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Geomagnetic storms play a critical role in space weather physics with the
potential for far reaching economic impacts including power grid outages, air
traffic rerouting, satellite damage and GPS disruption. The LFM–MIX is a
state-of-the-art coupled magnetospheric–ionospheric model capable of sim-
ulating geomagnetic storms. Imbedded in this model are physical equations
for turning the magnetohydrodynamic state parameters into energy and flux
of electrons entering the ionosphere, involving a set of input parameters. The
exact values of these input parameters in the model are unknown, and we
seek to quantify the uncertainty about these parameters when model output
is compared to observations. The model is available at different fidelities:
a lower fidelity which is faster to run, and a higher fidelity but more com-
putationally intense version. Model output and observational data are large
spatiotemporal systems; the traditional design and analysis of computer ex-
periments is unable to cope with such large data sets that involve multiple
fidelities of model output. We develop an approach to this inverse problem
for large spatiotemporal data sets that incorporates two different versions of
the physical model. After an initial design, we propose a sequential design
based on expected improvement. For the LFM–MIX, the additional run sug-
gested by expected improvement diminishes posterior uncertainty by ruling
out a posterior mode and shrinking the width of the posterior distribution.
We also illustrate our approach using the Lorenz ‘96 system of equations for
a simplified atmosphere, using known input parameters. For the Lorenz ‘96
system, after performing sequential runs based on expected improvement, the
posterior mode converges to the true value and the posterior variability is re-
duced.

1. Introduction. The Lyon–Fedder–Mobarry (LFM) magnetohydrodynami-
cal model, coupled with the MIX model for the ionosphere, creating the coupled
LFM–MIX, is a state-of-the-art physical model for geomagnetic storms occurring
in near-Earth space [Lyon, Fedder and Mobarry (2004)]. The LFM–MIX is used to
explore and understand the physics of space weather, and is a crucial part of an on-
going effort to build a space weather forecasting system. The LFM–MIX contains
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three input parameters embedded in physical equations for turning the LFM state
parameters into energy and flux [Wiltberger et al. (2009)]. Exact values of these
input parameters are unknown, and our goal is to quantify the uncertainty sur-
rounding these parameters when model output is compared to an observed storm,
posing substantial statistical challenges including large spatiotemporal systems of
observations and model output, as well as the need to incorporate multiple versions
of the LFM–MIX.

1.1. Geomagnetic storms. Geomagnetic storms play an increasingly impor-
tant role in society. A recent National Academy of Sciences report outlined past
occurrences of geomagnetic storm disruptions, and discussed the importance of
preparedness in the future when the Sun returns to its solar peak in 2013, which
leads to larger and more frequent geomagnetic storms [National Research Coun-
cil (2008)]. Intense geomagnetic storms adversely affect satellites and can have
significant associated costs; in 1994 a Canadian telecommunication satellite expe-
rienced an outage due to a strong storm, and recovery of the satellite cost between
$50 million and $70 million. Large storms can interact with electric grids; a su-
perstorm in March 1989 shut off electricity to the province of Québec, Canada
for nine hours. Global position systems (GPS) and communication systems are
affected by large storms; the Federal Aviation Administration’s Wide Area Aug-
mentation System (WAAS) is a GPS location system for aircraft, whose vertical
navigation system was shut down for approximately 30 hours in 2003 due to a
series of powerful storms. As society has become increasingly reliant on electric-
ity and satellite communication, the potential devastating effects of geomagnetic
storms are magnified.

Geomagnetic storms are caused by the interaction of the plasma and magnetic
field of the Sun interacting with Earth’s magnetic field. Coronal Mass Ejections
(CMEs) from the Sun release massive twisted magnetic field configurations that
can deposit substantial energy in the region of near-Earth space known as the mag-
netosphere. The energy is stored for a while, and then is released in an explosive
fashion, sending particles down magnetic field lines into the ionosphere causing
the aurora borealis or northern lights.

1.2. Computer experiments. In the computer experiments literature, the tun-
ing of physical model parameters to observations is called an inverse problem,
and is sometimes referred to as a calibration problem [Santner, Williams and Notz
(2003), Tarantola (2005)]. Two features of our setup make the traditional approach
to design and analysis of computer experiments infeasible. First, observational data
and computer model output are highly multivariate; modeling model output and
observations as realizations from a Gaussian process [e.g., as popularized by Sacks
et al. (1989), see also Kennedy and O’Hagan (2001) and Higdon et al. (2004)] is
impractical due to the dimensionality of the covariance matrix. The second issue
is that the LFM–MIX is available at multiple fidelities. In particular, solving the
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physical equations making up the LFM at a lower resolution yields model out-
put that is jointly faster to calculate but does not match up as well with observa-
tions, a version we call low fidelity. Alternatively, at a higher resolution the LFM
yields output whose spatial features are more consistent with observational data,
but which takes substantially longer to run (approximately an eightfold increase in
computation time), a version we call high fidelity. We aim to exploit a statistical
link between the model fidelities, thereby allowing us to explore the input param-
eter space using the cheaper low fidelity version, while performing fewer runs of
the high fidelity version.

The problem of high-dimensional observations and model output has recently
become acknowledged in the computer experiments literature. Higdon et al.
(2008a) recommend decomposing model output and model bias terms as weighted
sums of orthogonal basis functions. The weights on the basis functions are then
modeled as Gaussian processes. Indeed, the notion of an orthogonal decomposi-
tion has been further used by various authors to reduce the high dimensionality
of vector-valued model output [Higdon et al. (2008b), Wilkinson (2010)]. Pratola
et al. (2013) introduce a fast approach to calibration for large complex computer
models. In the geophysical sciences, model output is often spatiotemporal in na-
ture, which typically gives rise to large data sets. Bhat, Haran and Goes (2010)
develop a calibration approach for multivariate spatial data, modeling the model
output as a Gaussian process across space and input setting, exploiting a separable
covariance structure. Our model and data also evolve across time, and the presence
of multiple fidelities of model output challenge the approach of Bhat, Haran and
Goes (2010).

Accounting for multiple versions of model output is a second problem that
has recently arisen in the computer experiments literature. Kennedy and O’Hagan
(2000) introduce an autoregressive Markov property for multiple fidelities of
model output, modeling the innovation as a Gaussian process. While their idea
is extended to a continuum of model fidelities, a crucial and restrictive assumption
is that the model output is scalar. Qian et al. (2006) develop an approach to com-
bining two levels of fidelity that is extended to a Bayesian hierarchical setting by
Qian and Wu (2008). The idea is to decompose the high fidelity output as a re-
gression on the low fidelity version, and model the intercept and slope as Gaussian
processes. Forrester, Sóbester and Keane (2007) and Le Gratiet (2012) recommend
co-kriging for multiple fidelities of output, but do not consider the issue of large
data sets. We exploit similar ideas to these authors in our construction, although
we must take care to reduce the dimensionality of the data, as both versions of
the LFM–MIX are highly multivariate. It is worth mentioning that there is some
literature on emulators for multivariate computer models, but our current interest
is not in emulation, but rather parameter identification [Rougier (2008), Rougier
et al. (2009)].

