8] The use of Gaussian processes for precipitation mod-
eling is becoming more widespread, as they can capture a
wide variety of spatial correlation, while requiring only a
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few parameters. Berrocal et al. [2008] used latent Gaussian
processes in the context of short-term mesoscale precipita-
tion forecasting. Wilks [2009] used these stochastic functions
to generate gridded precipitation data sets. Our approach
departs from that of Wilks [2009] in that we put the occur-
rence and intensity models in a GLM framework, our
approach to seasonally varying spatial correlation is more
parsimonious and requires only a few parameters, and we
produce uncertainty estimates of model parameters at any
location, even without direct observations.

[o] We illustrate our model on two data sets, the first a
network of 22 stations in lowa that are taken from the U.S.
Historical Climatology Network [Menne et al., 2010], and
the second a more sparsely populated network of 19 sta-
tions in the Pampas region of Argentina. Neither of these
regions have complex terrain, but both do exhibit a substan-
tial degree of seasonality in precipitation patterns and have
spatially varying average occurrence and intensity compo-
nents. In both cases we illustrate the flexibility of our
model to capture local and domain aggregated precipitation
behavior at various time scales.

2. Stochastic Model

[10] Our approach to generating spatially and temporally
correlated precipitation is to first generate precipitation
occurrence and then, at locations with positive precipita-
tion, simulate precipitation intensities. We begin describing
our approach with the occurrence model.

2.1.

[11] At site s on day ¢, denote precipitation occurrence
O(s, t) = 0 if there is no rainfall, and O(s, t) = 1 otherwise.
We introduce a latent (i.e., unobserved) Gaussian process
W, (s, t) with mean u(s,¢) and covariance function C;(h, ?)
where h = s; — s, is the spatial lag vector between two
locations. Then precipitation occurrence relies on the latent
spatial field as

Precipitation Occurrence

O(s,t) =0 if  Wi(s,1) <0 (1)

O(s,t)=1 if  W(s,t) >0 )
The physical motivation for conditioning on the latent pro-
cess is that locations in small neighborhoods will tend to
have correlated precipitation occurrence, which is pre-
served in the spatial correlation function Cj(h, ¢).

[12] The mean function p(s, ¢) will typically be a regres-
sion on small-order harmonics and the previous day’s
occurrence. If available, one can include covariates such as
climate model output or broad scale atmospheric condi-
tions. For our purposes, write

1S, 1) = B,,(5) X (s, 1) ©)

where X, (s,t) are the covariates, and f,(s) = (8,(s),

5By P(s))' are spatially varying regression parameters.
Although we consider only linear functions, this basic
model accommodates significant flexibility which may be
desired on the basis of knowledge about a specific simula-
tion domain.
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[13] The covariance function C;(h,t) is assumed to
depend only on spatial lag & and time point ¢; below we use
an exponential covariance with temporally varying scale,

Ci(h, 1) = exp(—|[h]|/4(1)) 4)

where A(?) is the time-dependent scale parameter. Notice this
correlation function is isotropic in that it only depends on the
length of /; hence we implicitly are assuming no directional
dependence of spatial correlation, but such anisotropy can be
included by adjusting C;. It is convenient to view A(f) as a
regression on two harmonics, allowing for spatial occurrence
correlation that is either weaker or stronger depending on the
season, as is often observed in practice.

[14] Estimation of the S, (s) parameters for individual
sites proceeds by maximum likelihood. In particular, at
individual locations our conditional model reduces to a pro-
bit regression [McCullagh and Nelder, 1989], with the
maximum likelihood estimates (MLEs) being obtained at
each location independently. This yields, for each observa-
tion location s, estimates denoted by 3, (s).

[15] Direct estimates of 3,(s) are available only at loca-
tions with observed data, but in order to generate a com-
plete precipitation field across the entire simulation
domain, we require a method that yields estimates of these
regression parameters between observation stations. A sec-
ond consideration is the underlying uncertainty in these pa-
rameter estimates, which we seek to communicate along
with the weather generator. Hence, as a second stage of

modeling, we view the MLEs Bw-(s) as realizations from
spatial Gaussian processes, where 3, ;(s) is the ith compo-
nent of 3,,(s). In particular, we decompose

B1i(8) = Zyi(s) + €ui(s) )

where Z, ;(s) is a spatial Gaussian process with mean 6,,;
and Matérn covariance function [Stein, 1999], which has
parameters variance O'f“-, scale a,; and smoothness v, ;.
Here e#‘,-(s) is a normally distributed error term, centered
at zero, with variance TIZ”.. In this context, €,;(s) can be
thought of as small scale variability that is indistinguish-
able from measurement error, and this quantifies our uncer-
tainty in parameter estimates at observation locations. We
use the Matérn covariance function, as it allows the statisti-
cal model to be smooth across space, with the parameter v
controlling smoothness. This is as opposed to precipitation
realizations that are more intermittent, using the exponen-
tial covariance function (4) which coincides with the
Matérn class when v = 0.5, yielding rougher stochastic
realizations. The spatial process Z,;(s) will allow us to

smooth the individual estimates ﬁ,,w,-(s) over the simulation
domain, allowing for stochastic realizations at any location.
2

