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SUMMARY

We derive sufficient conditions for the cross-correlation coefficient of a multivariate spatial process to
vary with location when the spatial model is augmented with nugget effects. The derived class is valid for
any choice of covariance functions, and yields substantial flexibility between multiple processes. The key is
to identify the cross-correlation coefficient matrix with a contraction matrix, which can be either diagonal,
implying a parsimonious formulation, or a fully general contraction matrix, yielding greater flexibility but
added model complexity. We illustrate the approach with a bivariate minimum and maximum temperature
dataset in Colorado, allowing the two variables to be positively correlated at low elevations and nearly
independent at high elevations, while still yielding a positive definite covariance matrix.
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1. INTRODUCTION

Consider a multivariate process Z(s) = {Z1(s), . . . , Z p(s)}T indexed by locations s ∈ R
d with matrix-

valued covariance function

C(s1, s2) =

⎛
⎜⎝

cov{Z1(s1), Z1(s2)} · · · cov{Z1(s1), Z p(s2)}
...

. . .
...

cov{Z p(s1), Z1(s2)} · · · cov{Z p(s1), Z p(s2)}

⎞
⎟⎠ . (1)

We call the matrix-valued function (1) nonnegative definite if the covariance matrix of Z =
{Z(s1)

T, . . . , Z(sn)
T}T is nonnegative definite for any choices of s1, . . . , sn . Let Cii (s1, s2) =

cov{Zi (s1), Zi (s2)} be the direct covariance functions, and let βi j Ci j (s1, s2) = cov{Zi (s1), Z j (s2)} be the
cross-covariance functions. The parameters βi j define the co-located cross-correlation coefficients, that is,
βi j = cor{Zi (s), Z j (s)} (i, j = 1, . . . , p). In particular, for arbitrary valid choices of Ci j (·, ·), we require
βi i = 1, |βi j | � 1 (i, j = 1, . . . , p), and the matrix with βi j as its (i, j)th entry is symmetric and nonnega-
tive definite.

The relationship between physical processes often evolves across space, so that

cor{Zi (s1), Z j (s1)} |= cor{Zi (s2), Z j (s2)}.
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This suggests generalizing βi j so that it is a function of location, that is, βi j → βi j (s1, s2). The necessary
conditions for the spatially varying cross-correlation coefficients {βi j (·, ·)}p

i, j=1 to be valid depend on the
class of covariance functions in use. We introduce sufficient conditions for {βi j (·, ·)}p

i, j=1 to yield a matrix-
valued covariance function when used with any valid covariance structure.

As an example of one possible construction of matrix-valued covariance functions, consider the multi-
variate Matérn model, introduced by Gneiting et al. (2010). They supposed that Ci j (·, ·) are Matérn covari-
ance functions of the form

cov{Zi (s1), Z j (s2)} = βi j A(νi , ν j )σiσ j
21−νi j

�(νi j )
(a‖s1 − s2‖)νi j Kνi j (a‖s1 − s2‖),

where Kνi j (·) is a modified Bessel function of the second kind of order νi j = (νi + ν j )/2. Here,
A(νi , ν j ) is a constant that depends on the marginal smoothness parameters νi and ν j . Gneiting et al.
(2010) derived the necessary and sufficient conditions for the scale parameter a to be process
dependent, that is, a → ai , for p = 2, and Apanasovich et al. (2012) described sufficient conditions
for arbitrary p. Kleiber & Nychka (2012) extended the multivariate Matérn model for nonstationary
multivariate processes. Other multivariate random field models include latent dimensional construc-
tions (Apanasovich & Genton, 2010; Porcu & Zastavnyi, 2011), the linear model of coregionalization
(Goulard & Voltz, 1992; Gelfand et al., 2004; Schmidt & Gelfand, 2003; Wackernagel, 2003; Zhang,
2007), covariance convolution (Gaspari & Cohn, 1999; Majumdar & Gelfand, 2007; Majumdar et al.,
2010), or kernel convolution (Ver Hoef & Barry, 1998); see Fanshawe & Diggle (2012) for discussion.
These models are then often used for cokriging; see Furrer & Genton (2011) and references therein.