Herein we develop methodology for quantifying the uncertainty about tun-
ing parameters for high-dimensional spatiotemporal observations and the physi-
cal model with two levels of fidelity. We exploit an empirical orthogonal function
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(EOF) decomposition of the low fidelity spatial field, and an EOF decomposition
of a discrepancy function linking the low and high fidelity versions of the computer
model. Our work generalizes that of Kennedy and O’Hagan (2001) to account for
large spatiotemporal data sets. The techniques introduced below also generalize
the approach of Higdon et al. (2008a) to account for two levels of model fidelity.
The methodology is illustrated on the LFM–MIX and the Lorenz ‘96 system of
equations governing a simplified atmosphere [Lorenz (1996, 2005)], where we
know true values of the input parameters. For both models, after initial parameter
estimation, we propose a sequential design based on expected improvement [EI,
Jones, Schonlau and Welch (1998)]. Our development of expected improvement
generalizes the approach of Jones, Schonlau and Welch (1998) to sequential de-
sign for spatiotemporal data.

2. LFM–MIX and observations. The physical model we examine is a cou-
pled magnetospheric–ionospheric model for geomagnetic storms in near-Earth
space. The magnetohydrodynamical solver is the Lyon–Fedder–Mobarry (LFM)
model which consists of five physical equations defining the spatial and temporal
evolution of the interaction between the solar wind and Earth’s magnetosphere.
These five magnetohydrodynamic equations must be solved numerically by dis-
cretizing the equations to a spatiotemporal grid, using the partial donor method
[Wiltberger et al. (2004)]. There is a coarsest grid on which the equations are
solved that still yields physically meaningful model output at a reduced compu-
tational cost. Discretizing the equations on a finer grid by doubling the number
of spatiotemporal points (in the polar and azimuthal angle directions, as well as
at a finer temporal scale) results in higher fidelity model output, but substantially
increases the computational time required to complete model runs. Intuitively, dou-
bling the grid density in three directions results in a 23 = 8-fold increase in com-
putation time; in practice, the higher resolution version is an approximately 5.5
to 6-fold increase in computation time as compared to the lower resolution. As
boundary conditions, the LFM requires solar wind, initial strength of the magnetic
field, and the level of ultraviolet light from the Sun. For any single geomagnetic
storm, these boundary conditions are fixed and are not considered input parame-
ters.

The LFM solver is coupled to an ionospheric model, the MIX, forming the
fully coupled LFM–MIX. The MIX model requires information about the energy
and number flux of the electrons precipitating into the ionosphere along magnetic
field lines. Three physical equations define energy and number flux inputs. The
equations relate initial energy ε0, sound speed c2

s , number flux F0, the density of
innermost cells of the magnetospheric grid ρ, the field aligned electrical potential
energy difference ε‖, and upward field aligned current J‖ as

ε0 = αc2
s , F0 = βρ

√
ε0, ε‖ = RJ‖

√
ε0

ρ
;(1)
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see Wiltberger et al. (2009) for further discussion. An important quantity called
total energy is defined as ε0 + ε‖. Here, α,β , and R are tuning factors that are in-
cluded to account for physical processes outside the scope of the LFM. The exact
values of these parameters are unknown, and we seek to quantify the uncertainty
about these parameters when model output is compared to observations. The pa-
rameter α accounts for the effects of calculating electron temperature from the
single fluid temperature, β is included to adjust for possible plasma anisotropy
and controls a loss filling cone, while R allows scaling of the parallel potential
drop based on the sign of the current and accounts for the possibility of being out-
side the regime of the scaling. Notice the total energy is a nonlinear function of α

and R, while flux is a function of β; later when we develop the statistical model,
we take advantage of these functional relationships.

Regardless of the resolution of the LFM input, the MIX coupler output is always
on the same spatiotemporal resolution. Hence, unlike uncoupled models, the low
and high resolution LFM–MIX output is co-located, and we will refer to the low
resolution output as low fidelity, and the high resolution output as high fidelity.
This allows us to directly compute the scalar difference between the two fidelities
without regridding. Model output from the LFM–MIX is a bivariate spatiotemporal
field, for the variables of energy (in keV) and flux (in 1

cm2s
). Developing a bivariate

spatiotemporal model is beyond the scope of the current manuscript, and we focus
on uncertainty estimation using only the energy model output.

The observational data set we examine is a bivariate spatiotemporal field ob-
served during a January 10, 1997, geomagnetic storm from 2 pm to 4 pm UTC,
with 18 equally spaced time points. The storm was observed by the Ultraviolet
Imager on the Polar satellite, deriving the two variables of energy (in keV) and
energy times flux (in mW

m2 ) simultaneously. The observations were recorded on a
grid of 170 locations, leading to a data set of 6120 correlated observations. The
LFM–MIX model output is on a grid of 1656 locations such that the observational
grid is a subset of the model output.

3. Parameter estimation for the LFM–MIX. We require initial runs of the
low and high fidelity model to inform a statistical relationship between the two. As
our initial experimental design, we run the LFM–MIX at a sampling of points in
the three-dimensional space defined by α ∈ [0,0.5], β ∈ [0,2.5], and R ∈ [0,0.1],
which is the hyperrectangle defining physically feasible values of (α,β,R).

3.1. Design. Using the hyperrectangle [0,0.5] × [0,2.5] × [0,0.1] of val-
ues for θ = (α,β,R), we ran the low fidelity version at 20 sets of input set-
tings based on a space-filling design [Johnson, Moore and Ylvisaker (1990)].
Call this model output L(s, t, θp) at location s ∈ R

2, time t , and input setting
θp = (αp,βp,Rp),p = 1, . . . ,20. We also ran the high fidelity version at a nested,
space-filled subset of 5 of the original 20. Similar to the low fidelity, call the model
output H(s, t, θp), for p = 1, . . . ,5. Setting up the initial design in such a way that
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the low and high fidelity versions are nested, that is, run at co-located input param-
eter settings, yields direct observations of the discrepancy H(s, t, θp)−L(s, t, θp),
and assists in developing the statistical relationship between the two. If the design
were not nested, we would require estimated discrepancies H(s, t, θp)−L̂(s, t, θp)

or Ĥ (s, t, θp) − L(s, t, θp) to explore the statistical relationship, thereby introduc-
ing additional uncertainty. The choice of 20 and 5 runs for the low and high fi-
delity model, respectively, is due to the expensive computational cost of running
the LFM–MIX. For our study geomagnetic storm, the low fidelity model runs in
16 hours, while the high fidelity model requires approximately 84 hours per run
on a Linux cluster with 8 processors. In total, the initial design took approximately
740 hours to run. Note the benefit of exploiting the lower fidelity, but faster run-
ning version—had we run the high fidelity model on the initial design of 20 input
settings, the computational time would be approximately 1680 hours. Hence, the
inclusion of the cheaper low fidelity model allows us to reduce the initial compu-
tational load by about 56%.