. 2 .
We estimate parameters 0,,;, 07, ;, dy.i, Vy,; and 7, ; by maxi-

mum likelihood, conditional on MLEs 3, ,(s). We use this
two-step procedure to estimate parameters, as there are so
many parameters that direct maximization in one step
would be extremely difficult and time consuming. Using a
two-step procedure such as ours has proven effective for
similar types of models [Berrocal et al., 2008; Kleiber
etal.,2011,2012].
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[16] At this point, the individual location model has been
described, and the crucial step for the spatially correlated
occurrence model is in estimating the temporally varying
scale parameter A(¢) of (4). It is possible to estimate A(¢) by
maximum likelihood using a stochastic EM algorithm
[Nielsen, 2000], but it is well known that MLEs will under-
estimate spatial dependence if an overly simple mean func-
tion is used [Kitanidis and Lane, 1985]. On the basis of our
experiments, the MLEs result in spatial correlation that is
substantially too weak. As an alternative, we propose a
method of moments approach that does not make any like-
lihood assumptions, instead minimizing the squared distance
between model correlations and observed spatial correla-
tions. Specifically, our estimates are obtained through the
following minimization,

mlnA()Z Z Z (i)(o(sia t) = k? 0(sj7 t) = Z)
ti#j kt=0,1 (6)

— Py (O(si, 1) = k, O(s;, 1) = £))*

where P(O(s;, 1) = k, O(s;, t) = ) is the observed relative
frequency of site s; taking on value k and site s; taking on
the value ¢ simultaneously on day ¢, and Py, (O(s;,t) = k,
O(s;,t) = ¢) is the model probability of the same event. Note
that the model probability is not a simple function of pairwise
correlation, for example when k = ¢ = 0, the probability is
P(Wi(si,t) <0, W:(s;,t) <0)# Cor(W;(s;,t), Wi (s;,)), and
actually involves a two-dimensional integral of a bivariate
normal probability density function, which is readily approxi-
mated in most scientific computing languages, for instance
using the mvtnorm package in R. Other authors have consid-
ered similar estimation approaches to spatial correlations
[Allcroft and Glasbey, 2003; Baigorria and Jones, 2010;
Durban and Glasbey, 2001]. Such an optimization in terms
of joint probabilities of occurrence is effectively equivalent
to optimization in terms of pairwise correlations for the
occurrence process. Recall that A(f) typically has only a few
free parameters, and the minimization is taken over these
parameters.

2.2. Precipitation Intensity

[17] At site s on day ¢, consider precipitation amount
denoted by Y(s,¢) (i.e., the intensity conditional on O(s, ¢)
= 1). We propose a general intensity model, and discuss a
special case that involves fewer parameters. In general, at a
single site we model Y (s, ¢) as a gamma distributed random
variable.

[18] The general approach uses spatially and seasonally
varying shape and scale parameters of the gamma distribu-
tion. With a seasonally varying shape parameter, we can
indirectly take account of the frequency of different types
of precipitation, such as convective and frontal. We have
scale a(s, ) and shape 7(s, ¢), both of which typically are
regressions on covariates, with possibly different covariates
and parameter values than those used in the occurrence
model. In particular, we have

log (s, 1) = B, () Xa(s. 1) ™)

log(s,) = B, (s) X, (5. ) ®)
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where the log transformation guarantees the parameters
take on positive values. The scale and shape parameters are
estimated by maximum likelihood at each individual obser-
vation location, which in turn yields local simulations tuned
to observational records.

[19] In order to produce locally realistic simulations
between observation stations, we require a spatial model
for the coefficients a(s, ) and (s, ¢). To this end, we view

~

the MLEs (3, ;(s) and f3,,(s) as realizations from spatial
Gaussian processes. In particular, all coefficient processes
are decomposed as in (5), where Z, ;(s) and Z, ;(s) are spa-
tial Gaussian processes with constant means and Matérn
covariance functions. As in the occurrence case, ¢, ;(s) and
€,i(s) are normally distributed error terms, centered at
zero, with variances Tij and Tf/,’l., respectively. The spatial
parameters that govern behavior of the Z(s) and (s) proc-
esses are estimated by maximum likelihood, conditional on
MLEs 3, ;(s) and (3. ;(s).

[20] A special case of the general model was discussed
by Furrer and Katz [2007], who fixed the gamma shape pa-
rameter across time at a given site, which has been found to
be adequate for some data sets such as precipitation inten-
sity at one location in the Pampas region, see also Yang
et al. [2005]. In this special case, the log of the mean of the
gamma distribution is regressed on a set of covariates, per-
haps the same as those specified in (7). Specifically, with
scale (s, t) and shape 7(s), we have

log(a(s, t)’Y(s)) = ﬁ(w(s)/Xaw (S, t) ©)
where the mean of the gamma distribution is «(s, #)y(s).
As the shape v(s) does not depend on time 7, we are effec-
tively modeling only the scale «f(s, ) as a function of the
temporal covariates. The mean and shape parameters are
estimated by maximum likelihood at each observation loca-
tion, which implies a seasonally varying scale parameter
a(s,t) at a given site. The parameters «(s,?) and ~(s) are
modeled as transformed spatial Gaussian processes, similar
to the general model.

[21] To simulate spatially correlated fields of precipita-
tion, we introduce a Gaussian process W,(s,¢) with mean
zero and covariance function C,(h, t), such that

Y(s,0) = Gy ((Wals, 1)) (10)
where Gy, is the cumulative distribution function (CDF) of
the gamma distribution at site s and time ¢, and @ is the
CDF of a standard normal. This transformation approach is
called a spatially varying anamorphosis function [Chiles
and Delfiner, 1999], retaining the gamma distribution at
individual locations while allowing for any degree of corre-
lation between locations; Berrocal et al. [2008] used a sim-
ilar model for mesoscale precipitation forecasting, but
without spatially varying coefficient processes.

