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a b s t r a c t

Most modern spatially indexed datasets are very large, with sizes
commonly ranging from tens of thousands to millions of loca-
tions. Spatial analysis often focuses on spatial smoothing using
the geostatistical technique known as kriging. Kriging requires co-
variance matrix computations whose complexity scales with the
cube of the number of spatial locations, making analysis infeasi-
ble or impossible with large datasets. We introduce an approach to
kriging in the presence of large datasets called equivalent kriging,
which relies on approximating the krigingweight function using an
equivalent kernel, requiring presence of a nontrivial nugget effect.
Resulting kriging calculations are extremely fast and feasible in the
presence of massive spatial datasets. We derive closed form krig-
ing approximations formultiresolution classes of spatial processes,
as well as under any stationary model, including popular choices
such as theMatérn. The theoretical justification for equivalent krig-
ing also leads to a correction term for irregularly spaced observa-
tions that also reduces edge effects near the domain boundary. For
large sample sizes, equivalent kriging is shown to outperform co-
variance tapering in an example. Equivalent kriging is additionally
illustrated on multiple simulated datasets, and a monthly average
precipitation dataset whose size prohibits traditional geostatistical
approaches.
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1. Introduction

In the era of big data, spatially indexed datasets are especially prone to size-induced limitations.
Indeed,modern atmospheric, hydrologic, ecological and environmental datasets are increasingly large
and complex, often involving data sited at between thousands and millions of locations. A major
goal when faced with such complex and noisy data is estimating the underlying physical process
whose observations are subject to noise. In geostatistics, the main tool used for surface estimation is
kriging, which is the linear predictor that minimizes predictive squared loss, assuming known model
parameters.

Themain obstacle for kriging on large datasets is solving a linear system of equations involving the
spatial covariance matrix. This covariance matrix is usually dense and unstructured, and has size that
scales as the square of the number of spatial locations. Over the past decade there have been a number
of proposed approaches to kriging on large datasets. Many of the most popular techniques rely on a
low rank representation for the spatial covariance matrix. For instance, fixed rank kriging achieves
low rank by representing spatial covariances via a small set of basis functions in the observation
domain (Cressie and Johannesson, 2008). Similarly, predictive processes use a conditional expectation
representation at a small set of knots in the observation domain that leads to a low rank type setup
(Banerjee et al., 2008). An alternative approach is covariance tapering, using a compactly supported
function to impose sparsity in the covariance matrix (Furrer et al., 2006; Kaufman et al., 2008). One of
the criticisms of low rank ideas is that they tend to capture low frequency behavior quite well, but are
unable to model well high frequency behavior (Finley et al., 2009). To overcome this problem, an idea
that retains computational feasibility is to use a low rank representation of spatial covariance, and
superimpose a high frequency term that is generated by a compactly supported covariance; Sang and
Huang (2012) named this approach a full scale approximation, see also Stein (2008). Finally, a simple
alternative is to window the data and perform kriging locally; Stein (2014) found this approach to be
favorable to low rank methods in approximating likelihoods.

Amore recent idea involves approximating a Gaussian random field by a GaussianMarkov random
field (Lindgren et al., 2011). This approach is computationally extremely fast for very large datasets,
but is designed for processes with Matérn covariances, and can only approximate the restrictive
subclass whose smoothnesses are integer plus one half values. A somewhat related approach is a
multiresolution representation of the underlying stochastic field, a specific class of which has been
developed very recently by Nychka et al. (in press), which they term LatticeKrig. A computationally
expensive step common to many models is evaluating the likelihood (or Bayesian posterior) to
determine variance and covariance parameters; some approaches to likelihood approximations have
been proposed, involving an approximate gridding of the observations and using techniques for
regular lattices (Fuentes, 2007). Sun et al. (2012) give an overview of some of the aforementioned
techniques and others.

We propose a novel approach to kriging over large datasets called equivalent kriging. Equivalent
kriging relies on approximating the kriging weights using an equivalent kernel via ideas that have
previously been confined to the spline literature (Silverman, 1984). This approximation’s primary
limitation is that it is only valid with a nonzero nugget effect, akin to spline smoothing. The equivalent
kernel is available in closed form for multiresolution processes, and has a representation as a Hankel
transform for kriging with any isotropic covariance function. Specifically, we can approximate kriging
under a Matérn covariance with an arbitrary smoothness, improving upon many of the previously
proposed techniques. We explore both gridded and irregularly spaced data situations. Estimation
can proceed by cross-validation or generalized cross-validation, as the smoothing matrix is quickly
computable using the equivalent kernel approximation. We follow the technical discussion with data
examples, empirically illustrating the computational advantages of equivalent kriging over traditional
kriging.

As a suggestion of the timing improvements of equivalent kriging over traditional kriging, Fig. 1
illustrates a simple example. The goal is to smooth a set of noisy observations on an n × n grid by
kriging or equivalent kriging using an exponential covariancemodelwith a nugget effect. The grid is on
[0, 2π ]

2 with the exponential scale set to unity. Timing comparisons are shown in seconds for between
approximately n2

= 700 and 10000 total locations. For even moderately large datasets, equivalent
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Fig. 1. Timing comparison in seconds of smoothing an n × n planar grid of noisy data using an exponential covariance using
both kriging and equivalent krigingwhere n2 is the number of stations; note the y-axis is indexed on the log scale. Computations
are performed in R on a MacBook Pro laptop with a 2.9 GHz Intel Core i7 processor and 8 GB of 1600 MHz DDR3 RAM.

kriging improves the timing cost of traditional kriging by multiple orders of magnitude. In particular,
Fig. 1 suggests that surface estimation will be possible for massive datasets where traditional kriging
calculations can no longer be made. Here and throughout the manuscript, all timing comparisons are
performed in a standard implementation of R (Ihaka and Gentleman, 1996) and aMacBook Pro laptop
with a 2.9 GHz Intel Core i7 processor and 8 GB of 1600 MHz DDR3 RAM.