2. CHARACTERIZING THE CROSS-CORRELATION COEFFICIENT

2·1. Set-up

For the remainder of this article, assume that the statistical model augments the spatially correlated
process Z(s) with an additive nugget effect ε(s) = {ε1(s), . . . , εp(s)}T, a zero-mean spatial white noise
process with variance matrix diag{τ1(s)2, . . . , τp(s)2}. The nugget effect is usually included to account
for microscale variability that cannot be distinguished from measurement error. Its inclusion is critical to
define our class of sufficient conditions for nonstationary cross-correlation coefficients. The necessary
conditions for spatially varying βi j (·, ·) are dependent on the exact class of multivariate covariance func-
tions in use. This distinction is crucial; our sufficient conditions hold for any covariance class, but the
necessary conditions for a specific covariance class may be different. Define the quantity

γi (s) = Cii (s, s) + τi (s)2

Cii (s, s)
.

Then the full covariance matrix for the i th variable at locations s1, . . . , sn can be written as a Hadamard
product, ⎛

⎜⎜⎜⎜⎝
γi (s1) 1 · · · 1

1 γi (s2)
. . .

...
...

. . .
. . .

...

1 · · · · · · γi (sn)

⎞
⎟⎟⎟⎟⎠�

⎛
⎜⎜⎜⎜⎝

Cii (s1, s1) Cii (s1, s2) · · · Cii (s1, sn)

Cii (s2, s1) Cii (s2, s2)
. . .

...
...

. . .
. . .

...

Cii (sn, s1) · · · · · · Cii (sn, sn)

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

Cii (s1, s1) + τi (s1)
2 Cii (s1, s2) · · · Cii (s1, sn)

Cii (s2, s1) Cii (s2, s2) + τi (s2)
2 . . .

...
...

. . .
. . .

...

Cii (sn, s1) · · · · · · Cii (sn, sn) + τi (sn)
2

⎞
⎟⎟⎟⎟⎠ . (2)

With ε = {ε(s1)
T, . . . , ε(sn)

T}T, the covariance matrix of Z + ε is β � C . Here, β and C are block
matrices with p × p large blocks, the (i, j)th of which have (k, 	)th entries βi j (sk, s	) and Ci j (sk, s	),
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respectively. For the diagonal blocks of β, define βi i (sk, s	) = 1 for k |= 	 and βi i (sk, sk) = γi (sk), that is,
the first matrix of (2).

If the matrix-valued covariance function C(·, ·) is nonnegative definite, a sufficient condition for β � C
to be valid is for β to be nonnegative definite. For any arbitrary valid choice of C , we characterize the
possible functional forms for β. To keep β � C symmetric, we let β be symmetric; asymmetry can be
introduced by the method of Li & Zhang (2011).

2·2. Bivariate case

For the bivariate case, p = 2, we completely classify the set of possible cross-correlation matrices β,
which depends on the following definitions. A matrix K is called a contraction matrix if its singular values
are all bounded by unity. We call M1/2 the square root matrix of M if M1/2 M1/2 = M .

PROPOSITION 1. If p = 2, then β is nonnegative definite if and only if β12 = β
1/2
11 Kβ

1/2
22 for some con-

traction matrix K .

The proof is in the Appendix. Clearly, the available variability of cross-correlation across the study
domain is intimately linked to the total variance to marginal variance ratio, γi (s). An immediate corollary
of Proposition 1 is that if there is no nugget effect, i.e., τi (s) = 0 (i = 1, 2), then the only valid cross-
correlation matrix β12 is a constant matrix, whose values are bounded by unity. For γi (s) > 1, there is a set
of valid functions β12(·, ·).

It is instructive to examine the possible combinations of co-located cross-correlation coefficients
β12(s1, s1) and β12(s2, s2) that are valid in a bivariate process for two locations si (i = 1, 2). Suppose that
the nugget variance does not vary with location and that both processes have common stationary total-to-
marginal variance ratios γ1(s) = γ2(s) = γ , noting that such an assumption is not necessary, but simplifies
exposition. Then

β12 =
(

γ 1
1 γ

)1/2

K

(
γ 1
1 γ

)1/2

,

(
γ 1
1 γ

)1/2

=
(

a b
b a

)
,

where b = [{γ + (γ 2 − 1)1/2}/2]1/2 and a = 1/(2b). It is convenient to write K as its singular value
decomposition K = U SV , where max{diag(S)} � 1. The simplest case to use in practice lets U and V be
identity matrices with diagonal entries ±1, making K diagonal, that is, K = diag(k1, k2), where |k1| � 1
and |k2| � 1. Then the possible values of co-located cross-correlation are β12(s1, s1) = k1a2 + k2b2, and
β12(s2, s2) = k1b2 + k2a2. This defines a rhombus in R

2, whose four vertices are formed when (k1, k2) =
(±1,±1).