[22] The covariance function Cy(h,t) of W,(s,t) is a
time varying stationary spatial covariance function with a
form identical to that of (4), but with distinct parameters.
Producing stochastic realizations of spatial precipitation
intensities relies on an appropriate estimate of A(¢). Along
the same lines as with the occurrence model, we avoid
using maximum likelihood to estimate A(¢), and instead
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obtain an estimate through the following method of
moments minimization:

min i) Y (Cor(¥ (s, 1), ¥ (s;,1)) — Coryy (¥ (s1,), ¥ (s5,1)))°

C A
an

where Cor(Y(s;, 1), Y(s;,7)) is the empirical correlation
between site s; and site s; on day ¢, while Cory, is the corre-
sponding model correlation. Note that only terms for which
precipitation occurs at both sites simultaneously enter into
the above equation. Because of the highly nonlinear trans-
formation involved, the model correlation is not available
in closed form. But it is straightforward to simulate from
the bivariate distributions and, in practice, we approximate
the model correlation by Monte Carlo approximations. In
particular, for any fixed trial value of A(¢), we approximate
Cory (Y (s;,t),Y(s;,1)) by Monte Carlo sampling for all
pairs i # j and calculate the distance (11). This procedure
is performed over a grid of potential values of A(f), with
the value minimizing the distance (11) being chosen.

[23] We note that Wilks [1998] identifies an edge effect,
where generating a field of intensities independent of the
occurrences can lead to unrealistically large values of pre-
cipitation near the boundary of a dry area. If this is a con-
cern, one option is to generate the spatial fields W (s, ¢) and
W,(s,t) from the same random number seed. Mathemati-
cally, this is equivalent to generating a single set of uniform
random numbers and using this same set in the inverse proba-
bility integral transformations for both the occurrence and
intensity process. This has the effect of imposing positive
correlation between Gaussian processes for both field real-
izations, while allowing for the two fields to have differing
length scales. Using the same random number seed will
decrease the variability of field realizations, as occurrence
and intensity will no longer be independent.

[24] We end section 2.2 with an outline of operational
use of our model. We assume model parameters have al-
ready been estimated as described above. For simulation at
locations sy, ..., s, on day ¢, perform the following steps.

[2s] 1. Simulate the errors € ,(s;) and put 3. (s;) =
B.:(s;) +¢€.i(s;), where the dot denotes p,a and +, and
j=1...,n

[26] 2. Randomly generate a realization from each multi-
variate  normal vector (W (sy,?), ..., Wi(s,,t))’, and
(Wa(s1,1), ..., Wa(s,t))', where the mean of W, (s, t) uses
the simulated values obtained in Step 1. The covariance
matrices used for generation of the multivariate normal
vectors are obtained from (4), using the estimates of A(¢)
for W, and W,, respectively.

[27] 3. For each location s = sy, ..
cipitation if W, (s, ) < 0.

[28] 4. For those locations with positive precipitation
(Wy(s,t) > 0), the simulated intensity is set to Y(s,¢) =
G,/ (®(Wa(s,1))), where the shape and scale of the gamma
CDF G, rely on the simulated values of 3, ,(s) and 3, ;(s)
obtained in Step 1.

., 8, there is zero pre-

3. Applications

[29] We test our model on two data sets, the first in lowa
consists of 22 observation stations that make up a subsection
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Figure 1.

of the U.S. Historical Climatology Network (USHCN)
[Menne et al., 2010]. Station locations are displayed in
Figure 1. Station data are available from 1893 to 2009, with
the shortest record still being 111 years in length. One station
has precipitation data available on only 61% of days, while
all other locations have observations on at least 90% of days.
The Iowa observation network is fairly dense, with the mini-
mal intersite distance at 29 km and maximal distance at
516 km, covering a range of approximately 145,000 km?.
The second data set is from the Pampas region of Argentina,
consisting of 19 stations with data being available from 1908
to 2010 but with most stations beginning recording during
the 1930s. The observation network in the Pampas is signifi-
cantly sparser than that in Iowa, with the minimal intersite
distance at 100 km and maximal distance at 1293 km, cover-
ing a range of approximately 750,000 km?.

[30] Precipitation simulation in these regions is challenging
because of the marked seasonality of precipitation and spa-
tially varying average intensity and occurrence. For conven-
ience, we have removed leap days from both sets of data, so
that all years have 365 days. For sake of space, we include
only some illustrative plots for the Pampas data, but the pro-
posed stochastic model fits equally well (some corresponding
plots for the Pampas are included in the auxiliary materials).
For both domains, the observation networks were sparse
enough that the edge effect discussed by Wilks [1998] was not
apparent, and independently simulating occurrence and inten-
sity processes is a reasonable approach. Ensuring the continu-
ity between dry and wet areas would also be more important
on smaller time scales than for daily aggregated precipitation.

3.1.
[31] The latent process in the occurrence model of
section 2.1 requires a mean and covariance function. The

covariance function takes on the form specified in (4), with
a scale function specified by

Iowa Precipitation

A(t) = exp(ag + arcos (271/365) + apsin (2m2/365))  (12)

'Auxiliary materials are available in the HTML. doi: 10.1029/
2011TWROI11105.
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Observation networks in (a) lowa and (b) Pampas region of Argentina.