1.1. Kriging

Consider a model for an observed spatial process Y (s) indexed by spatial location s ∈ Rd,

Y (s) = µ(s) + Z(s) + ε(s). (1)

The mean function µ(s) is typically regarded as a regression on some covariates, µ(s) = β′X(s).
The observations are subject to variation from this mean function by a spatially correlated stochastic
term Z(s) and a (usually)white noise process representingmicroscale variability and/ormeasurement
error, ε(s) with variance τ 2. It is common to suppose Z(s) is a mean zero stochastic process;
throughout the manuscript we denote by k(s1, s2) = Cov(Z(s1), Z(s2)) the covariance function for
Z . For notational simplicity, we present methodology in the case µ(s) = 0.

Arguably the most common venture in a spatial analysis is to smooth a set of observations Y =

(Y (s1), . . . , Y (sn))′ to a location s0 (whichmay be one of si, or not), or to a grid of points. In the context
of the observational model (1), the most common smoother is the kriging predictor,

Ẑ(s0) = Σ ′

0Σ
−1Y, (2)

where Σ0 = (k(s0, s1), . . . , k(s0, sn))′ and the (i, j)th entry of Σ is k(si, sj) + τ 21[i=j]. This predictor
coincides with the conditional expectation of amultivariate normal, and is traditionally derived in the
geostatistical literature as the linear predictor that minimizes the expected squared error (Cressie,
1993; Chilès and Delfiner, 1999). The main issue with the kriging predictor (2) is evaluating Σ−1Y,
because operationally Σ is a dense and unstructured matrix of large dimension.

Throughout themanuscriptwewill assume n observations are available at locations corresponding
to an empirical cumulative distribution function Fn onD ∈ Rd, and such that Fn → F asn → ∞where
F has corresponding bounded density f with respect to the Lebesgue measure. Examining (2), we see
the kriging predictor can be written

Ẑ(s0) =
1
n

n
i=1

wn(s0, si)Y (si). (3)
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We refer to wn as the kriging weight function, which empirically acts as a local kernel smoother. The
weight function wn depends on the sample size and exact siting of observation locations. The basic
goal of this manuscript is to develop an approximation such that wn ≈ G, with the form of G being
more readily computable than wn.

Many years ago it was established that kriging is equivalent to a variational problem (Kimeldorf
and Wahba, 1971; Wahba, 1990; Chilès and Delfiner, 1999). Although this identification provided
a striking theoretical connection between spline smoothing and geostatistics, it has not found
substantial service in applications. Specifically, kriging is equivalent to minimizing

L(g) =
1
n

n
i=1

(Y (si) − g(si))2 + λ⟨g, g⟩ (4)

over the Hilbert space of functions C = {g | ⟨g, g⟩ < ∞} andwith ⟨·, ·⟩ the inner product. The formal
connection between this variational problem and kriging happens when C defines a Hilbert space of
functions such that k, the covariance function of Z , is the reproducing kernel for the inner product ⟨·, ·⟩
(Wahba, 1990; Furrer and Nychka, 2007). Thus, if k is the reproducing kernel for the inner product in
(4), the spline solution will be identical to the estimate defined by kriging.

The identification of kriging with the variational problem of minimizing L yields a useful
characterization of the kriging weight function. In particular, wn(·, ·) is the reproducing kernel for
the following inner product,

⟨h1, h2⟩w =


h1(s)h2(s)dFn(s) + λ⟨h1, h2⟩. (5)

An original proof of this result was developed by Cox (1983) by finding the minimum of L via its
Gâteaux derivative and the fact that wn is a reproducing kernel was not highlighted. The following
proposition relies on an algebraic proof and the reproducing property of the kernel.

Proposition 1. If wn(·, ·) is the reproducing kernel for the inner product (5), then theminimizing solution
of the variational problem (4) is g(·) = n−1n

i=1 wn(·, si)Y (si).

The proof of Proposition 1 is in the Appendix. In the following section we use the fact that the
kriging weight function is the reproducing kernel for (5) to develop equivalent kriging.

2. Characterizing the equivalent kernel

Themain heuristic for equivalent kriging is by noticing that as Fn → F , the integral in (5) converges
to

h1(s)h2(s)dF(s), and the resulting inner product does not depend on sample size or sample

locations. Thus, we should expect the reproducing kernel for the new inner product

⟨h1, h2⟩λ =


h1(s)h2(s)dF(s) + λ⟨h1, h2⟩ (6)

to be close to the weight function wn. Call Gλ the reproducing kernel of the inner product (6); we also
define Gλ as the equivalent kernel for wn. By standard properties of reproducing kernels, Gλ is unique.
We note that, although this heuristic is asymptotic, the results in this manuscript are exact and do not
rely on n → ∞.

Differencing (5) and (6) and using the reproducing properties of both wn and Gλ, it is straightfor-
ward to show that

wn(s, t) = Gλ(s, t) +

Rnwn(·, t)


(s),

where we introduce the integral operator

(Rnh)(s) =


Gλ(s, t)h(t)d(F − Fn)(t). (7)
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If we knew the exact form of the kriging weight function, the remainder term could be used as a
correction to the equivalent kernel approximation for irregularly spaced observations. Unfortunately,
the kriging weight function is almost never known explicitly in practice. However, a straightforward
induction argument yields the following useful generalization.

Proposition 2. If Rn is a bounded operator with jth power R
j
n and Gλ is the equivalent kernel for wn,

then

wn(s, t) = Gλ(s, t) +

∞
j=1


Rj

nGλ(·, t)

(s). (8)

The convenience of this result is that all terms on the right hand side depend on the equivalent
kernel, Gλ, and not the kriging weight function. We will later illustrate that these remainder terms
can sometimes be derived explicitly, leading to refined estimates of the kriging weight function.

In order to complete a rigorous theoretical link betweenwn and its equivalent kernelGλ, we require
some conditions on the tail behavior of Gλ. The following exponential envelope condition is the key.

