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Abstract Flexible models for multivariate processes are

increasingly important for datasets in the geophysical,

environmental, economics and health sciences. Modern

datasets involve numerous variables observed at large

numbers of space–time locations, with millions of data

points being common. We develop a suite of stochastic

models for nonstationary multivariate processes. The con-

structions break into three basic categories—quasi-arith-

metic, locally stationary covariances with compact support,

and locally stationary covariances with possible long-range

dependence. All derived models are nonstationary, and we

illustrate the flexibility of select choices through simulation.

Keywords Compact support � Long range dependence �
Matrix-valued covariance � Nonstationary � Quasi-

arithmetic functional

1 Introduction

Spatial and spatiotemporal data analysis is a fundamental

goal in fields as diverse as statistics, astrophysics, hydrol-

ogy, ecology, medical geography, environmental and

petroleum engineering, remote sensing and geographical

information systems (GIS). Modern space–time datasets

involve multiple variables observed at between hundreds

and millions of locations. The size of these datasets and the

intricate nonstationary and cross-process dependence that is

commonly present proves to be an insurmountable chal-

lenge for the currently available statistical methodology.

Herein, we introduce a suite of models for large, complex

multivariate spatial datasets that can handle substantial

nonstationarity, as well as cross-process dependence.

Throughout this paper we consider m-dimensional (or

vector-valued) Gaussian random fields in d� 1 dimen-

sions, ZðxÞ ¼ ðZ1ðxÞ; . . .; ZmðxÞÞ0, x 2 R
d. The assumption

of Gaussianity guarantees that, for inference purposes, we

only need to consider the second order properties of Z,

the mean vector lðxÞ ¼ EZðxÞ, the direct covariances

Ciiðx; yÞ ¼ CovðZiðxÞ; ZiðyÞÞ for i ¼ 1; . . .;m, and the

cross-covariances Cijðx; yÞ ¼ CovðZiðxÞ; ZjðyÞÞ for i 6¼ j.

Such mathematical objects form an m� m matrix of

functions Cðx; yÞ 2 Mm�m, with ði; jÞth component

Cijðx; yÞ. The matrix function Cðx; yÞ represents the

covariance structure of ZðxÞ if and only if C is nonnegative

definite in the sense that, for any n-dimensional finite

system of m-dimensional vectors fakgn
k¼1 and for any

n–dimensional collection of locations fxkgn
k¼1, we have

Xm

i;j¼1

Xn

k;‘¼1

aikCijðxk; x‘Þaj‘� 0:

Such a property is difficult to ensure and requires a serious

mathematical effort for any candidate matrix-valued func-

tion C. The importance of these constructions was recog-

nized many decades ago in a seminal paper by Cramér

(1940), who considered stationary constructions Cðx; yÞ ¼
Cðkx� ykÞ, where k � k denotes the Euclidean seminorm.

Most of the literature of the last 30 years is based on the

assumption of stationarity and isotropy of C, so that

Cðx; yÞ ¼ Cðkx� ykÞ. For example, the linear model of

coregionalization (LMC; Goulard and Voltz 1992) has
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been very popular for over twenty years, although its limits

are illuminated by Wackernagel (2003) and Gneiting et al.

(2010). Very recently, more effort has been devoted to the

construction of second order models that describe the

dependence over space and time of vector-valued random

fields. The easiest way to construct matrix-valued covari-

ances is through separability, where Cijð�Þ ¼ aijCð�Þ, for C

a valid univariate covariance function and A ¼ ½aij�mi;j¼1 a

positive definite matrix of coefficients (Mardia and Goodall

1993). The construction is easy to implement but not very

interesting in terms of interpretability and flexibility. Kernel

and covariance convolution methods have also been very

popular in recent years, and they may be useful provided

some closed form expression is available through convo-

lution, which is usually the limiting factor (Ver Hoef and

Barry 1998; Gaspari and Cohn 1999; Majumdar and Gelf-

and 2007; Majumdar et al. 2010). Apanasovich and Genton

(2010) and Apanasovich et al. (2012) have proposed some

interesting constructions through latent processes and

through generalizations of the results of Gneiting et al.

(2010), respectively. Finally, Porcu and Zastavnyi (2011)

provided permissibility criteria that can be used to show that

a candidate matrix-valued mapping can be used as corre-

lation function of a vector-valued random field.