The motivation for this functional form is that, in Iowa,
spatial correlation of precipitation occurrence is dependent
on season. During winter, most precipitation events occur
because of the passage of weather fronts, whereas summer
precipitation is often driven by highly localized convective
storms. Note that the parameters ag,a; and a, are only
estimated once, which yield temporally varying spatial
correlation for the entire year. The estimated parameters
imply, at the average intersite distance (206 km), a maxi-
mal correlation of 0.73 and a minimal correlation of
0.54 on the latent Gaussian process scale, corresponding
to winter and summer respectively. We specify the mean
function as

p(s;8) = B,0(8) + B, (s) O(s, 1 — 1)

+ B2 (s)cos (27t /365) + B, 5(s)sin (271/365)  (13)

+ B,,4(s)cos (4mt/365) + 3, 5(s)sin (4mt/365)

which defines a first-order, two-state Markov chain at indi-
vidual locations. Using the Bayesian information criterion
(BIC) [Schwarz, 1978], the covariates included in (s, ?)
were selected over other options including fewer harmonics
or interactions. In particular, at each location, we computed
the BIC values for a set of possible covariates, and exactly
the same set of covariates in y(s, ) was favored at all loca-
tions. The same approach was used below to choose all
remaining mean function covariates for precipitation inten-
sity in Iowa, and in the Pampas.

[32] We use the general precipitation intensity model
proposed in section 2.2 (i.e., as specified by (7) and (8))
because of the distinct types of precipitation that occur in
Iowa throughout the year. The scale and shape parameters
of the gamma intensity model are

IOga(s7 t) = Ba,O(s) + ﬁa‘l(s) O(S, t— 1)
+ Ba2(s)cos (271/365) (14)

+ B3 (s)sin (2mz/365)
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10g 7(s7 t) = 5710(5‘) + ﬁ'y.l(s) 0(57 - 1)

+ 3, 2(s)cos (27t /365) (15)

+ (3, 3(s)sin (272/365).

Through these regressions, we allow for seasonally varying
precipitation intensity, with heavier precipitation during
summer. We also allow intensity to depend on the previous
day’s occurrence, allowing for daily regime shifts. Not
only is the spatial correlation of precipitation occurrence
seasonally varying, but the spatial correlation of intensities
also varies by season. The localized convective storms that
characterize summer precipitation exhibit lower spatial cor-
relation of precipitation intensities than the more wide-
spread frontal events during winter. Hence, we decompose
the temporally varying scale A(¢) in the same way as (12),
but with distinct parameters. At the average intersite dis-
tance, the maximal correlation during winter is approxi-
mately 0.44, which drops to 0.15 during summer, on the
Gaussian process scale.

3.2. Pampas Precipitation

[33] Data from a single station in the Pampas, Argentina
network of stations was analyzed by Furrer and Katz
[2007], and we follow essentially the same model adopted
by them. However, we do not include ENSO as a covariate
to simplify comparisons with the results from Iowa. The
latent process in the occurrence model of section 2.1 requires
a mean and covariance function. The covariance function
takes on the form specified in (4), with a scale function the
same as (12). The average intersite distance in the Pampas
data set is 525 km where the maximal and minimal correla-
tion at this distance are 0.48 and 0.39 on the latent Gaussian
process scale, respectively. Following Furrer and Katz
[2007], we specify the mean function as

w(s,8)=B,,0(8)+6,1(5)O(s,t = 1)+ B, 5 (s)cos (27t /365)
+ B3 (s)sin(27/365)
+ ﬂw(s)cos (27t/365)O(s,t—1)
+ B,,5(s)sin (27t /365)0(s,t — 1)

(16)

which defines a Markov chain at single locations; notice
we use probit regression instead of logistic regression as
done by Furrer and Katz [2007].

[34] The log of the mean of the gamma intensity model
in section 2.2 (i.e., as specified by (9)) is the regression

Bo(s) + By (s)cos (27t /365) + B,(s)sin (27t /365) (17)

with a fixed shape parameter. Through these regressions,
we allow for seasonally varying precipitation intensity,
with heavier precipitation during summer. Not only is the
spatial correlation of precipitation occurrence seasonally
varying, but the spatial correlation of intensities also varies
by season. The seasonality of precipitation in the Pampas is
markedly stronger than in lowa. We also decompose the
temporally varying scale A(¢) of the transformed intensity
process in the same way as (12), but with distinct parame-
ters. Here the implied correlation on the Gaussian process
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scale is 0.06 during winter and 0.20 during summer, at the
average intersite distance. Notice the harmonics in our
model for A(f) allows the correlation to be high during
summer in Iowa (JJA) which is winter in the Pampas,
where we have the lowest correlation.

3.3. Model Validation in Iowa and the Pampas

[35] We simulated trajectories of all available years of
data using our stochastic spatiotemporal precipitation model
from both data sets, and now examine the results. In partic-
ular, we generated 100 trajectories of the 117 years of data
for Iowa, and 111 years of data for the Pampas. All figures
and discussion refer to the Iowa data, unless otherwise
noted. We begin by validating performance of the spatial
occurrence model described in section 2.1. For one exam-
ple location in Iowa (i.e., Washington), Figure 2 shows em-
pirical 1 day transition probabilities for rainfall occurrence
with the model transition probabilities superimposed. As is
well known, the previous day’s occurrence is an important
covariate to include; in this case, the probability of precipi-
tation is approximately 0.15 higher on days preceded by
precipitation. The higher-order harmonics chosen by BIC
allow for a substantial increase in probability during
springtime, which levels out during the other seasons.