EEC1 assumption Suppose the equivalent kernel Gλ(s, t) satisfies the Exponential Envelope
Condition-L1 (EEC1) in that there are constants α, ε, Kλ > 0 with ρ = λγ where γ > 0
such that

|Gλ(s, t)| ≤ (Kλ/ρ) exp(−(α + ε)∥s − t∥1/ρ) ∂

∂si
Gλ(s, t)

 ≤ (Kλ/ρ
2) exp(−(α + ε)∥s − t∥1/ρ) ∂2

∂si∂sj
Gλ(s, t)

 ≤ (Kλ/ρ
3) exp(−(α + ε)∥s − t∥1/ρ)

where ∥ · ∥1 is the L1-norm.

Additionally set Dn = sups |F(s) − Fn(s)|.
Proposition 2 and the EEC1 allow the following key approximation result.

Proposition 3. Suppose d = 2 and set δn = 4Dn(Kλ/ρ)(1/ε + 1/α)2 where 2(1/ε + 1/α) > 1. Then
under the EEC1 assumption on Gλ, we have

|wn(s, t) − Gλ(s, t)| ≤
δnKλ

ρ(1 − δn)
exp(−α∥s − t∥1/ρ).

The proof of Proposition 2 is given by Kleiber and Nychka (2014), while an outline of the proof
of Proposition 3 is in the Appendix. Proposition 3 is particular for the case of kriging in the plane,
d = 2, which is the most common situation in a spatial setup. The case d = 1 is established by Kleiber
and Nychka (2014), and we conjecture the general case d > 2 also holds. We believe the proof is in
principle straightforward using Young (1917), but whose details become messy.

Note that our EEC1 assumption is slightly different than that appearing elsewhere in the literature
(Nychka, 1995; Furrer and Nychka, 2007; Kleiber and Nychka, 2014) in that ours involves the L1
distance, while others typically involve L2 distance; hence we denote our exponential envelope
condition as EEC1, rather than EEC as in other manuscripts. For any covariance satisfying the EEC
under the L2 distance, Proposition 3 will still hold, since ∥s− t∥1/

√
d < ∥s− t∥2. Common covariance

models imply equivalent kernels that satisfy the EEC1 assumption, including Matérn (Furrer, 2008)
and multiresolution processes (Kleiber and Nychka, 2014).



36 W. Kleiber, D.W. Nychka / Spatial Statistics 12 (2015) 31–49

3. Equivalent kriging

We now turn to the main idea of this manuscript. The equivalent kriging predictor ẐEK (s0) for Z(s0)
is simply the kriging predictor having replaced the exact kriging weight function by its equivalent
kernel Gλ,

Ẑ(s0) =
1
n

n
i=1

wn(s0, si)Y (si) ≈
1
n

n
i=1

Gλ(s0, si)Y (si) = ẐEK (s0). (9)

Thus, the onus of solvingΣ−1Y required for kriging can be relieved if we can find convenient forms for
the equivalent kernel. We cover two main approximations, that for Z having any arbitrary stationary
covariance, and Z being a multiresolution process. Throughout we use the spline terminology λ for
the smoothing parameter; the connection to kriging is when λ = τ 2/n.

3.1. Stationary covariances

For stationary covariances, k(s1, s2) = k(s1−s2), there is a convenient formula relating the Fourier
transform of k to that of Gλ. Denote by F (g) the Fourier transform of the function g . The following
lemma is the key link to the equivalent kernel.

Lemma 4. If k is a stationary covariance whose kriging weight function has equivalent kernel Gλ,

F (Gλ)(ω) =
1

1 +
λ

F (k)(ω)

(10)

for ω ∈ Rd.

See Furrer and Nychka (2007) or Sollich and Williams (2005) for a proof. Although we have found
a few cases where Gλ has a closed form, this representation also suggests a way to approximate to any
degree of accuracy the equivalent kernel for arbitrary stationary covariances.

The most popular covariance class is the Matérn class, due to its ability to capture smoothness
structures of random fields (Stein, 1999). A Matérn correlation function k is defined by

k(s1, s2) =
21−ν

Γ (ν)
(a∥s1 − s2∥)νKν(a∥s1 − s2∥).

Here, a > 0 is a length scale parameter, ν > 0 is the key smoothness parameter and Kν is a modified
Bessel function of the second kind of order ν. Exponential correlations are popular in many fields,
but this is a special case of the Matérn when ν = 1/2. The spectral density of a Matérn correlation
function is

F (k)(ω) =
Γ (ν + d/2)a2ν

Γ (ν)πd/2

1
(a2 + ∥ω∥2)ν+d/2

,

where ω ∈ Rd. Thus, according to (10), the equivalent kernel for a Matérn correlation is the inverse
Fourier transform of

F (Gλ)(ω) =


1 + λ

Γ (ν)πd/2

Γ (ν + d/2)a2ν
(a2 + ∥ω∥

2)ν+d/2
−1

. (11)

For the special case of d = 1 and ν = 1/2, Z(s) is an Ornstein–Uhlenbeck process, and k(s1, s2) =

k(∥s1 − s2∥) = k(r) is a function of the radius r . The equivalent kernel can be written in closed form
as

Gλ(r) =
a
2λ

1
a

λπ
+ a2

exp


−r


a
λπ

+ a2

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using 3.723.2 of Gradshteyn and Ryzhik (2000). A similar derivation gives a closed form for d = 1 and
ν = 3/2,

Gλ(r) =


π

2πλa + 4
exp(−rA) (B cos(rB) + A sin(rB))

where 2A2
=

a4 + 2a3/(λπ)+a2 and 2B2

=

a4 + 2a3/(λπ)−a2. Zhang and Stein (1993) derived

closed forms for the equivalent kernel of a limiting Matérn class when the process range tends to
infinity, which can then be identified with a thin plate spline smoother.