3.2. Statistical model. Following an approach popularized by Kennedy and
O’Hagan (2001), we suppose there is an unknown setting, θ0, for which the high
fidelity model is an adequate representation of reality. In particular, for observa-
tions of energy (in keV), Y(s, t), at grid point s and time t , we have

Y(s, t) = H(s, t, θ0) + ε(s, t),(2)

where ε(s, t) is measurement error, which we assume to be normally distributed
with mean zero and variance τ 2. Our approach slightly differs from Kennedy and
O’Hagan (2001) in that we do not entertain a model discrepancy term. Our setup
is a large-scale inverse problem, where model discrepancy is not part of the tradi-
tional setup [Tarantola (2005)]. We also point out that we have only one geomag-
netic storm, and any model bias term would be confounded with the error process
ε(s, t), without severe simplifying assumptions.

To fully exploit the information from the low fidelity model, we require a link
between the coarse model L and the higher fidelity model H , which yields output
fields that are more consistent with observational data. Specifically, we link the low
and high fidelity models with an additive discrepancy function δ(s, t, θ), where

H(s, t, θ) = L(s, t, θ) + δ(s, t, θ).(3)

Qian and Wu (2008) considered including a multiplicative discrepancy function
as well, yielding a decomposition of the form H(s, t, θ) = γ (s, t, θ)L(s, t, θ) +
δ(s, t, θ). For the LFM–MIX, both fidelities produce output fields that are of ap-
proximately the same magnitude, so we consider only an additive discrepancy
function, although the greater flexibility of a full multiplicative and additive bias
may be useful in other settings. By defining a statistical relationship between the
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low and high fidelity versions of the LFM–MIX, we have inherently also devel-
oped an emulator for the high fidelity model, based on runs from the cheaper low
fidelity version, but reassert that our main interest is in the parameters (α,β,R).

The model and observations are highly multivariate space–time fields, where,
with only one storm and 20 + 5 initial computer model runs, we have 748,260
correlated points (1656 grid locations for the 25 LFM–MIX output runs at 18
time points plus 170 observation locations over 18 time points). The traditional
approach used by Kennedy and O’Hagan (2001) is challenging to implement for
large space–time data sets, as this would require inverting a covariance matrix of
dimension 748,260×748,260. Indeed, in their implementation, the covariance ma-
trix would have to be inverted at each step of an MCMC procedure. Hence, with
spirit similar to Higdon et al. (2008a), we use a principal component decomposi-
tion approach to reduce dimensionality. In particular, we decompose the low reso-
lution model output and discrepancy function as weighted sums of orthogonal spa-
tial basis functions. In the geophysical sciences, these spatial functions are known
as empirical orthogonal functions [EOFs; Wikle (2010)]. In particular, define the
spatial vectors X(ti, θp) = (L(s1, ti, θp), . . . ,L(sns , ti, θp))′, where ns = 1656 is
the total number of grid points of model output, nt = 18 is the number of time
points, i = 1, . . . , nt and p = 1, . . . ,20. Define the ns × (20 × nt ) dimensional
matrix

X = [
X(t1, θ1),X(t2, θ1), . . . ,X(tnt , θ20)

]
so that each column is a spatial vector at a given time point and input setting.
The EOFs are the columns of U, where we use the singular value decomposition
X = UDV′, and the EOF coefficients are contained in DV′. In particular, there are
20 ×nt EOFs, each of which is length ns . We perform a similar decomposition for
the discrepancy process δ(s, t, θ) = H(s, t, θ) − L(s, t, θ), where there are 5 × nt

EOFs, each of which is length ns . Our motivation for decomposing the model out-
put as basis functions over space, rather than space–time, is driven by exploratory
analysis. In particular, the first main spatial mode of variation of the low fidelity
model output (i.e., the first EOF) exhibits a magnitude with a structured form that
is similar to the physical equation (1) and whose magnitude modulates up and
down as the CME passes over the Earth. This aligns with expert understanding of
geomagnetic storms, as the effect of the CME passing over the Earth is a period of
increasing energy and flux, followed by a decay to pre-storm conditions.

We statistically model the low fidelity model output as a truncated sum of
weighted EOFs,

L(s, t, θ) =
nL∑
e=1

uLe(s)ve(t, θ) + εL(s, t, θ)(4)

and similarly the discrepancy function as

δ(s, t, θ) =
nδ∑

e=1

uδe(s)we(t, θ) + εδ(s, t, θ),(5)
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where the u basis functions are the EOFs contained in the U matrices above, and
the v and w coefficients are the loadings contained in the DV′ matrices. We choose
sum limits of nL = 3 and nδ = 4 to capture 99% of variability of low fidelity model
output, and 90% of variability of the discrepancy process, respectively. To capture
99% of variability for the discrepancy process, for example, we would require the
first 26 EOFs, which would detract from a parsimonious formulation; Higdon et al.
(2008a) also suggest that a Gaussian process representation of high order basis
function coefficients tends to perform poorly in terms of prediction. Here, εL and
εδ are independent mean zero normally distributed white noise error terms with
variances τ 2

L and τ 2
δ , respectively. The statistical model is completed by assuming

the coefficient processes ve(t, θ) and we(t, θ) are Gaussian processes.
Based on the physical equations that define the total energy and number flux of

precipitating electrons for the MIX model, we impose a nontrivial mean function
on the first low fidelity loading, v1. Utilizing the functional form of the total energy
equation, ε0 + ε‖, we specify a nonlinear mean function

Ev1(t, θ) = γ0 + γ1α + γ2R
√

α + γ3 cos(2πt/nt ) + γ4 sin(2πt/nt ).(6)

The harmonics in the mean function are due to the nature of geomagnetic storms;
as the CME passes over the Earth, the average background energy field increases in
magnitude followed by a decay to the average background. The harmonics capture
the physical temporal evolution of the geomagnetic storm over the period of our
observations. We give the w1 loading process a constant mean parameter, allowing
the variability of the discrepancy process across input setting to be captured by
second order structures. For all e > 1, Eve(t, θ) = Ewe(t, θ) = 0.