[36] An essential feature that stochastic precipitation
generators attempt to replicate is the length of dry and wet
spells. Figure 3 shows the log frequency of empirical dry
spells from 1 day to up to 70 days at the example locations,
Rock Rapids, Iowa, and Buenos Aires, Argentina, with
90% pointwise confidence intervals based on the 100 simu-
lations overlaid. Our single station Markov chain model
shows extremely good characterization of dry spell behav-
ior at individual locations. Even for extreme spell lengths,
the precipitation generator reasonably replicates the aver-
age length and occurrence of these dry spells.

[37] Our precipitation generator satisfactorily simulates
occurrence behavior at individual locations, but the power
in the method is in correlating occurrences across space.
Figure 4 shows simulated and observed probabilities for
pairs of stations in lowa being simultaneously dry or simul-
taneously wet in winter (DJF) and in summer (JJA). Our
latent Gaussian process model accurately replicates the
observed pairwise probabilities well. In particular, the
model is able to reproduce pairwise probabilities of any-
where from approximately 0.05 to up to 0.80, displaying
very flexible behavior with a relatively simple parametric
model. We also examined pairwise probabilities of loca-
tions being oppositely wet and dry, which showed similar
extent of replication as in the plots of Figure 4.

[38] To assess the model climatology of occurrences, we
examine the seasonally varying mean and variability of
occurrence rate. The unconditional occurrence rate is effec-
tively equivalent to the average number of wet days in any
given month. Table 1 shows the mean and standard devia-
tion of occurrences across the domain of Iowa by each
month. Our simulations replicate the observed average to
within 0.01 — 0.02, and capture the variability extremely
well, typically differing by less than 0.015 from the
observed variability.

[39] One of the most difficult features of multisite pre-
cipitation data to replicate is the length of spatially aggre-
gated wet and dry spells, another feature essential for
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(b)

1.0

Probability
0.4
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0.0

Day of year

Empirical transition probabilities at Washington, [owa, with model transition probabilities as

the line for (a) O(s,t — 1) = 0 and O(s, ¢) = 1 and (b) O(s,# — 1) = 1 and O(s, ¢) = 1.

hydrological planning and water resource management. We
define an aggregate dry spell as the maximum number of
consecutive days without rain at any location within the do-
main, and an aggregate wet spell as the maximum number
of consecutive days on which precipitation occurred at at
least one location within the domain. Figure 5 shows aggre-
gate dry and wet spells with 90% pointwise model confi-
dence intervals based on our 100 simulations in Iowa and
the Pampas. In Iowa, our approach was unable to generate
sufficiently long domain dry spells; however, it captures
aggregate wet spell behavior very accurately, except at
short lengths. In the Pampas region, our latent Gaussian
process model replicates both the dry and wet spells
extremely accurately at long lengths. We reiterate that our
model is not tuned to reproduce this statistic; our positive
performance is due to capturing the individual station tem-
poral structure and the spatial correlation at any fixed point
in time.

lowa

log(Number of days of dry spell)

Consecutive Dry Days

[40] Figure 6 displays the observed frequencies of total
number of stations in Iowa with positive precipitation, as
well as 90% pointwise model confidence intervals based on
our 100 simulations. We see that the stochastic generator
faithfully replicates this statistic well, except for slightly
undersimulating the frequency of all sites being dry. This
suggests that precipitation occurs at least one location more
often than specified by our model, although we replicate
the average number of daily spatial occurrences for all
other values well.

[41] We conclude our discussion of the spatial occur-
rence model by examining a plot similar to that of Wilks
[1998], pairwise lagged simultaneous occurrence probabil-
ities. Each point in Figure 7 represents the probability

P(O(si,t—1) =0, O(Sj,t) =1) (18)
P(O(si,t —1) =1, O(s/,t) =0) (19)
Pampas
~ AR
= q%
> kel
S B
(o] D‘\
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2 wo CD\O\
o ‘- (e} \CDCIﬁE— - o] o] o]
T

Consecutive Dry Days

Figure 3. Log frequency of empirical dry spells at Rock Rapids, lowa, and Buenos Aires, Argentina,
with 90% pointwise confidence intervals based on 100 simulations as dashed lines.
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Figure 4. Pairwise empirical simultaneous occurrence probabilities in lowa for both stations being (a)
dry in summer (June—August), (b) wet in summer, (c¢) dry in winter (December—February), and (d) wet in

winter.

for the simulated and observed data at lowa. These statis-
tics are difficult to replicate, especially because our model
is not directly tuned to do so. Notice our approach seems to
imply a slight additive bias in the simulated probabilities,
but removes the quite noticeable multiplicative bias exhib-
ited by Wilks [1998] in an application to another precipita-
tion data set. Other approaches have been able to further
reduce this challenging criterion [Lee et al., 2010], but
often come at the cost of significant model complications.
Finally, note that this additive bias is nearly negligible,
only on the order of 0.01 to 0.02, which is unlikely to have
a significant impact in practice.

[42] We now turn to validating the spatial intensity
model, with special attention to spatially aggregated per-
formance. Table 2 displays monthly statistics of daily
precipitation intensity across the domain of Iowa. In partic-
ular, the average simulated intensity in any given month
differs from observed averages by typically approximately
1 mm, while the simulated standard deviation of intensity
differs from the observed variability by less than 1 mm on

average. Hence, the model exhibits no apparent bias in the
first or second distributional moments.

[43] To examine the interannual variability, Figure 8
shows the standard deviation of total monthly precipitation
at a single example location, Belle Plaine, Iowa. The two
plots include our model where the parameters are simulated
at each location (thereby incorporating parameter uncer-
tainty), and the same model but using fixed parameters.
Our approach shows an ability to scale to time frames lon-
ger than daily, which is a crucial desired feature of stochas-
tic precipitation generators [Gregory et al., 1993]. The
greater variability in model simulated monthly total precip-
itation seen in Figure 8a is directly due to incorporation of
parameter uncertainty, with the model not being trained to
replicate this statistic. Our model performs similarly well
for the other locations in Iowa.