Isotropic covariances in the plane
Assume s ∈ R2 and for isotropic processes, k(s1, s2) = k(∥s1 − s2∥) = k(r) where r = ∥s1 − s2∥

is the distance between locations. Then evaluating the equivalent kernel reduces to finding a Hankel
transform of order zero. In particular, a change of variables to cylindrical coordinates yields

Gλ(r) =


∞

0
ρJ0(rρ)F (Gλ)(ρ)dρ (12)

where J0(r) is a Bessel function of the first kind of order zero. Thus, the two-dimensional inverse
Fourier transform becomes an integral over a univariate function.

For a two-dimensional process with Matérn covariance, the equivalent kernel via (12) is

Gλ(r) = Γ (ν + 1)a2ν


∞

0

ρJ0(rρ)

Γ (ν + 1)a2ν + λπΓ (ν)(a2 + ρ2)ν+1
dρ.

We have not found many useful closed forms for Gλ(r) in this situation, however, the univariate
integral can be approximated to any degree of accuracy quickly using standard numerical analysis
techniques. Some options for solving the Hankel transform include exploiting the fast Fourier
transform (Siegman, 1977), or using quadrature (Key, 2012). Cree and Bones (1993) compare some
competing numerical approaches for solving the Hankel transform. Thus, our implementation will
just use an accurate numerical approximation to the exact Hankel transform.

3.2. Multiresolution covariances

Multiresolution processes form a flexible and computationally feasible class for spatial processes
(Nychka et al., 2002). Recently, Nychka et al. (in press) introduced a so-called LatticeKrig framework
for spatial modeling,

Z(s) =

L
ℓ=1

mℓ
i=1

ciℓφiℓ(s) (13)

where φiℓ are known basis functions (Nychka et al., in press favor compactly supported Wend-
land functions). Thus, the process Z(s) is broken up into L levels of resolution, with the ℓth having
mℓ components. On each level ℓ, the stochastic coefficients {ciℓ}

mℓ
i=1 form a Gaussian Markov ran-

dom field (GMRF). Order coefficients into a vector grouped by resolution level, c = (c11, c12, . . . ,
c1m1 , c21, . . . , cLmL)

′, and similarly group the basis functions using the same ordering, Φ = (φ11, φ12,
. . . , φ1m1 , φ21, . . . , φLmL)

′. Then if Q is the precision matrix of c, the covariance function for Z(s) can
be written k(s1, s2) = Φ(s1)′Q−1Φ(s2).

Themultiresolution setup is convenient for equivalent kriging, as the equivalent kernel is available
in closed form. If P =


Φ(s)Φ(s)′dF(s) is the L2 inner product matrix of basis functions, then the

equivalent kernel for k is

Gλ(s1, s2) = Φ(s1)′(P + λQ )−1Φ(s2). (14)

Choosing the basis functions as compactly supported implies a sparse inner product matrix P , and the
GMRF structure on Q also yields a sparse matrix. Thus, computation of Gλ(s1, s2) can take advantage
of sparse matrix methods.
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3.3. Regularly spaced locations

Equivalent kriging with stationary covariances can proceed by exploiting fast Fourier techniques
when the observational network can be viewed as falling on a grid, such asmost sets of physicalmodel
output or digital images in image analysis where pixels arise on a regular lattice.

The basic idea is to note that the equivalent kriging predictor (9) is a discrete convolution of
Gλ(s1, s2) and Y (s). Thus, a discrete fast Fourier transform (FFT) can be used, given the equivalent
kernelGλ. The FFT does not require equal spacing in all axial directions, simply regular spacing for each
axis. In particular, if ẐEK = n−1Gλ(·, si)Y (si) = Gλ∗Y where ∗ represents the convolution operator,
then F (Gλ ∗ Y ) = F (Gλ)F (Y ) where F represents the discrete Fourier transform. Thus, ẐEK =

F−1(F (Gλ)F (Y )), which can be computed quickly via FFT methods. For complete gridded data, this
approach is similar to Wiener filtering, although next we consider irregularly spaced observations
which cannot be achieved using traditional Wiener filtering.

3.4. Irregularly spaced locations

Many traditional observational datasets involve irregularly spaced locations, such as temperature
and precipitation stations or pollutionmonitoring stations. In these cases, we propose two approaches
to account for the irregularity of the network that do not cede the computational advantages of
equivalent kriging.

The first option is to approximately grid the observation network and rely on the fast Fourier
techniqueproposed for regularly spaceddata. By choosing a fine grid, eachdata point canbe associated
with its nearest grid point. If all grid points happen to be populated by an observation, then the FFT
can be implemented on the approximately gridded data. Usually, however, there will be a number
(possibly a large number) of grid points with no associated observations. In this case we adopt the
multiple imputation self-consistent algorithmof Lee andMeng (2005). Initially fill allmissing grid cells
with temporary values (possibly zeros, or a first-pass estimate of the spatial field such as the solution
from a thin plate spline). The algorithm proceeds by applying equivalent kriging on the completed
data, and replacing the observation grid cellswith their original values, leaving the remaining grid cells
with the predicted values. The algorithm then iterates through this procedure until some stopping
criterion is reached. The fast performance of this algorithm rests on the speed of equivalent kriging.

The second option for equivalent kriging with irregularly spaced observations is to improve the
approximation of the kriging weight function by a sum of remainders. In particular, Eq. (8) provides
the key refinements for correcting the initial equivalent kriging solution. We see the multiresolution
construction as being most useful in this case, where the remainders have explicit closed form. For
instance, the first remainder can be written

(RnGλ(·, s2))(s1) =


Gλ(s1, t)Gλ(t, s2)d(F − Fn)(t)

= Φ(s1)′(P + λQ )−1(P − Pn)(P + λQ )−1Φ(s2) (15)

where Pn =


Φ(s)Φ(s)′dFn(s) is just the outer product of Φ evaluated at the irregular observation
locations. Formulas for additional remainder corrections follow similarly, all of which are easily
computed using sparse matrix solves and the fact that remainders arise as quadratic forms.