Allowing the contraction matrix K to be a general contraction, rather than strictly diagonal, we can
write, in singular value decomposition form,

K =
(

cos θ − sin θ

sin θ cos θ

)(
s1 0
0 s2

)(
cos φ − sin φ

sin φ cos φ

)

for some angles θ, φ. Then the set of valid pairs is

β12(s1, s1) = s1{a2 cos θ cos φ + ab(cos φ sin θ − cos θ sin φ) − b2 sin θ sin φ}
+ s2{−a2 sin θ sin φ − ab(cos φ sin θ − cos θ sin φ) + b2 cos θ cos φ},

β12(s2, s2) = s1{−a2 sin θ sin φ + ab(cos φ sin θ − cos θ sin φ) + b2 cos θ cos φ}
+ s2{a2 cos θ cos φ − ab(cos φ sin θ − cos θ sin φ) − b2 sin θ sin φ}.

Figure 1 shows the sets of valid pairs {β12(s1, s1), β12(s2, s2)} for various values of γ . When γ = 1,
we recover that the cross-correlation coefficient must be spatially constant. The area of the valid regions
increases as a function of γ . In Fig. 1(a), we assume K is a diagonal matrix with bounded entries, whereas
in Fig. 1(b), K is a general 2 × 2 contraction matrix. Based on these explorations, using a general contrac-
tion matrix yields slightly larger valid regions for {β12(s1, s1), β12(s2, s2)}, but at the cost of added model
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Fig. 1. Regions of valid pairs {β12(s1, s1), β12(s2, s2)} for γ = 1 (solid), 1·05 (short dashed), 1·1 (dotted),
1·15 (dot dashed), and 1·2 (long dashed), assuming the contraction matrix K is either diagonal, or a
general contraction matrix. For diagonal K , the valid regions are rhombi whose boundaries are shown as
lines. For a general contraction K , the valid regions are ellipses whose boundaries are shown as curves.

complexity. For domains where the cross-correlation is changing slowly, or is of moderate magnitude, we
recommend using a diagonal contraction matrix, as the statistical model is then more parsimonious, and
still yields substantial flexibility.

2·3. Multivariate case

For an arbitrary number of processes, p � 2, we consider the multivariate generalization of a contraction
matrix. The following theorem characterizes the class of possible cross-correlation coefficients for any
number of processes with a valid but arbitrary covariance structure. Its proof is in the Appendix.

THEOREM 1. Let K be an np × np block matrix with p × p large blocks, {Ki j }p
i, j=1, such that Kii = I

and Ki j = β
−1/2
i i βi jβ

−1/2
j j for i |= j . Then β is nonnegative definite if and only if K is nonnegative definite.

When p = 2, the result of Theorem 1 reduces to K12 being a contraction matrix, which we showed in
Proposition 1. For the trivariate case, p = 3, we have

X

⎛
⎝ I K12 K13

K21 I K23

K31 K32 I

⎞
⎠ X T

∼
⎛
⎝I 0 0

0 I − K21 K12 0
0 0 I − K31 K13 − (K32 − K31 K12)(I − K21 K12)

−1(K23 − K21 K13)

⎞
⎠ (3)

where ∼ denotes matrix congruence (Bhatia, 2007), and

X =
⎛
⎝ I 0 0

−K21 I 0
(K32 − K31 K12)(I − K21 K12)

−1 K21 − K31 −(K32 − K31 K12)(I − K21 K12)
−1 I

⎞
⎠.

From (3), the result of Theorem 1 for p = 3 reduces to I − K21 K12 and I − K31 K13 − (K32 − K31 K12)

(I − K21 K12)
−1(K23 − K21 K13) being nonnegative definite. Cases for p � 4 can be studied similarly.

A special case of Theorem 1 particularly useful for applications is contained in the following corollary.

 at U
niversity of C

olorado on M
arch 5, 2013

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


Miscellanea 217

COROLLARY 1. Let βi j = β
1/2
i i Si jβ

1/2
j j where the set of diagonal matrices Si j (i |= j = 1, . . . , p) is such

that ⎛
⎜⎜⎜⎜⎝

I S12 · · · S1p

S21 I
. . .

...
...

. . .
. . .

...

Sp1 · · · · · · I

⎞
⎟⎟⎟⎟⎠ (4)

is nonnegative definite. Then β is nonnegative definite.

Defining the diagonal elements of Si j as si jk (k = 1, . . . , n), the condition that (4) is nonnegative def-
inite reduces to all matrices of the form (si jk)

p
i, j=1 with siik = 1 being nonnegative definite. In particular,

as with the bivariate case, |si jk | � 1. Hence, ensuring that the np × np matrix (4) is valid can be reduced
to ensuring that a set of p × p matrices is valid.