All that remains to be specified are the covariance functions on the EOF loading
processes. We use a separable Matérn correlation structure [Guttorp and Gneiting
(2006)]. The Matérn correlation is defined as

Mν(h/λ) = 21−ν

(ν)

(|h/λ|)Kν

(|h/λ|),
where h ∈ R, ν > 0 is the smoothness parameter and λ > 0 is the range parameter.
The model correlation is

C(t1, t2, θ1, θ2;λα,λβ,λR,λt )

= M2

(
α1 − α2

λα

)
M2

(
β1 − β2

λβ

)
M2

(
R1 − R2

λR

)
M2

(
t1 − t2

λt

)
,

where we fix the Matérn smoothness at 2. A process with Matérn correlation with
a smoothness of 2 has realizations that are almost twice differentiable; in partic-
ular, this imposed assumption aligns with the evolution of the geomagnetic storm
across time, as a smoothly varying process. Second, numerical model output typ-
ically smoothly varies with input setting, and researchers in the computer exper-
iments literature often use a Gaussian correlation function C(h) = exp(−|h|2),
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which coincides with the Matérn class with infinite smoothness. However, it is
well known that these Gaussian correlation functions lead to numerically poorly
behaved covariance matrices, and, in fact, researchers often add an artificial ridge
to the covariance matrix for stability. The smoothness of a spatial process is dif-
ficult to estimate, and using a fixed smoothness of 2 on the coefficient processes
implies model output varies smoothly between input settings. The model is com-
pleted by specifying the covariance functions of the EOF loadings as

Cov
(
ve(t1, θ1), ve(t2, θ2)

) = σ 2
e C(t1, t2, θ1, θ2;λαe, λβe, λRe, λte).(7)

The same separable covariance model is assumed for the we coefficients, but with
distinct parameters. Notice that although we use a separable structure for the coeffi-
cient processes at each level of EOF, the final statistical model is not separable, but
rather has a covariance function that is a weighted sum of separable covariances;
this class of covariances is a type of well established product-sum covariances
[De Cesare, Myers and Posa (2001), De Iaco, Myers and Posa (2001)].

3.3. Estimation. The main parameters of interest are the input parameters
θ = (α,β,R), and all other statistical parameters, such as mean function coef-
ficients and covariance function ranges and variances, are of secondary interest.
Bayarri et al. (2007) argue that the uncertainty in these secondary parameters is
typically substantially less than the uncertainty in the input parameters, so that
fixing the statistical parameters is justifiable in practice. In this light, we take an
empirical Bayes approach to uncertainty quantification, where the mean function
parameters of the EOF loading processes are estimated by ordinary least squares
(OLS), and the remaining covariance function parameters are estimated by maxi-
mum likelihood (ML), conditional on the mean estimates. The observational error
is taken to be 5% of the empirical standard deviation of energy observations, align-
ing with our collaborators’ expert knowledge of the typical observational error for
this type of data set.

Table 1 displays the OLS estimates of the mean function parameters and ML es-
timates of the separable Matérn covariance function parameters. Recall the results
of Higdon et al. (2008a) in that the inclusion of higher order principal compo-
nent terms typically does not assist in prediction. As anticipated with a basis de-
composition, the low order coefficients have more variability than the high order
coefficients (noting that much of the variability of v1 is accounted for in the non-
stationary mean function). The input parameters in Table 1 have been standardized
to the unit interval to ease comparisons between input parameter, and we see that
the greatest correlation for the low fidelity decomposition is across the α index,
with β and R on the same order of correlation decay. The discrepancy function,
on the other hand, tends to be more highly controlled by the R index, with α and
β sharing approximately the same decay rate of correlation on average. This in-
dicates that, while there is some information regarding β contained in the energy
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TABLE 1
Parameters for the mean function of v1(t, θ) and separable Matérn covariance functions for all

EOF coefficient processes, as estimated by ordinary least squares and maximum likelihood,
respectively. Ranges of α,β , and R have been standardized to [0,1] for this table

γ0 γ1 γ2 γ3 γ4

Ev1(t, θ) 16.0 180 2804 −0.201 16.6

σ λα λβ λR λt

v1(t, θ) 11.2 0.22 0.19 0.1 0.051
v2(t, θ) 88.8 3.10 0.08 0.1 0.248
v3(t, θ) 80.1 2.58 0.24 10−3 0.200

w1(t, θ) 24.5 1.05 0.58 0.01 0.067
w2(t, θ) 18.7 10−3 0.03 3.21 0.046
w3(t, θ) 16.9 0.17 10−6 5.98 0.035
w4(t, θ) 15.3 0.18 1.52 0.02 0.028

model output, there is substantially more for α and R, which is expected, recalling
the physical equation (1).

Fixing the mean and covariance estimates, we impose independent uniform pri-
ors on α,β , and R, with uniformity over the bounding boxes described at the head
of this section. Define the following vectors:

Y(t) = (
Y(s1, t), Y (s2, t), . . . , Y (sno, t)

)′
,

H(t, θ) = (
H(s1, t, θ),H(s2, t, θ), . . . ,H(sns , t, θ)

)′
,

L(t, θ) = (
L(s1, t, θ),L(s2, t, θ), . . . ,L(sns , t, θ)

)′
,

where no = 170 is the number of locations of observations; note we implicitly or-
der the observations and model output (and corresponding EOFs) such that the first
no entries are the shared locations between the observations and model output, and
the last no + 1 to ns entries of H(t, θ) and L(t, θ) are the model output locations
with no corresponding observations. Then combine these vectors into

Y = (
Y(t1)

′,Y(t2)
′, . . . ,Y(tnt )

′)′,
H(θ) = (

H(t1, θ)′,H(t2, θ)′, . . . ,H(tnt , θ)′
)′
,

L(θ) = (
L(t1, θ)′,L(t2, θ)′, . . . ,L(tnt , θ)′

)′
.

Finally, combine the high and low fidelity vectors across input settings,

H = (
H(θ1)

′,H(θ2)
′, . . . ,H(θ5)

′)′,
L = (

L(θ1)
′,L(θ2)

′, . . . ,L(θ20)
′)′.
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Then Z = (Y′,H′,L′)′ is viewed as a realization from the stochastic process de-
fined by (2), (3), (4) and (5). Conditional on the realization Z, the posterior distri-
bution of θ is sampled using a Metropolis–Hastings algorithm by block updating
the vector θ at each step. In particular, we use independent normal proposal den-
sities centered at the current MCMC sample, with standard deviation one-tenth of
the standard deviation of the initial design points (over θ ).

Computation of the density of Z is difficult due to the large dimension; for our
initial design and observations Z is of length 748,260. Utilizing Result 1 from
Higdon et al. (2008a) alleviates this problem. In particular, Higdon et al. (2008a)
suppose x ∼ N(0,�x) and ξ ∼ N(0,�ξ ) are independent. Let Z = Ux + ξ , and
define β̂ = (U′�−1

ξ U)−1U′�−1
ξ Z. Then the likelihood function of Z can be written

L(Z) ∝ |�ξ |−1/2∣∣U′�−1
ξ U

∣∣−1/2

(8)
× exp

(−1
2Z′(�−1

ξ − �−1
ξ U

(
U′�−1

ξ U
)−1U′�−1

ξ

)
Z

)
L(β̂).