Using the remainder formula (8) requires knowledge of the limiting observation network
distribution F . In some cases, it is reasonable to assume the sampling network approaches a uniform
distribution, but many observational datasets exhibit preferential sampling, placing more network
locations near areas of high population, for example. In this latter case, we propose estimating the
limiting network distribution F by a standard binned kernel density estimator (Wand, 1994). The
kernel density estimator we consider is of the form f̂ (s) =

n
i=1 Kh(si − s) where K is a Gaussian

density with bandwidth vector h = (h1, . . . , hd)
′. Bandwidths for the density estimate can either be

specified by scientificallymotivated knowledge, or can be estimated.Moreover, we note that guidance
in how well the F matches Fn can be gleaned from the requirement in Proposition 3 that δn must be
less than 1 and the smaller this quantity the better the approximation.
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Fig. 2. Regularly and irregularly spaced observations at 500 locations. The true kriging function is shown in black, while the
equivalent kriging function is a red dashed line. For irregularly spaced locations, successive refinement terms can be added to
ẐEK that eventually converges on the kriging solution Ẑ (see Eq. (8)). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

4. Data illustrations

This section is concerned with illustrating equivalent kriging in three cases. The first is a synthetic
one-dimensional example to illustrate basic properties and a correction technique for irregular
networks of points. The second example is a massive dataset on a complete and incomplete grid
with known truth; here we additionally make a small comparison with covariance tapering as a
competing method. The third is a large irregularly spaced precipitation anomaly dataset from the
National Climatic Data Center.

4.1. One-dimensional process

In this subsection we illustrate some of the basic properties of equivalent kriging, comparing an
equivalent kriging solution to the true kriging surface in onedimension. Two situations are considered,
the first is regularly spaced observation locations, the second irregularly spaced. For irregularly spaced
locations, we show how a sequence of correction factors can be readily used to converge to the true
kriging predictor. As this is an illustrative example, we use a small-to-moderately sized dataset.

Fig. 2 displays the problem setup, with Y (s) = Z(s) + ε(s), s ∈ [0, 1], where Z(s) = exp(s)
(cos(2πs exp(s)) − sin(2πs exp(s))) and ε(s) is Gaussian white noise process with standard devia-
tion 0.3. The goal is to smooth the observations Y (s) and estimate the underlying continuous function
Z(s). We consider 500 observation locations, both regularly or irregularly spaced on [0, 1]; the irreg-
ularly spaced locations are independent samples from a uniform distribution. The stochastic model
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Fig. 3. Irregularly spaced observations with a missing gap in [0.3, 0.7]. The true kriging function is shown in black, while the
equivalent kriging function is a red dashed line. For irregularly spaced locations, successive refinement terms can be added to
ẐEK that eventually converges on the kriging solution Ẑ (see Eq. (8)). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

uses a multiresolution covariance model with one level of resolution covering 20 equally spaced
nodes, Z(s) =

20
i=1 ciφi(s), where φi(s) = φ(s − si) are translates of a Wendland basis function

of order one with support such that φ(s1 − s2) = 0 if |s1 − s2| > 1/5. We impose an autore-
gressive Markov random field structure on {ci}20i=1 whose 20 × 20 precision matrix Q has diagonal
diag(Q ) = (1, 1 + ϕ2, 1 + ϕ2, . . . , 1 + ϕ2, 1) and whose upper and lower principal minor diagonals
are −ϕ, setting ϕ = 0.4. Note these choices are purely for expository purposes.

Fig. 2 shows the kriging predictor (as a solid black line) along with the equivalent kriging predictor
(9) (dashed red line). For equally spaced design points, the equivalent kriging solution differs from the
kriging solution by atmost 0.029, which occurs near the boundary, while on the interior the difference
is on the order of 0.001. In the irregularly spaced design points case, ẐEK suffers from the irregularity
of the spatial locations, and requires refinements. To correct the initial equivalent kriging solution,
we use the closed form remainder for the multiresolution covariance, (15). The corrected (using up
to a third order correction) equivalent kernel approximations are shown in Fig. 2, where by the third
order correction the maximal error from the kriging smoother is less than 0.08, and occurs near the
mode at s = 0.8 in the surface. In practical applications with irregularly spaced data, remainders can
be added to the equivalent kernel until some stopping criterion is reached.

Before moving to higher dimensions, we explore the effect of a region with zero limiting
observations, that is, a nontrivial set {s | f (s) = dF/ds = 0}.We keep the same setup as the irregularly
spaced data in Fig. 2, except where we remove all observations in the interval [0.3, 0.7]. For datasets
exhibiting substantial gaps in the observation network, including the remainder terms of (8) is crucial.
It also seems apparent from this example that a greater number of remainder terms are required to
converge to a tolerable error of the kriging predictor (see Fig. 3).

4.2. Massive completely and incompletely gridded data

We now turn to the most common case, observation locations occurring in the plane, d = 2. If
the locations fall on a regular grid, fast Fourier techniques can be used, even with missing data. We
first entertain a 1000 × 1000 regular grid over [0, 2π ] × [0, 2π ]. The observations are generated by
Y (s) = Z(s)+ε(s), where Z(s) is a mean zero Gaussian process with exponential covariance function
k(s1, s2) = exp(−∥s1 − s2∥/2) and ε(s) is a Gaussian white noise process with standard deviation
0.3. Standard kriging is difficult to implement in this situation, as the covariance matrix is dense and
has dimension 1,000,000 × 1,000,000.

If the goal is to smooth the high dimensional surface by exploiting fast Fourier methods, first
note that the equivalent kriging predictor (9) is a discrete convolution of Gλ(∥s1 − s2∥)and Y (s). As
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Fig. 4. Comparison of kriging weight function and equivalent kernel approximation in two dimensions on a 50×50 grid for an
exponential covariance with range of 1/100 and nugget standard deviation 0.3. The first two plots are heatmaps of the weight
functions, with the third plot a one-dimensional transect across the curve at its mode.

suggested in Section 3.1, we numerically estimate Gλ at a fine grid of 1000 equally spaced points
based on a Gauss–Kronrod quadrature using the built-in integrate function in R, and use a cubic
interpolating spline to estimate Gλ(∥s1 − s2∥) at all interpoint distances required for the fast Fourier
transform.