When dealing with multivariate random fields, one

should distinguish between processes representing vecto-

rial physical variables, e.g., velocity of a moving particle,

and multivariate random fields representing a state of

vectors, the components of which may have very different

magnitudes. The latter class shall be named in this paper

adimensional multivariate random fields. In the first case,

the vector random fields must obey specific mathematical

constraints (such as zero divergence or zero curl) that result

from physical laws. This is the case of a statistically iso-

tropic second-rank tensor whose spectral density has a

specific form (Furutsu 1963). In a similar context, Narco-

wich and Ward (1994) proposed curl-free and divergence-

free matrix-valued kernels, see Scheuerer and Schlather

(2012) for recent extensions and discussion. In vector

calculus, the curl (or rotor) is a vector operator that

describes the infinitesimal rotation of a 3-dimensional

vector field, whilst divergence is a vector operator that

measures the magnitude of a vector field’s source or sink at

a given point, in terms of a signed scalar. In particular, let

r be the d � 1 gradient vector, D ¼ rTr be the Lapla-

cian, and C : Rd ! R be a positive definite function. Then

Ctraðy� xÞ ¼ ð�DI þrrTÞCðy� xÞ and

Clonðy� xÞ ¼ ð�rrTÞCðy� xÞ

are matrix-valued covariances with zero divergence and

zero curl, respectively. Note that in the spectral

representation Ctrað�Þ and Clonð�Þ correspond to the trans-

verse and longitudinal term, respectively.

This paper is devoted to nonstationary models for adi-

mensional vector–valued random fields. For these, the

crucial scientific question is: what kind of nonstationarity

do we want to attain? Recent literature devoted to non-

stationary modeling regards what is termed here locally

reducible stationarity: a nonstationary covariance is

obtained either by spatial adaptation (Paciorek and Scher-

vish 2006; Pintore and Holmes 2006; Porcu et al. 2009a;

Majumdar et al. 2010; Kleiber and Nychka 2012; Kleiber

and Genton 2013), or by convolution techniques through

locally stationary kernels (Fuentes and Smith 2001; Fuen-

tes 2002; Higdon 1998; Kleiber et al. 2013). The common

denominator amongst these techniques is that stationary

covariances are special cases of the nonstationary one

(hence, locally reducible stationarity). In particular, Klei-

ber and Nychka (2012) proposed a locally stationary

reducible covariance whose functional form is of the

Matérn type. The Matérn is parameterized by a range a and

a smoothness m, where, for n 2 ½0;1Þ, we define

Ma;mðnÞ ¼ ðanÞmKmðanÞ for a modified Bessel function of

the second kind of order m. Extending Paciorek and

Schervish (2006) and Stein (2005), the authors propose

covariances of the form

Cijðx; yÞ / Maijðx;yÞ;mijðx;yÞðnðx; yÞÞ ð1Þ

where now nðx; yÞ is the Mahalanobis distance defined by a

positive definite matrix function, and aijðx; yÞ ¼ ðaiðxÞ þ
ajðyÞÞ=2 and mijðx; yÞ ¼ ðmiðxÞ þ mjðyÞÞ=2 are locally adap-

tive functions. This nonstationary Matérn is locally

reducible stationary since the special case miðxÞ ¼ mi and

aiðxÞ ¼ ai offers the stationary multivariate Matérn model

proposed by Gneiting et al. (2010).

It is important to notice that most previous literature on

this subject is based on the technique of spatial adaptation

of the parameters indexing a parametric family of sta-

tionary covariances. Such framework allows, on the one

hand, to work with algebraically tractable closed form, but

on the other hand implies an ill-posed problem of estima-

tion of such spatially adaptive parameters. Also, normally

one must impose restrictions on the parameter functions in

order to preserve the validity of the resulting structure,

which can lead to further difficulties, depending on the

situation at hand.

This paper is inspired by the following goals:

(a) Propose a class of multivariate covariance models

whose elements depend separately on the coordi-

nates x and y and additionally is irreducible in the

following sense: there are no pairs ðRij;UijÞ,
i; j ¼ 1; . . .;m, for bijections on R

d, Uij, and ½R�ij ¼
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Rijð�Þ a positive definite matrix-valued function, such

that

Cijðx;yÞ ¼ Rij UijðyÞ�UijðxÞ
� �

; ðx;yÞ 2Rd�R
d:

ð2Þ

(b) Propose a class of kernels w : R� R! R and a

collection of m functions fi : Rd ! R such that the

composition

Cijðx; yÞ ¼ w fiðxÞ; fjðyÞ
� �

; ðx; yÞ 2 R
d � R

d;

ð3Þ

offers a positive definite matrix-valued function.