In our case, U is a block diagonal matrix of EOFs, with 1 + 5 + 20 blocks. The
very first block corresponds to the observations and is itself a block diagonal matrix
with nt identical blocks, each of which contains the truncated EOFs corresponding
to the observation locations:⎛

⎜⎝
uL1(s1) · · · uLnL

(s1) uδ1(s1) · · · uδnδ (s1)

...
...

...
...

...
...

uL1(sno) · · · uLnL
(sno) uδ1(sno) · · · uδnδ (sno)

⎞
⎟⎠ ,

so that the first block of U has dimension (nt ×no)× (nt × (nL +nδ)), in our case
(18 × 170) × (18 × (3 + 4)) = 3060 × 126. The next 5 blocks of U correspond
to the high resolution model output, and again contain nt blocks of EOF matrices,
each of which is⎛

⎜⎝
uL1(s1) · · · uLnL

(s1) uδ1(s1) · · · uδnδ (s1)

...
...

...
...

...
...

uL1(sns ) · · · uLnL
(sns ) uδ1(sns ) · · · uδnδ (sns )

⎞
⎟⎠ .

Hence, each of these 5 blocks of U is of dimension (nt × ns) × (nt × (nL + nδ)),
in our case 29,808 × 126. The final 20 blocks of U correspond to the low fidelity
model output, each of which is a block diagonal matrix consisting of nt blocks of
the following EOF matrices:

⎛
⎜⎝

uL1(s1) · · · uLnL
(s1)

...
...

...

uL1(sns ) · · · uLnL
(sns )

⎞
⎟⎠ .

Thus, each of the last 20 blocks of U is of dimension (nt × ns) × (nt × nL), in our
case 29,808 × 54.
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The entries of x are EOF weights ve(t, θ) and we(t, θ). As with the matrix U, it
is convenient to divide x into 1 + 5 + 20 segments. The first segment consists of
the observation EOF coefficients(

v(t1, θ0)
′,w(t1, θ0)

′, . . . ,v(tnt , θ0)
′,w(tnt , θ0)

′)′,
where

v(t, θ) = (
v1(t, θ), . . . , vnL

(t, θ)
)′
,

w(t, θ) = (
w1(t, θ), . . . ,wnδ (t, θ)

)′
.

The following 5 segments correspond to the high fidelity runs, each of which con-
sists of (

v(t1, θp)′,w(t1, θp)′, . . . ,v(tnt , θp)′,w(tnt , θp)′
)′

for p = 1, . . . ,5. The final 20 segments correspond to the low fidelity runs and
consist of (

v(t1, θp)′, . . . ,v(tnt , θp)′
)′

for p = 1, . . . ,20. Note that Result 1 of Higdon et al. (2008a) requires x be cen-
tered at zero; to this end, we apply Result 1 to Z − UEx = U(x − Ex) + ξ .

Similar to U and x, we break up 1 + 5 + 20 segments of ξ . The first nt × no

have variances τ 2 + τ 2
L + τ 2

δ ; the following 5 ×nt ×ns have variances τ 2
L + τ 2

δ and
the remaining 20 × nt × ns entries have variances τ 2

L. This completes our model’s
formulation of the likelihood decomposition of Result 1 of Higdon et al. (2008a).

Exploiting the EOF decomposition of the model output dramatically reduces
dimensionality of the problem. For example, a typical Gaussian process approach
to our setup would require inverting a matrix of dimension 748,260 × 748,260,
whereas, for example, inverting U′�εU is feasible, as it is a matrix of dimension
1836 × 1836.

4. Results and sequential design.

4.1. Initial calibration. Initially, we begin by running five independent chains
of posterior samples simultaneously, from random starting values. The posterior
samples based on the initial design are shown in Figure 1 as small black dots.
Notice the distribution is multimodal, and there is an apparent nonlinear inverse
relationship between α and R. In fact, the curve along which the posterior samples
fall for (α,R) define a posterior distribution of total energy. Recall equation (6),
where we exploited the functional form of total energy, of a form α +R

√
α. These

results suggest that the quantity of total energy is well defined based on our obser-
vations and initial design, and a combination of pairs of input parameters (α,R)

that approximately yield this total energy are appropriate for our data set. Notice
that β is not especially well identified based on our observations. This is expected,
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FIG. 1. Posterior samples using only the five high fidelity runs (small grey dots), and using the
entire initial design of five high fidelity and 20 low fidelity runs (small black dots) with input pairs
at which the low fidelity model was run (unfilled circles) and input pairs at which both low and high
fidelity models were run (filled circles).

as we currently are modeling only energy, and β is a controlling parameter for flux,
although the information in the energy variable regarding β is not negligible.

Let us illustrate the benefit of using the low fidelity model in conjunction with
the high fidelity model. If there were no extra information added by including the
low fidelity model output, we would expect the posterior samples based exclu-
sively on the high fidelity version to be the same as including both model fideli-
ties. The small grey dots of Figure 1 are posterior samples for the input parameters
based on only the five high fidelity runs, here ignoring the 20 low fidelity runs. In
particular, the statistical model remains the same, except where we write

H(s, t, θ) =
nH∑
e=1

uHe(s)ve(t, θ) + εH (s, t, θ),(9)

where nH = 3, and Ev1(t, θ) has the same functional form as (6). Comparing
the two sets of posterior samples in Figure 1 shows the gain in augmenting the
high fidelity runs with the low fidelity information—the location of the curve in
panel (b) for the pair (α,R) is adjusted downward when also using the low fi-
delity runs and a posterior mode is ruled out. Specifically, the posterior mode about
(α,R) ≈ (0.35,0.01) is no longer present. Hence, our posterior uncertainty regard-
ing the parameters α and R has decreased due to the inclusion of the low fidelity
output. The posterior samples for β are slightly adjusted when the low fidelity in-
formation is included, although not necessarily the same amount as for α and R,
again, due to the fact that β is linked to flux.

There are two potential explanations for the multimodal nonlinear behavior of
the posterior distribution shown in Figure 1(b). The first is that the observations
have no information regarding the specific pair of (α,R) that is optimal or, al-
ternatively, the curve is an artefact of the sparse initial design. In particular, with
only 5 runs of the high fidelity model, it is unlikely that the discrepancy function
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δ(s, t, θ) has been well estimated, and given more runs of the LFM–MIX, the pos-
terior distribution may shrink to one of the modes of Figure 1. To this end, we
develop a sequential design based on expected improvement.