On this grid totaling 1,000,000 points, computing the equivalent kriging solution took approxi-
mately 19.1 s on the author’s MacBook Pro laptop. Numerical integration accounts for about half of
the total equivalent kriging timing, and can be reduced by judiciously choosing quadrature points or
adaptive integration techniques; these ideas seem worth exploring in future research.

In this gridded situation, explicitly solving the systemΣ−1Y for the kriging predictor is not feasible
due to the dimensionality of the problem. A sensible alternative is to calculate Σ−1Y by embedding
Σ in a circulant matrix, and exploiting the fast Fourier transform within the preconditioned
conjugate gradient algorithm (Golub and Van Loan, 2012; Stein et al., 2013). For comparison, we
implemented this idea using the circulant embedded matrix inverse as the preconditioner, which
then required 407 s and 116 iterations to calculate Σ−1Y; we stopped the algorithm at a tolerance
of unity of the 1-norm of the residual vector. Thus, even for this feasible alternative approach
to calculating the exact kriging estimator, equivalent kriging exhibits substantial computational
gains.

Equivalent kriging for gridded data with missing observations can proceed using similar FFT
techniques.We consider the same simulation setup as before, but now remove 75% of the observations
randomly, leaving a partial grid of 250,000 irregularly spaced locations. Exploiting the missing data
algorithm of Lee andMeng (2005) as discussed in Section 3.4, we equivalent krige the observations to
the same grid of one million locations. The missing observations increase computation time to 27.8 s;
however it should be noted that in effect we are finding spatial predictions on the full 1000 × 1000
grid. We set the algorithm tolerance to stop after the solution changes by no more than one tenth,
requiring four passes over the data.

We illustrate the equivalent kernel approximation on a smaller grid where the weight function
is wider to facilitate a visual comparison. We consider a two dimensional example on [0, 2π ]

2 for
an exponential covariance with range 1/100 and noise standard deviation of 0.3. Fig. 4 shows the
true kriging weights and the equivalent kernel approximation for kriging at a location (3.7, 3.3). The
equivalent kernel is an accurate approximation to the true krigingweight function, capturing both the
shape and approximate size of the peak.

We end this section with a small timing comparison between equivalent kriging and covariance
tapering. The goal is to krige a dataset with an exponential covariance with range of 3, unity marginal
variance and nugget standard deviation 0.3. The taper is a spherical taper whose width is chosen
to contain approximately 20 observations within the positive support of the tapered covariance,
following the suggestion of Furrer et al. (2006). Timing comparisons are for completely gridded data
and incompletely gridded data where 50% of the observations are randomly held out. In this small
study, equivalent kriging begins outperforming covariance tapering at between 40,000 and 50,000
observations. Hence, for large datasets, equivalent kriging appears to be preferable computationally
(see Fig. 5).
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Fig. 5. Timing comparison between covariance tapering and equivalent kriging. Data are kriged under an exponential
covariance with nugget. Comparisons are for completely gridded data and incompletely gridded data where 50% of the
observations are randomly held out.
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Fig. 6. Approximation error of the equivalent kernel with remainder terms in approximating the kriging weight function on
the lower edge of a rectangular domain (top row) and in the corner (bottom row).

4.3. Approximations near the boundary

The equivalent kernel approximation without remainder terms is best when the observed process’
spatial locations are regularly spaced; we have illustrated that for irregularly spaced data the
remainder terms can improve the equivalent kernel approximation. In fact, the remainder terms also
serve to remove boundary effects of the kernel approximation. As an illustration, we consider kriging
under a multiresolution process with one level of 400 basis functions, a nugget standard deviation
of 0.3, and 900 regularly spaced observations in [0, 1]2. The stochastic behavior of the coefficients
is a Gaussian Markov random field based on a spatial autoregressive model. Fig. 6 shows various
approximation errors for approximating the kriging weight function on the edge of the domain and
in the corner of the domain. The approximation error is substantially reduced once three remainder
terms are included. Thus, the remainder terms serve the dual purpose of adjusting equivalent kriging
to irregularly spaced data as well as removing boundary effects of kernel approximation.
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Fig. 7. Equivalent kriging solution for the 7352 stations precipitation anomaly dataset. The covariance model is a Matérn, and
data are projected to a 512 × 1024 grid; parameters were estimated by generalized cross-validation. Equivalent kriging the
grid of 512 × 1024 points took 37.7 s on the author’s MacBook Pro laptop.

4.4. Precipitation dataset

The last example we consider is a set of precipitation anomalies that has previously been
considered by Johns et al. (2003) and Kaufman et al. (2008). Climate change analyses often require
complete gridded historical fields that can be compared to climatemodel output. Records of historical
observations are only available at sparsely located stations, andmoreover are subject to observational
error as well as microscale variability. The major contribution of a statistical approach to creating a
climatic data product is a formal approach to spatial smoothing with accurate assessments of the
uncertainty in creating such a product. For instance, with temperature observations, the preferred
covariance model for spatial modeling is a Matérn with smoothness equal to one (North et al., 2011).

The dataset we consider consists of precipitation anomalies for the year 1962 at 7352 irregularly
located stations from the National Climatic Data Center. As pointed out by Kaufman et al. (2008), the
year 1962 has a relatively complete record.We follow these authors in calculating anomalies as yearly
totals standardized by the long-runmean and local empirical standard deviation. The data are plotted
in Fig. 7 andwe note that there is apparent small scale variability. Additionally, there are large regions
with no historical observations, particularly in the Western United States.