[44] Figure 9 shows observed pairwise station correla-
tions of precipitation intensity (i.e., only on days with si-
multaneous positive precipitation) against the simulated
correlations for summer and winter in lowa. The ability to

Table 1. Average and Standard Deviation (SD) of Daily Occurrence Rate by Month Over the Domain of Iowa

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Observed mean 0.180 0.189 0.236 0.305 0.349 0.336 0.273 0.272 0.267 0.220 0.196 0.185
Simulated mean 0.178 0.199 0.249 0.309 0.343 0.336 0.302 0.273 0.253 0.236 0.212 0.186
Observed SD 0.384 0.391 0.424 0.460 0.477 0.473 0.446 0.445 0.442 0.415 0.397 0.388
Simulated SD 0.382 0.399 0.432 0.462 0.475 0.472 0.459 0.445 0.435 0.424 0.409 0.389
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Figure 5. Log frequency of domain aggregate spells: (a) dry in lowa, (b) wet in Iowa, (c) dry in the
Pampas, and (d) wet in the Pampas, with 90% pointwise confidence intervals based on 100 simulations

as dashed lines.

adapt to seasons is due to the temporally evolving spatial
correlation function (4), which allows for a substantial
increase in spatial correlation during winter as compared to
summer. It should be unsurprising that the pairwise correla-
tions of Figure 9 are more variable than for occurrence
(recall Figure 4), since the spatial correlation of intensity
has a shorter length scale and is much more variable. To
illustrate the seasonally varying spatial correlation, Figure 10
shows the spatial correlation function for the Iowa domain
for the two example dates of 1 January and 1 July, with em-
pirical correlation functions being on the Gaussian process
scale. Our method of moments approach to estimating spa-
tial correlation shows good performance.

[45] One of the main motivations for spatially consistent
precipitation is to capture the domain aggregated behavior,
that is, the total precipitation averaged over all locations on
a given day. Figure 11 shows Q-Q plots for daily regional
average precipitation under both our spatial model and a
marginal model in Towa and the Pampas region. The mar-
ginal model retains the same marginal probability distribu-
tion for precipitation intensity at each individual location,
but has no transformed Gaussian processes to correlate spa-
tial precipitation. Our spatial approach significantly
improves over the marginal model, and retains the same
marginal distribution. The main room for improvement in
Iowa lies above about the 90% quantile in Figure 11; at
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this extreme level, domain average precipitation intensity
in Iowa is not well modeled by a sum of gamma variables,
although extreme spatial precipitation is reasonably accu-
rately replicated in the Pampas.

[46] A final key requirement for a spatially consistent
stochastic generator is to replicate the observed variability
of annual total precipitation averaged over the domain, as
important for some water management purposes. To this
end, Figures 12 and 13 display Q-Q plots for annual re-
gional mean precipitation, with 90% pointwise confidence
bounds based on our 100 simulations for both data sets.
Figure 12 also includes a Q-Q plot for annual mean precipi-
tation at Belle Plaine, Iowa, which illustrates that our
model scales well from daily to annual time frames both
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locally and regionally. It is important to be aware that our
model has not been trained to reproduce this statistic.

3.4. Gridded Simulations

[47] The advantage of the spatial model (5) is that model
parameters can be interpolated to any location of interest,
including parameter uncertainty for both the occurrence
and intensity processes. The Gaussian process spatial
model lends itself to using a spatial interpolation technique
called kriging [Cressie, 1993]. The kriging predictor is the
best linear unbiased predictor (in the sense of quadratic
loss), and coincides with conditional expectation for nor-
mally distributed variables. In particular, the conditional

distribution of 3(so) based on the partial realization B(s) at

s =Sy, ...,8, is normal with kriging mean and variance
E(B(so) | Bls1), -, Bls) = p+ €= (B—p)  C0)
Var(B(so) | B(s1). ... B(sn)) = o +7° —¢S7e 2D

where 1 and ¢ are the mean and marginal variance of the
Z(s) process, respectively, 72 is the nugget effect arising
from the e(s) process, ¥ is the covariance matrix of
(B(s1), ..., B(sy)), and the ith entry of the vector ¢ is
Cov(B(so), 8(s;)). One has two options for interpolating
parameters with the kriging model: (1) use the determinis-
tic point prediction of (20); or (2) use a simulation which is
normally distributed with mean and variance given by (20)
and (21), respectively. This second approach recognizes
that the kriging mean is a good average value, but is also
able to communicate the uncertainty in this predictor to the
weather generator.