4.2. Expected improvement for sequential design. We seek to perform an ad-
ditional run of the LFM–MIX based on current information, and expected im-
provement (EI) is one approach to sequential design that incorporates accuracy
and uncertainty. Expected improvement was originally developed for black-box
function optimization [Jones, Schonlau and Welch (1998)], but we adjust the idea
for our purposes of parameter identification. To begin, we define the improvement
function for a given location and time as minimizing the squared residual between
the high fidelity model output and observations:

I (s, t, θ) = max
{
fmin − (

Y(s, t) − H(s, t, θ)
)2

,0
}
,(10)

where fmin = min5
i=1(Y (s, t) − H(s, t, θi))

2 is the observed minimized squared
residual over the initial runs of the LFM–MIX. The EI is defined as a sum of
expected improvement functions over all locations and times,

EI(θ) = ∑
s,t

EI (s, t, θ),(11)

and is a function only of input parameter θ .
To write the closed form of EI at an arbitrary setting θ , we require the condi-

tional distribution of the high fidelity model, given the current runs. In particular,
we have

H(s, t, θ)|{H(s, t, θi)
}5
i=1,

{
L(s, t, θi)

}20
i=1 ∼ N

(
Ĥ , σ̂ 2)

,(12)

where Ĥ and σ̂ 2 are simply a conditional mean and variance of the multivariate
normal defined by equations (3), (4), and (5). Let Q± = (Y − Ĥ ± √

fmin)/σ̂ ,
we simplify notation by setting Y = Y(s, t) and φ and � are the standard nor-
mal density and cumulative distribution functions, respectively. Then the expected
improvement at location s and time t has closed form

EI (s, t, θ) = (
fmin − (Y − Ĥ )2 − σ̂ 2)(

�(Q+) − �(Q−)
)

(13)
+ σ̂

(
(
√

fmin + Ĥ − Y)φ(Q+) + (
√

fmin + Y − Ĥ )φ(Q−)
)
.

See the Appendix for a derivation. Notice that EI is indeed a weighting between
uncertainty (σ̂ ) and accuracy ((Y − Ĥ )2). For example, if, at a new setting θ , our
predictive variance for the high fidelity model output was small, then the latter
term of (13) will be negligible, and the EI will be controlled by the accuracy in the
first term as a function of (Y − Ĥ )2.

Figure 2 shows the EI surface as a function of β and R for the best value of
α (0.5). As previously, the open circles are locations at which we ran the low
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FIG. 2. Expected improvement surface, with initial posterior samples (small dots) based on initial
design over θ with input pairs at which the low fidelity model was run (unfilled circles) and input
pairs at which both low and high fidelity models were run (filled circles).

fidelity model, and the closed circles are the locations at which we ran both fideli-
ties. There are a number of interesting features illustrated by this surface. The EI
surface is multimodal, with the most pronounced mode at (β,R) = (2.5,0.068),
falling directly between two modes of the initial posterior samples. In this area,
the uncertainty is substantial enough that an optimum may be in the area. Note
there are no high fidelity model runs in the immediate area; that the EI maximum
also falls directly between two posterior sample modes indicates that EI is indeed
a weighting between uncertainty and accuracy. EI is sensitive to the initial design,
and at most of the locations where the low or high fidelity model was run, there
are relatively low values of EI, as we have already reduced our uncertainty in those
areas. However, the EI surface also follows the general trend of the initial posterior
samples, indicating our initial samples fell in areas of high model accuracy.

We ran the high and low fidelity version of the LFM–MIX at the greatest mode
indicated by the EI surface, specifically at (α,β,R) = (0.5,2.5,0.068), and con-
ditional on this additional run, sampled from the posterior distribution of the input
parameters. If no extra information were added due to the sequential design run, we
would see the same posterior samples as in Figure 1. The second round of posterior
samples, conditional on the initial design plus the single additional run suggested
by EI, are shown in Figure 3. The substantial change between Figures 1 and 3
can be seen in the third panel (c), the pairwise posterior samples for β and R. In
particular, the upper leftmost mode that was present in Figure 1(c) has been ruled
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FIG. 3. Second round of posterior samples (small dots) based on initial design plus the run sug-
gested by the expected improvement criterion with input pairs at which the low fidelity model was run
(unfilled circles) and input pairs at which both low and high fidelity models were run (filled circles).

out now, as there are no posterior samples in this area. Our posterior uncertainty
has decreased due to the single additional run suggested by EI. Our information
regarding R has also increased due to the added EI run, as the initial middle mode
about R = 0.7 has now split into two smaller modes.

In previous experiments with the LFM–MIX, continuing sequential design
based on EI improves the posterior distribution of (α,R) slowly and primarily
explores the three-dimensional (α,β,R) space over β . This reiterates the substan-
tial uncertainty in β based on the energy variable alone, and, unfortunately, due to
the high budgetary demand of running the LFM–MIX, at 100 hours for each run of
the high and low fidelity model on 8 processors, it is not within our current budget
to continue the sequential design. Future work is aimed at including observations
for flux, which we anticipate greatly improving identification of β .

5. Parameter estimation for the Lorenz ‘96. In the previous section we out-
lined a statistical model for combining high and low fidelity model output for large
spatiotemporal data sets with an application of quantifying the uncertainty in input
parameters for the LFM–MIX computer model. The initial posterior distributions
illustrated a strong nonlinear relationship between the parameters α and R, and
based on a sequential design framework, we saw the posterior distributions shrink
in variability, ruling out an area of the parameter space present in the initial multi-
modal posterior distribution. In this section we illustrate a similar statistical model
using a physical model with known truth. The goal in this section is to compare
our ability to identify model parameters using the EOF approximation model with
differing initial design sizes, and to assess the ability of sequential design under
expected improvement in improving the posterior estimates of unknown parame-
ters.

The Lorenz ‘96 system (hereafter L96) of equations was developed by Edward
Lorenz to be a simplified one-dimensional atmospheric model that exhibits chaos
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FIG. 4. Illustration of the Lorenz ‘96 model. Forcings for the low and high fidelity versions, physical
model realizations, and a 30-year averaged run. Forcings correspond to a = 1/2 and b = 3.

[Lorenz (1996)]. The physical model is for 40 variables (known as state vari-
ables in the atmospheric sciences). For variable Y(s, t), location s = 1, . . . ,40 and
time t , we have

dY(s, t)/dt = −Y(s − 2, t)Y (s − 1, t) + Y(s − 1, t)Y (s + 1, t)
(14)

− Y(s, t) + F(s),

where F(s) is a location dependent forcing term, and Y(s, t) is available at any
integer value of s by setting Y(s − 40, t) = Y(s + 40, t) = Y(s, t). For the forcing
term, Lorenz (1996) used F(s) = 8, but for our purposes we wish to mimic the
behavior of the LFM–MIX using this reduced atmospheric model.

Analogous to the LFM–MIX case, we have two forcing functions, correspond-
ing to a low and a high fidelity simulator. In particular, we, respectively, define the
low and high fidelity forcing functions as

FL(s;a, b) = 8 + a + 3ab exp
(− cos(2πs/40)

)
/ exp(1),(15)

FH(s;a, b) = 8 + a + 3ab exp
(−10 cos(2πs/40)

)
/ exp(10).(16)

Notice the functional form here, a + ab, is akin to the total energy equation of the
LFM–MIX, which was of the form α + R

√
α.