We entertain two models for surface estimation based on these irregularly observed precipitation
anomalies. The first involves a Matérn covariance with smoothness fixed at one, and the second is a
multiresolution process. For the Matérn case, we set the marginal variance to unity, and estimate the
range and the nugget-to-marginal variance ratio by generalized cross-validation. Our goal is to exploit
fast Fourier techniques, and thus require a gridding of the observation locations; we approximately
grid the observations to a grid with 1024 equally spaced longitudinal points and 512 equally spaced
latitudinal points by associating observations with their nearest (in the sense of Euclidean distance)
grid point; this yields grid spacings of approximately 0.05° in both axial directions. All other grid
points are given temporary values as estimated by an initial thin plate spline; themissing gridded data
algorithmweexploit converges to a true equivalent kriging surface after a sequence of iterations. Thus,
operationally we are finding predictions at 512× 1024 ≈ 5× 105 locations, two orders of magnitude
more than the original dataset. We standardize the observation domain to [0, 2π ]

2, after which the
range and nugget-to-marginal variance parameters were estimated as 1.18 and 0.064, respectively.
Even thoughwedramatically increase the number of observation locations, the fast Fourier techniques
result in substantial computational savings as compared to traditional kriging on the original 7352
data locations. For instance, equivalent kriging on these over half a million data locations using the
missing data algorithm outlined in Section 3.4 took approximately 37.7 s on the author’s MacBook
Pro. Fig. 7 shows the equivalent kriging surface based on this covariance model, while 8 shows the
associated standard errors based on thirty conditional simulations. The conditional simulations again
rely on the approximate gridding, using circulant embedding.

The second model we consider is a multiresolution decomposition as in (13). We suppose three
levels of resolution each on a regular grid with 180, 663 and 2541 basis functions respectively, thus
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Fig. 8. Equivalent kriging standard errors for the 7352 stations precipitation anomaly dataset under aMatérn covariancemodel.

Fig. 9. Equivalent kriging solution and associated standard errors for the 7352 station precipitation anomaly dataset. The
covariance model is multiresolution with three levels, parameters were estimated by cross-validation. Equivalent kriging to
the grid of 512 × 1024 points took 0.33 s on the author’s MacBook Pro laptop.

yielding 3384 total. We experimented withmore levels of resolution, but found very similar solutions
as in this setup. We follow Nychka et al. (in press) and Lindgren et al. (2011) by building the precision
matrix for the ℓth level (ℓ = 1, 2, 3), Qℓ as Qℓ = B′

ℓBℓ/αℓ, where Bℓ specifies a spatial autoregressive
structure with diagonal elements 4 + κ2

ℓ and off diagonals of −1, and αℓ > 0 is the weight assigned
to the ℓth level. For this dataset, we set κ2

ℓ = 1/2 for each level, similar to the estimate obtained
on a precipitation anomaly dataset explored by Nychka et al. (in press). We estimate {αℓ}

3
ℓ=1 and τ 2

by cross-validation, randomly choosing 20% of the data to hold out. The estimated parameters are
thus α1 = 34.2, α2 = 0.002, α3 = 11.25 and τ = 0.88. Figs. 9 and 10 show the equivalent kriging
surface and associated standard errorswhenpredicting on a 512×1024 grid. Standard errors are based
on thirty conditional simulations. For the multiresolution case, equivalent kriging is extremely fast,
requiring 0.33 s on the author’s laptop, and estimating the standard error by conditional simulation
took 16.4 s.
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Fig. 10. Equivalent kriging standard errors for the 7352 station precipitation anomaly dataset under a multiresolution
covariance model.

5. Discussion

In this manuscript we have introduced an approximation to kriging called equivalent kriging.
The equivalent kriging predictor is based on an equivalent kernel approximation to the kriging
weight function. The equivalent kernel for any stationary covariance is available numerically,
and in two dimensions reduces to computing a Hankel transform. On the other hand, the
equivalent kernel for a multiresolution model is available in closed form. Gridded observations
(even with missing data) yield fast computations via fast Fourier techniques. Equivalent kriging
on irregularly spaced locations requires a series of correction terms that are available in closed
form for the multiresolution approach, and can be numerically approximated for stationary
covariances.

We anticipate a number of future research opportunities arising from these ideas, including opti-
mizing numerical estimation of the equivalent kernel as well as searching for closed form solutions
to particular Hankel transforms. Although we have suggested cross-validation and generalized cross-
validation as feasible estimation approaches, it is desirable to explore the theoretical implications of
an estimation scheme such as these, as compared to traditional geostatistical techniques such as var-
iogram fitting and likelihood-based approaches. Additional future research goals should also include
exploring equivalent kernel representations for other classes of covariances, especially nonstationary,
space–time and multivariate constructions.
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Appendix

We begin by proving Proposition 1.

Proof of Proposition 1. Write f (s) = g(s) + δ(s) where g(s) =
n

i=1 wn(s, si)Y (si), and δ(s) is any
arbitrary function δ : Rd

→ R. Then,

L(f ) = L(g + δ) =
1
n

n
i=1

(Y (si) − g(si) − δ(si))2 + λ⟨g + δ, g + δ⟩

=
1
n

n
i=1

(Y (si) − g(si))2 −
2
n

n
i=1

δ(si)(Y (si) − g(si)) +
1
n

n
i=1

δ(si)2

+ λ⟨g, g⟩ + 2λ⟨g, δ⟩ + λ⟨δ, δ⟩

= L(g) + 2⟨g, δ⟩w −
2
n

n
i=1

Y (si)δ(si) +
1
n

n
i=1

δ(si)2 + λ⟨δ, δ⟩.

Now note

⟨g, δ⟩w =


1
n

n
i=1

wn(·, si), δ


w

=
1
n

n
i=1

⟨wn(·, si)Y (si), δ⟩w

=
1
n

n
i=1

Y (si)δ(si)

using the reproducing property of wn(·, ·). Thus, L(f ) = L(g) + ⟨δ, δ⟩w and for f to minimize L, we
necessarily have δ ≡ 0. �

Next, we outline the proof of Proposition 3, which requires two intermediate results. Belowwe use
the notation ∂

∂x f = fx.