[48] Accounting for parameter uncertainty is important
to reduce overdispersion, which is otherwise magnified
because of the inflexibility of the fixed statistical model (as
we have already seen; recall Figure 8). To this end, Figure
14 shows monthly and annual variability of an observed in-
tensity series and 100 simulated trajectories at a held out
location (Mount Ayr, Iowa). That is, the simulations are
based on interpolated statistical parameters, using either the
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Joint probability of precipitation occurrence state of two sites in lowa, where each site was

oppositely (a) dry and wet on successive days or (b) wet and dry on successive days.
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Table 2. Mean and Standard Deviation (SD) of Daily Precipitation Intensity by Month Over the Domain of Iowa®

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Observed mean 4.66 5.12 6.94 8.56 9.83 11.69 11.67 11.74 11.48 8.69 7.50 5.28
Simulated mean 5.44 5.70 6.66 8.36 10.55 12.51 13.51 12.96 11.17 8.94 7.08 5.88
Observed SD 5.99 6.29 8.35 10.23 12.13 14.85 15.14 15.9 15.07 10.86 9.85 6.75
Simulated SD 6.12 6.46 7.69 9.89 12.68 15.22 16.59 16.09 13.9 10.94 8.39 6.72

“Units are millimeters.
(a) (b)

70

mm
50
\

40
|

20
\

Month

Month

Figure 8. Standard deviation of monthly total precipitation at an example location (Belle Plaine, lowa)
indicated by the solid curve, with box plots showing the simulated interannual variability over 100 simu-
lations for the case where (a) model parameters are simulated on each day and (b) model parameters are
fixed on each day. Box plot whiskers extend to 1.5 times the interquartile range.
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Figure 10. Spatial correlation function (4) for the inten-
sity model on the Gaussian process scale with empirical
covariances for the domain of lowa for 1 January (solid
line and solid circles) and 1 July (dashed line and open
circles).

fixed kriging mean (20), or using parameter values centered
around (20) with normal deviations with variance defined
by (21). Immediately, we see that using a deterministic
interpolation does not provide variable enough simulations
on either the monthly or annual scale, whereas including
parameter uncertainty yields an appropriate amount of
spread at both of these scales. The effect of parameter
uncertainty on precipitation intensity is more readily seen,
whereas the increased variability is less clear for occur-
rence simulation.

[49] One consequence of simulating the interpolated pa-
rameter, rather than fixing it at the kriging mean (20) is that
the simulated series will typically be slightly more variable
than the observations at that particular location. Mathemati-
cally, this is due to the fact that the kriging variance (21) is
always greater than the local parameter uncertainty con-
tained in 72. Heuristically, this is due to the fact that we
cannot directly estimate the parameters at this location,
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hence our prediction uncertainty along with the variability
endowed by the statistical model imply a greater spread of
stochastic realizations.

[50] To complete this point, consider Figure 15, which
shows interannual variability for both types of model inter-
polation at Mount Ayr, lowa. In particular, the parameters
governing the simulations at this location are unknown, and
are interpolated from surrounding locations. Here, we cal-
culate interannual variability as the standard deviation of
monthly totaled precipitation at this particular location.
Figure 15a is from the model where the precipitation gener-
ator parameters (/3) are simulated at this location on the ba-
sis of the distribution of (20) and (21), whereas Figure 15b
uses the deterministic kriging interpolator from (20).
Clearly accounting for parameter uncertainty is a critical
consideration for stochastic precipitation generators, as we
see the overdispersion if left unaccounted for.

[s1] We close section 3.4 with an example of gridded
precipitation that illustrates our model’s practical use. Fig-
ure 16 shows two randomly generated precipitation fields
for Iowa on adjacent days. Parameters were simulated at
each grid point using the kriging model, and then a field of
occurrence and intensity were randomly generated. The
first field’s covariates were set to 1 January conditions, and
the second field occurred on 2 January, conditional on the
observed precipitation as simulated on 1 January. We see
the temporal momentum of the precipitation field, with
high intensities and positive precipitation tending to occur
near the grid cells where there was rain on the previous
day. The model is available at every location, and once the
first day of precipitation has been generated the chains of
precipitation fields can be simulated for any arbitrary num-
ber of days.

4. Summary and Discussion

[52] We have presented a general framework for simulat-
ing spatially correlated fields of daily precipitation. The
method relies on a latent Gaussian process that drives
precipitation occurrence, and the consequent field of

Pampas

Simulated
10 20 30 40 50 60

0
|

Observed

Q-Q plot for domain aggregated average daily precipitation in Iowa and the Pampas with

90% pointwise confidence intervals for the spatial model (solid line) and a marginal model (dashed line)
that retains the gamma distribution at individual locations but has no spatial correlation included in either

the occurrence or intensity processes; units are mm.
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Q-Q plots for (a) annual mean precipitation at Belle Plaine, Iowa, and (b) annual domain
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lines; units are mm.

precipitation intensities is modeled as a transformed Gaus-
sian process which reduces to a gamma distribution at indi-
vidual locations. Seasonally varying occurrence and
intensity is achieved through a GLM, which can be easily
extended to include other covariates for the purposes of
downscaling, climate impacts [Qian et al., 2002 ; Mehrotra
and Sharma, 2010], climate change scenarios [Katz, 1996],
or observational record infilling [Kyriakidis et al., 2004].
[53] Modeling parameters as spatial Gaussian processes
allows for quantification of parameter uncertainties and
spatial interpolation using kriging. In effect, this allows the
stochastic model to vary by location, which is crucial when
dealing with large domains or regions of complex topogra-
phy [Guan et al., 2005; Hay et al., 1998; Thornton et al.,
1997]. For example, Goovaerts [2000] discusses methods
of incorporating elevation information into the geostatisti-
cal framework. Kriging is a preferred technique for spatial
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Figure 13. Q-Q plot for annual domain mean precipita-
tion in the Pampas with 90% pointwise confidence intervals
based on 100 simulations; units are mm.

interpolations, as not only are point estimates available at
any arbitrary location, but parameter uncertainty is immedi-
ately described. Deterministic interpolations can result in
underdispersion of the stochastic realizations, whereas
including interpolation uncertainty yields greater variability
in the simulations. Indeed, simulating model parameters is
a straightforward and easy way to reduce overdispersion,
whereas other authors have needed to postprocess their
daily simulations to align with monthly and annual scales
[Srikanthan and Pegram, 2009].