Fixing true values of a and b at 1/2 and 3, respectively, the first panel of Figure 4
shows the corresponding forcing functions for the low and high fidelity versions.
Notice the low fidelity version appears to smear out the peak defined by the high
fidelity forcing function. This is akin to the relationship between the differing fi-
delities of the LFM–MIX, where the low fidelity model tends to produce output
that is a (spatially) less peaked version of the more peaked high fidelity model
output.

The observations are generated from the high fidelity version of the L96, based
on 40 independent initial unit uniform random variables. Solving the equations
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every 6 hours, we run the L96 for 300 years, and use 30-year averaged output, gar-
nering approximate climate of the L96. The motivation for time-averaging is that
each single realization from the L96 is highly erratic, as seen in Figure 4, whereas
taking time-averages over long periods tends to reproduce the forcing function,
also displayed in Figure 4. To these 10 time realizations, we add independent nor-
mal errors for each variable at all time points, whose mean is zero and whose
standard deviation is five percent of the empirical standard deviation of the model
output, again to line up with the expert understanding of measurement error for the
LFM–MIX example.

We suppose it is known that a ∈ [0,2] and b ∈ [0,5]. To explore different design
approaches, we run two initial designs. The first design assumes greater resources
than are available for the LFM–MIX. In this situation, we run the low fidelity
model at 40 pairs of input settings based on a space-filling design, and the high
fidelity model at a space-filled subset at 20 points of the original 40. This setup is
designed is to illustrate our ability to tune model parameters in the situation with
more resources than are currently available. The second design utilizes a space-
filled subset of 20 runs of the low fidelity computer model, with an additional 5
runs of the high fidelity version, aligning directly with our setup for the LFM–MIX
scenario.

To align with the LFM–MIX modeling approach, we suppose the observations
are adequately represented by the high fidelity version of L96, up to white noise.
In particular, using similar notation as in the previous section where θ = (a, b), we
write

Y(s, t) = H(s, t, θ0) + ε(s, t),(17)

where ε(s, t) is a white noise process, which we assume to be normally distributed
with mean zero and variance τ 2. As with the LFM–MIX, we link the low and high
fidelity models with an additive discrepancy function δ(s, t, θ), where

H(s, t, θ) = L(s, t, θ) + δ(s, t, θ).(18)

Whereas the LFM–MIX is highly multivariate, our L96 example does not re-
quire the same dimension reduction techniques employed earlier. Although not re-
quired, we use similar modeling techniques to those employed for the LFM–MIX
above in order to explore our ability to identify physical parameters in a setting
where approximations are required. Hence, we write

L(s, t, θ) =
nL∑
e=1

uLe(s)ve(θ, t) + εL(s, t, θ)

and

δ(s, t, θ) =
nδ∑

e=1

uδe(s)we(θ, t) + εδ(s, t, θ).
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Putting nL = 2 and nδ = 1 (capturing more than 99% of the variability), the resid-
ual processes εL and εδ are modeled as normally distributed white noise terms with
variances τ 2

L and τ 2
δ , respectively. As in the LFM–MIX case, we model v1, v2, and

w1 as Gaussian processes. Each is endowed with a mean function of the form
γ0 + γ1a + γ2b

√
a, a functional form that was decided upon after elementary data

analysis; notice we find similar behavior to the a + ab form of the forcing func-
tions (15) and (16). Unlike the LFM–MIX, we suppose the v and w processes are
independent across time; indeed, with the L96, we consider long term averages,
and viewing the realizations as independent across time is justifiable, whereas in
the LFM–MIX case, our realizations arise from a continuous process over a rela-
tively short time interval. The functional form of the covariance for the v and w

coefficient processes is σ 2C(θ1, θ2;λa,λb), where θ = (a, b), and

C(θ1, θ2;λa,λb) = M2

(
a1 − a2

λa

)
M2

(
b1 − b2

λb

)
,

where naturally each v1, v2, and w1 has distinct covariance and regression param-
eters.

For physical parameter estimation, we sample the posterior distribution of
θ conditional on Z, which is made up of the following components. Define
the vectors Y(ti) = (Y (s1, ti), Y (s2, ti), . . . , Y (sns , ti))

′, H(ti) = (H(s1, ti, θ1),

H(s2, ti, θ1), . . . ,H(sns , ti, θnH
))′, and L(ti) = (L(s1, ti, θ1),L(s2, ti, θ1), . . . ,

L(sns , ti , θnL
))′, where the number of low and high fidelity samples are nL

and nH , respectively. Combine these vectors into the single time point vector
Z(ti) = (Y(ti)

′,H(ti)
′,L(ti)

′)′, then Z = (Z(t1)
′, . . . ,Z(tnt )

′)′.
Posterior distributions are shown in Figure 5, with the truth indicated by the

intersection of solid lines. We consider three cases for posterior sampling—the
first is based on a dense design of nL = 40 and nH = 20, shown in panel (1).
The posterior distribution covers the truth, but is spread over a swath of plausible
values, falling along a curve of the form a + b

√
a, exhibiting similar behavior

as the LFM–MIX; note the substantially larger initial design size, however. The
posterior mode is at approximately (a, b) = (0.51,3.09), indicating accurate point
estimation, but still displaying substantial uncertainty.

The middle panel of Figure 5 replicates the situation of the LFM–MIX more
closely in that we use only nL = 20 and nH = 5 points in the initial design. The
posterior distribution covers the true value of (a, b), and again we see a swath of
density following a curve similar to a +b

√
a. Here, however, the posterior mode is

at (a, b) = (0.40,3.94), so while the truth is indeed captured within the posterior
samples, there appears to be some bias. Following this sparse initial sample, we
run both low and high fidelity versions of the L96 at seven additional input set-
tings chosen sequentially based on the expected improvement criterion. The final
panel of Figure 5 displays the posterior distributions based on these nL = 27 and
nH = 12 samples. Indeed, the posterior variability has decreased as compared to
that based on the initial design, but also notice that the posterior has substantially
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FIG. 5. Parameter turning the Lorenz ‘96 model. True parameter values are (a, b) = (1/2,3),
indicated by the intersection of two solid lines. Each panel contains posterior densities with contours
overlying posterior samples for (1): large initial design, (2): sparse initial design similar to the
LFM–MIX, (3): sparse initial design with seven additional runs chosen sequentially by expected
improvement. Input settings at which the low fidelity model was run are displayed as circles both
filled and unfilled, and settings where the high fidelity model was also run are shown as filled circles.

less variability than the dense initial sample of panel (1). These results suggest we
can perform fewer runs initially, and rely on a sequential design such as expected
improvement to home in on the true values. The posterior mode after sequential
design is approximately (a, b) = (0.52,2.96), indicating accurate posterior esti-
mation. An interesting note is that the final posterior distribution displays three
distinct modes (although the mode about the truth is of higher posterior density).
Given that the sequential design runs cover the posterior modes, we do not antic-
ipate the posterior distribution improving greatly, but reiterate that the posterior
distribution contains and is indeed centered about the truth.