Lemma 5. For any bounded function h on D ⊆ R2 whose derivatives up to order 2 are integrable, with
any empirical cdf Fn such that supt |(F − Fn)(t)| = Dn, we have h(t)d(F − Fn)(t)


≤ Dn

 1

0

 1

0
|hxy(x, y)|dxdy + Dn

 1

0
|hx(x, 1)|dx + Dn

 1

0
|hy(1, y)|dy. (16)

Proof. For notational simplicity, write D = F − Fn. Integrating by parts twice we have 1

0

 1

0
h(x, y)dD(x, y)

=

 1

0


h(x, y)Dy(x, y)

1
x=0

−

 1

0
Dy(x, y)hx(x, y)dx


dy

=

 1

0
(h(1, y)Dy(1, y) − h(0, y)Dy(0, y))dy −

 1

0

 1

0
hx(x, y)Dy(x, y)dydx

= h(1, y)D(1, y)
1
y=0

−

 1

0
D(1, y)hy(1, y)dy
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− h(0, y)D(0, y)
1
y=0

+

 1

0
D(0, y)hy(0, y)dy

−

 1

0
(hx(x, 1)D(x, 1) − hx(x, 0)D(x, 0)) dx +

 1

0

 1

0
D(x, y)hxy(x, y)dxdy.

The first resulting term is h(1, 1)D(1, 1) − h(1, 0)D(1, 0). Note D(1, 1) = (F − Fn)(1+, 1+) = 0 and
D(1, 0) = 0 since F(1+, 0−) = Fn(1+, 0−) = 0. Similar reasoning implies the third term is also
zero. Additionally, D(x, 0) = D(0, y) = 0, so we are left with 1

0

 1

0
D(x, y)hxy(x, y)dxdy −

 1

0
hx(x, 1)D(x, 1)dx −

 1

0
hy(1, y)D(1, y)dy. (17)

Now taking absolute values and noting |D(x, y)| ≤ supx,y |F(x, y) − Fn(x, y)| = Dn, we have (17) is
bounded by

Dn

 1

0

 1

0
|hxy(x, y)|dxdy + Dn

 1

0
|hx(x, 1)|dx + Dn

 1

0
|hy(1, y)|dy. �

Lemma 6. Suppose d = 2 and Gλ satisfies the EEC1. Define δn = 4Dn(Kλ/ρ)(1/ε + 1/α)2 where
2(1/ε + 1/α) > 1. Then for ρ = λγ and j ≥ 0, we have

|(Rj
nGλ(·, s))(t)| < δj

n(Kλ/ρ) exp(−α∥s − t∥1/ρ) ∂

∂si
(Rj

nGλ(·, s))(t)
 < δj

n(Kλ/ρ
2) exp(−α∥s − t∥1/ρ) ∂2

∂si∂sk
(Rj

nGλ(·, s))(t)
 < δj

n(Kλ/ρ
3) exp(−α∥s − t∥1/ρ).

Proof. The result will follow by induction, with the case for j = 0 being clear, using the EEC1
assumption on Gλ. Suppose the result is true for some j ≥ 0. Note

(Rj+1
n h)(s) =


Gλ(s, t)(Rj

nh)(t)d(F − Fn)(t).

We apply Lemma 5 with t = (x, y)′ and h(x, y) = Gλ(s1, t)(RnGλ(·, s2))(t). We outline the approach
for the integral involving hx(x, y), with hy(x, y) following analogously. In particular,

hx(x, 1) = Gλx(s1, t)(Rj
nGλ(·, s2))(t) + Gλ(s1, t)(Rj

nGλ(·, s2))x(t)
≤ 2δj

n(K
2
λ/ρ3) exp(−(α + ε)∥s1 − t∥1/ρ) exp(−α∥s2 − t∥1/ρ)

by the induction step and the EEC1 assumption. Now plug this expression into (16) and apply Lemma
4.2 of Nychka (1995) along with the triangle inequality to the second entry yielding the bound

Dn

 1

0
|hx(x, 1)|dx < 2Dnδ

j
n(K

2
λ/ρ2)(1/ε + 1/α) exp(−α∥s1 − s2∥1/ρ)

< δj+1
n (Kλ/ρ) exp(−α∥s1 − s2∥1/ρ)

using δn > 2Dn(Kλ/ρ)(1/ε + 1/α) since 2(1/ε + 1/α) > 1. Now,

hxy(x, y) = Gλxy(s1, t)(Rj
nGλ(·, s2))(t) + Gλx(s1, t)(Rj

nGλ(·, s2))y(t)
+Gλy(s1, t)(Rj

nGλ(·, s2))x(t) + Gλ(s1, t)(Rj
nGλ(·, s2))xy(t)

< 4δj
n(K

2
λ/ρ4) exp(−(α + ε)∥s1 − t∥1/ρ) exp(−α∥s2 − t∥1/ρ).
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Using Lemma 4.2 of Nychka (1995) twice again yields the bound

Dn

 1

0

 1

0
|hxy(x, y)|dxdy < 4Dnδ

j
n(K

2
λ/ρ2)(1/ε + 1/α)2 exp(−α∥s1 − s2∥1/ρ)

= δj+1
n (Kλ/ρ) exp(−α∥s1 − s2∥1/ρ)

using δn = 4Dn(Kλ/ρ)(1/ε + 1/α)2. The same proof technique yields analogous results for the first
and second partials of R

j
nGλ. �

Proof of Proposition 3. The result follows since

|wn(s, t) − Gλ(s, t)| ≤

∞
j=1

|(Rj
nGλ(·, t))(s)|

≤ (Kλ/ρ)

∞
j=1

δj
n exp(−α∥s − t∥1/ρ)

=
δnKλ

ρ(1 − δn)
exp(−α∥s − t∥1/ρ)

using Lemma 6. �
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