[s54] When interpolating model parameters to locations
with no observations, our kriging conditional distribution
should be contrasted with the approach of Wilks [2008,
2009]. He considered a deterministic interpolation scheme,
an extension of that used by Lall et al. [2006]. Their locally
weighted regression scheme can take account of correlation
decay across distance as well as elevation. The drawback to
this approach is that uncertainty in parameter predictions is
not directly used, whereas uncertainty is immediately avail-
able at all locations in closed form using kriging. Correla-
tion dependence on elevation can be built into the
covariance function as well; see Kleiber et al. [2011] for
one approach.

[s5] We illustrated our model on two data sets, the first
was a network of 22 stations in Iowa, and the second a net-
work of 19 stations over a significantly larger domain in
the Pampas region of Argentina. The method shows a good
ability to replicate dry and wet spells both locally and on a
domain aggregated level. In Iowa, our approach generated
slightly too few aggregate dry spells of extreme length,
while in the Pampas the model captured domain aggregated
wet and dry spells very well. Our tentative hypothesis for
this apparent disagreement in performance is that the model
in Towa is failing to capture the two types of precipitation
common during the summer, the local convective storms
and the widespread frontal precipitation events. In the Pam-
pas region, the convective occurrences tend to be much
more widespread and long lasting than in the midwestern
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Figure 14. Standard deviation of precipitation intensity at a held out location (Mount Ayr, lowa), using
an interpolated model: (a) Standard deviation of intensity by month with pointwise 90% confidence
intervals based on 100 simulations with parameter uncertainty included (solid lines) and deterministic
interpolations (dashed lines). (b) Box plots of annual standard deviation of precipitation intensity with
deterministic interpolation (deterministic), simulated parameters (simulated) and observed standard devi-

ation (observed). Box plot whiskers extend to 1.5 times the interquartile range.

United States [Durkee and Mote, 2009]. Hence, the tempo-
rally varying spatial correlation in the Pampas is sufficient
to effectively distinguish between the two types of precipi-
tation, while a more complicated model that explicitly
accounts for both types of precipitation may be required in
Iowa. In particular, during the summer our spatial length
scale of occurrence is shrunk via the temporally varying

mm
40 60 80

20

Month

Figure 15.

range parameter in both lowa and the Pampas, and hence
our model exists somewhere between highly localized con-
vective storms and widespread frontal events. One possible
solution is to consider a model that separately accounts for
both of these types of precipitation, which might in turn
replicate the regional dry spells more accurately; this
would be a difficult step to take but would certainly be

(b)

Month

Interannual variability for each month in terms of standard deviation of monthly summed

rainfall at a held out location (Mount Ayr, lowa). Box plots are based on 100 simulations from an inter-
polated model with (a) parameter uncertainty included and (b) deterministic parameter interpolation.
The solid line indicates the observed standard deviation of observed monthly precipitation. Box plot
whiskers extend to 1.5 times the interquartile range.
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Figure 16. Two gridded precipitation simulations in lowa with grid spacing of approximately 20 km,
the first on 1 January and the second on 2 January; units are mm.

worthy of further research. In the Pampas, our model repli-
cated the extreme wet and dry spells extremely accurately,
displaying the flexibility of our approach in different
domains.

[s6] For both precipitation occurrence and intensity, we
used an isotropic correlation function whose scale parame-
ter varied with time. Alternative anisotropic and nonsta-
tionary models may be of interest in other settings with
complex terrain or over a larger domain [Baigorria et al.,
2007]. Extending our model to include spatial anisotropy is
straightforward. The nonstationary and anisotropic covari-
ance models of Paciorek and Schervish [2006] may be of
particular interest. In our domain, we had at most 22 sta-
tions, and with such sparse data it is extremely difficult to
identify, let alone model spatial anisotropy. Potentially,
with a larger network of stations, one could identify and
successfully fit an anisotropic model, but this is beyond the
scope of our present examples.

[57] At individual locations, our model reduces to a Mar-
kov chain for precipitation occurrence and, conditional on
the occurrence of precipitation, to a gamma distribution for
intensity. The drawback to gamma distributions is that they
do not possess a heavy enough tail and hence cannot
adequately represent extreme rainfall events [Furrer and
Katz, 2008]. However, methods of combining spatial mod-
els for extremes with those for lower values are few and far
between. It would be desirable to combine a model such
as ours with that of Buishand et al. [2008], for example,
who describe a model for spatially correlated extreme
precipitation.

[s8] Our daily precipitation model was able to reproduce
the observed variability in daily rainfall occurrences and
intensities on local and domain aggregated scales, as well
as on longer temporal scales such as monthly and annually.
Hence, our approach requires no extra effort to incorporate
the important low-frequency behavior and interannual vari-
ability required of precipitation generators [ Gregory et al.,
1993; Wilks and Wilby, 1999].

[59] Another future route of research is to develop a full
stochastic weather generator that considers not only precip-
itation, but other variables such as temperature, wind speed,
relative humidity and solar radiation across space simulta-
neously (e.g., as modeled at a single site by Parlange and

Katz [2000] or Kilsby et al. [2007] and also in a multisite
context by Wilks [2009]). A similar approach to ours for
temperature field simulation can be implemented using the
methods of Berrocal et al. [2007] and Kleiber et al. [2011].
Some of the multivariate spatial models currently of inter-
est in the statistics community may also be useful to this
end [Apanasovich and Genton, 2010; Gelfand et al., 2004
Gneiting et al., 2010].
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