For example, when p = 3, the conditions derived from (3) for diagonal matrices Si j reduce to I − S2
12

and (I − S2
12)(I − S2

13) − (S23 − S12S13)
2 being nonnegative definite. Therefore, in addition to |si jk | �

1, one needs for example that s13k ∈ {s12ks23k − (s2
12ks2

23k + 1 − s2
12k − s2

23k)
1/2, s12ks23k + (s2

12ks2
23k + 1 −

s2
12k − s2

23k)
1/2}.

In practice, assuming the diagonal structure of (4) still leads to many free parameters. It will be conve-
nient, and typically necessary, to rewrite si jk as a regression on some covariates which define how cross-
correlation nonstationarity evolves across the spatial domain. For example, in the next section we use
elevation to reduce the dimensionality of the parameter space for S12.

If the diagonal form used in Corollary 1 is too restrictive for a given situation, then a more general
construction can be derived from Theorem 1. In the following corollary, we generalize the diagonal form
of (4) to a full singular value decomposition for certain classes of unitary matrices. Its proof is in the
Appendix.

COROLLARY 2. Given a set of arbitrary n × n unitary matrices Ui (i = 1, . . . , p), let βi j =
β

1/2
i i U T

i Si jU jβ
1/2
j j where the set of diagonal matrices Si j (i |= j = 1, . . . , p) is such that⎛

⎜⎜⎜⎜⎝
I S12 · · · S1p

S21 I
. . .

...
...

. . .
. . .

...

Sp1 · · · · · · I

⎞
⎟⎟⎟⎟⎠

is nonnegative definite. Then β is nonnegative definite.

Corollary 2 is general in the sense that nondiagonal contraction matrices can be used.

3. TEMPERATURE FIELDS IN COMPLEX TERRAIN

We consider a network of 145 observation stations in Colorado, making up a subset of the Global
Historical Climatology Network (Peterson & Vose, 1997). Between the years 1893 and 2011, we examine
minimum and maximum temperature residuals, N (s) and X (s) respectively, on August 1. These residuals
are found by removing a station-specific mean, estimated as the arithmetic average over the 119 years.

We require an estimate of the marginal covariance functions, which we parameterize as a parsimo-
nious bivariate Matérn covariance structure, augmented with a nugget effect (Guttorp & Gneiting, 2006;
Gneiting et al., 2010), so that both minimum and maximum temperatures have distinct parameters, includ-
ing distinct nugget effects. To account for terrain effects on variability, we model a local standard deviation
parameter as σ(s) = exp{ξ0 + ξ1h(s)}, where h(s) is the elevation at location s. The standard deviation
parameters, Matérn smoothnesses and scale, and the nugget effect variances are estimated by least squares
distance from the empirical covariance matrix, thereby imposing no distributional assumptions on the
bivariate process apart from existence of first and second moments.
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Fig. 2. Nonparametric and model co-located cross-
correlation coefficients between minimum and maximum
temperature residuals in Colorado on August 1 shown as

dots and a curve, respectively, as a function of elevation.

The cross-correlation between minimum and maximum temperature residuals is highly dependent on
terrain, and we choose to use a diagonal contraction matrix as in Proposition 1 with kth diagonal entry

K (sk; θ) = θ0 exp

[
−
{

h(sk) − 1000

θ1

}2
]

,

with 1000 m being approximately the minimal elevation in Colorado. This functional form accounts for
the dependence of cross-correlation on elevation.

Write s1, . . . , sn for the n = 145 observation network locations; then a nonparametric estimator of
βN X (x, y) at arbitrary location pairs x, y ∈ R

d , d = 2 for our case, is

β̂N X (x, y) =
∑n

k=1 Kλ(‖x − sk‖)1/2 Kλ(‖y − sk‖)1/2 N (sk)X (sk)

σN (x)σX (y){∑n
k=1 Kλ(‖x − sk‖)}1/2{∑n

k=1 Kλ(‖y − sk‖)}1/2
(5)

where σN (x) and σX (y) are the marginal standard deviation parameters for minimum and maximum tem-
perature at locations x and y, respectively. Here, Kλ(·) is a nonnegative kernel function with bandwidth λ.
This Nadaraya–Watson type estimator is available at any location pair (x, y), regardless of the observation
network. The initial kernel smoothed estimate requires a bandwidth in (5); we estimate it by leave-one-out
cross validation, yielding a bandwidth of λ = 80 km.