6. Discussion. We have introduced an approach to quantify the uncertainty
about input parameters for large spatiotemporal data sets with high and low fidelity
model outputs. We suppose the high fidelity model is an adequate representation
of reality at some unknown set of input parameters up to white noise. The high
and low fidelity models are linked through an additive discrepancy function. This
link allows us to run the higher cost high fidelity model at fewer sets of input pa-
rameters, and explore the input setting space with the cheaper low fidelity model.
In our first example we examined the LFM–MIX model for geomagnetic storms
occurring in Earth’s near space environment, which is partially parameterized by
three unknown input parameters controlling energy and flux. Based on an initial
experimental design, using observations of energy, we discovered a nonlinear re-
lationship between a subset of the input settings, which was a level curve for the
total energy quantity. One input setting was not well identified, but considering
that particular variable contributes mainly to flux, it is unsurprising that it is not
well identified using only energy observations.

To improve posterior estimation, we developed an expected improvement crite-
rion for sequential design. The improvement function seeks to minimize squared
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distance between the high fidelity model and observations. We derived the closed
form for EI over arbitrarily many locations and times, which simultaneously
weights uncertainty and accuracy. Based on the EI criterion, we performed an addi-
tional run of the LFM–MIX and found that the posterior distributions for the input
parameters indeed shrunk in width. This suggests that the nonlinear behavior of the
initial posterior distribution is potentially an artefact of our sparse initial design.
Comparing these results to the contrived Lorenz ‘96 system with known truth, we
would anticipate some improvement manifesting as smaller posterior variability
if we were to continue sequential design based on EI, with the posterior mode
eventually settling around the true unknown parameter value.

In a previous set of experiments, we explored sequential design based on EI,
and found that the criterion primarily becomes overwhelmed by the uncertainty
surrounding the input parameter involving flux. Due to the high budgetary demand
of running the LFM–MIX, it is not within our current capacity to continue the
sequential design. Our current research is aimed at including observations for flux,
which we anticipate greatly improving the posterior distributions of all three input
parameters.

We reduced dimensionality of the large data set by projecting spatial fields onto
empirical orthogonal functions; the motivation was driven by exploratory anal-
ysis where the first main mode of spatial variation exhibited a magnitude with
functional form similar to physical equations governing energy and flux for the
LFM–MIX. In other contexts for other space–time computer models, a different
approach may be required. For instance, if the model output is a highly nonlin-
ear response of input parameters, a principal component approach is likely to be
unsuccessful in statistically modeling physical model output. In such cases the
practitioner may need to perform statistical tests for space–time separability, such
as those developed by Fuentes (2006) or Mitchell, Genton and Gumpertz (2005).

The clearest route of future research is to develop a bivariate model for en-
ergy and flux, which will allow us to simultaneously identify the three parameters
controlling these two distinct variables. One potential solution to this added com-
plication is to use a similar EOF decomposition for flux, and use a multivariate
Gaussian process representation for the EOF coefficient processes for both energy
and flux, thereby accounting for correlation between the two distinct variables.

The statistical model did not account for systematic model bias. Our approach is
consistent with the mathematical formulation of solving large scale inverse prob-
lems using computer models and observed data [see, e.g., the cosmic microwave
background application in Higdon et al. (2011)]. With only one observed geo-
magnetic storm, model bias is confounded with the residual process; with multi-
ple storms we could potentially include a full bias term across space and time.
However, it is believed by space physicists that the infinite resolution version
of the LFM–MIX is unbiased, and our high fidelity version is an approxima-
tion to this infinite resolution. The discrepancy function we introduced connected
the low and high fidelity versions of the model, which is notably different than
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the original suggestion of Kennedy and O’Hagan (2001) of including an addi-
tive model discrepancy term. In our situation, we have only one realization of
the spatiotemporal process and, hence, model bias is unidentifiable without some
simplifying assumptions (such as constancy across time or space). Heaton et al.
(2013) also examine the LFM–MIX, taking a predictive process approach to di-
mension reduction [Banerjee et al. (2008)], and assume a rotational bias across
time. That is, the authors assume there is an unknown spatial rotation at each
time point that defines model bias for the high fidelity version. Their posterior
distributions differ from those found herein, generally centering on approximately
(α,β,R) = (0.47,1.59,0.02). This is not contradictory to our results in that the
assumptions regarding model bias are different—indeed, optimal parameter val-
ues under rotated model output are expected to be different than those under no
such rotations. With additional geomagnetic storms, our goal is to determine the
need for such rotations and potentially fully general space–time model biases, but
it is currently unclear which of these competing assumptions is necessary.

The low and high fidelity versions of the LFM–MIX are generated by differing
resolutions of the LFM model. While in the current work we used only two resolu-
tions, there is potential for a higher resolution available that is extremely compu-
tationally intense, and must be run on a supercomputer on at least 32 processors.
Potentially, one way to include this “highest” fidelity is to maintain our model’s
formulation, and write the high fidelity model as a sum of the highest fidelity and
a secondary discrepancy function. It is likely that the discrepancy connecting the
lower fidelities will be correlated with the discrepancy connecting the higher fi-
delities and, hence, we anticipate requiring a multivariate Gaussian process model
for the discrepancy processes.

APPENDIX

In this appendix we derive the closed form for the expected improvement at
a single location s and time t , equation (13). For notational simplicity, write
Y(s, t) = Y , H(s, t, θ) = H , and fmin = f . Then we have

EI (s, t, θ) = E max
{
f − (Y − H)2,0

}

=
∫
f >(Y−H)2

(
f − (Y − H)2)

L(H)dH

= 1

σ̂

∫
f >(Y−H)2

(
f − (Y − H)2)

φ

(
H − Ĥ

σ̂

)
dH

=
∫
(Y−√

f −Ĥ )/σ̂<x<(Y+√
f −Ĥ )/σ̂

(
f − (Y − Ĥ − σ̂ x)2)

φ(x)dx

=
∫ Q+

Q−

(
f − (Y − Ĥ )2)

φ(x)dx + 2σ̂ (Y − Ĥ )

∫ Q+

Q−
xφ(x)dx
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− σ̂ 2
∫ Q+

Q−
x2φ(x)dx

= A + B + C,

utilizing the change of variables x = (H − Ĥ )/σ̂ . The three integrals of A,B , and
C can be written

A = (
f − (Y − Ĥ )2)(

�(Q+) − �(Q−)
)
,

B = 2σ̂ (Y − Ĥ )
(
φ(Q−) − φ(Q+)

)
,

C = −σ̂ 2(
Q−φ(Q−) − Q+φ(Q+) + �(Q+) − �(Q−)

)
,

using integration by parts and the fact that the antiderivative of xφ(x) is −φ(x).
Combining terms yields (13).
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