We estimate the parameters θ = (θ0, θ1)
T via

min
θ

n∑
k,	=1

{βN X (sk, s	; θ) − β̂N X (sk, s	)}2,

where θ0 ∈ [0, 1] and θ1 > 0. Figure 2 shows the estimated curve of co-located cross-correlation βN X (s, s)
plotted with the nonparametric estimates in (5) as a function of elevation. Our approach can simultane-
ously capture the positive cross-correlation at low elevations and allows minimum and maximum tem-
peratures to be less dependent at high elevations, is available at any location pairs, and still yields a
nonnegative definite covariance matrix. Figure 3 shows a map of elevations in Colorado with the cor-
responding spatially varying co-located cross-correlation coefficients βN X (s, s). Any covariance model
can be used, and, for example, simulating from a model with a nonstationary cross-correlation coeffi-
cient will preserve the positive correlation between minimum and maximum temperature across the east-
ern plains of Colorado while allowing the variables to be effectively independent across the mountainous
central region.
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Fig. 3. Map of elevations in Colorado in metres with estimated co-located cross-correlation between minimum
and maximum temperature residuals for August 1.
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APPENDIX

Proof of Proposition 1. The proof closely follows Proposition 1.3.2 of Bhatia (2007). We use ∼ to
denote matrix congruence, and let β

−1/2
11 β12β

−1/2
22 = U SV be its singular value decomposition. Then(

β11 β12

β21 β22

)
∼
(

β
−1/2
11 0
0 β

−1/2
22

)(
β11 β12

β21 β22

)(
β

−1/2
11 0
0 β

−1/2
22

)
=
(

I β
−1/2
11 β12β

−1/2
22

β
−1/2
22 βT

12β
−1/2
11 I

)

=
(

I U SV
V T SU T I

)
=
(

U 0
0 V T

)(
I S
S I

)(
U T 0
0 V

)

where 0 is a matrix of zeroes and I is the identity matrix, both of dimension n × n. By matrix congruence,
β12 is nonnegative definite if and only if (

I S
S I

)

is nonnegative definite, that is, all elements of S are bounded by one. In particular, K = β
−1/2
11 β12β

−1/2
22 is

a contraction matrix. Rearranging terms yields the result. �
Proof of Theorem 1. The proof is similar to that of Proposition 1. We have

⎛
⎜⎝

β11 · · · β1p
...

. . .
...

βp1 · · · βpp

⎞
⎟⎠∼

⎛
⎜⎜⎜⎜⎝

β
−1/2
11 0 · · · 0

0 β
−1/2
22

. . .
...

...
. . .

. . .
...

0 · · · · · · β−1/2
pp

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎝

β11 · · · β1p
...

. . .
...

βp1 · · · βpp

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

β
−1/2
11 0 · · · 0

0 β
−1/2
22

. . .
...

...
. . .

. . .
...

0 · · · · · · β−1/2
pp

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

I β
−1/2
11 β12β

−1/2
22 · · · β

−1/2
11 β1pβ

−1/2
pp

β
−1/2
22 β21β

−1/2
11 I

. . .
...

...
. . .

. . .
...

β−1/2
pp βp1β

−1/2
11 · · · · · · I

⎞
⎟⎟⎟⎟⎟⎠ ,

where I is the n × n identity matrix and 0 is a n × n matrix of zeroes. By matrix congruence, β is non-
negative definite if and only if K is nonnegative definite. �
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Proof of Corollary 2. From the proof of Theorem 1, it suffices to show that the following matrix is
nonnegative definite,⎛
⎜⎜⎜⎜⎜⎝

I β
−1/2
11 β12β

−1/2
22 · · · β

−1/2
11 β1pβ

−1/2
pp

β
−1/2
22 β21β

−1/2
11 I

. . .
...

...
. . .

. . .
...

β−1/2
pp βp1β

−1/2
11 · · · · · · I

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

I U T
1 S12U2 · · · U T

1 S1pUp

U T
2 S21U1 I

. . .
...

...
. . .

. . .
...

U T
p Sp1U1 · · · · · · I

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

U T
1 0 · · · 0

0 U T
2

. . .
...

...
. . .

. . .
...

0 · · · · · · U T
p

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

I S12 · · · S1p

S21 I
. . .

...
...

. . .
. . .

...

Sp1 · · · · · · I

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

U1 0 · · · 0

0 U2
. . .

...
...

. . .
. . .

...

0 · · · · · · Up

⎞
⎟⎟⎟⎟⎠ .

By matrix congruence, the result is proven. �
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