Such a class would avoid the problem of using

spatially adaptive parameters so that the resulting

nonstationary matrix-valued covariance can be esti-

mated through, for instance, maximum likelihood

techniques.

(c) Under the framework of locally stationary reducible

covariances, there are two lines of discussion that

should be mentioned here:

(c.1)

The multivariate locally stationary reducible Mat-

érn model of (1) does not have compact support,

and it is desirable to develop a multivariate locally

stationary reducible model whose members Cijð�Þ
are compactly supported, say in the unit sphere.

This is required particularly for high-dimensional

datasets.

(c.2)

On the other hand, the multivariate Matérn has

light tails, hence it is desirable to have models

indexing long range dependence (also called the

Hurst effect).

2 Background and methodology

2.1 Nonnegative definite matrix functions

We start by fixing our notation. Let Mm�m denote the set of

all m� m matrices with entries in C. The matrix A 2 Mm�m

is nonnegative definite if the inequality z�Az� 0 holds for

every z 2 C
m, where z� is the conjugate transpose.

Let E be a real linear space. A matrix function C :

E � E ! Mm�m is called nonnegative definite on E if the

inequality

Xn

k;‘¼1

z�kCðxk; x‘Þz‘ ¼
Xn

k;‘¼1

Xm

i;j¼1

zkiCijðxk; x‘Þz‘j� 0 ð4Þ

holds for any finite collection of points fxkgn
k¼1 2 E and

complex vectors z1; . . .; zn 2 C
m. The set of all positive

definite matrix functions C : E � E ! Mm�m is denoted by

UmðEÞ. When m ¼ 1 we have UðEÞ ¼ U1ðEÞ for the set of all

positive definite complex valued functions f : E! C. In this

case, we can give the following equivalent definition: a

complex-valued function f : E � E! C is said to belong to

the class UðEÞ if for any finite collection of points fxkgn
k¼1 2

E the matrix
�
f ðxk; x‘Þ

�n
k;‘¼1

is nonnegative definite,

for all a1; . . .; an 2 C;
Xn

k;‘¼1

akf ðxk; x‘Þa‘� 0

we will finally write Um ¼ UmðR0Þ for the class of posi-

tive-definite matrices.

Throughout the paper we shall make use of completely

monotone functions defined on the positive real line, being

infinitely often differentiable functions f whose derivatives

change sign in the following sense: ð�1Þnf ðnÞðxÞ� 0,

8 n 2 N; x [ 0. According to Bernstein’s theorem, such

functions are the Laplace transform of positive and boun-

ded measures,

f ðtÞ ¼
Z1

0

e�rtlðdrÞ: ð5Þ

2.2 Quasi-arithmetic composition of two real functions

Let W be the class of real functions u defined in some

domain DðuÞ � R, admitting a proper inverse u�1, defined

in Dðu�1Þ � R, and such that uðu�1ðtÞÞ ¼ t for all

t 2 Dðu�1Þ. For now on we shall write D for any subset of

R
d, being normally a compact set.

For f1; f2 : D ! Rþ such that f1ðDÞ [ f2ðDÞ � DðuÞ, for

some u 2 W, denote by Quðf1; f2Þ the quasi-arithmetic

composition of f1 and f2 with generating function u, and

define it as

Quðf1; f2Þðx; yÞ ¼ u�1 1

2
u 	 f1ðxÞ þ

1

2
u 	 f2ðyÞ

� �
;

ðx; yÞ 2 D � D;
ð6Þ

where 	 denotes the composition of two functions. Quasi-

arithmetic means have a long history and they can be

traced back to Nagumo (1930) and Hardy et al. (1934).

Recently, Porcu et al. (2009b) proposed criteria for the

permissibility of quasi-arithmetic compositions for scalar-

valued random fields and part of this paper is devoted to

generalizing their results to the case of vector-valued fields.

Note that our definition is indeed equivalent to that in

Porcu et al. (2009b), as the function u is monotonic and

admits a proper inverse.

Four basic examples of quasi-arithmetic compositions of

functions are shown in Table 1. Some conventions are

needed in order to solve possible ill-defined values. We
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will show in subsequent sections that many other examples

of compositions can be obtained but here we remark only

those leading to a well known average operator.

3 Multivariate covariances through quasi-arithmetic

compositions and Laplace transforms

In this section we propose some techniques for direct

construction of (cross)-covariance matrices that satisfy the

goals (a) and (b) stated in Sect. 1. The idea is straightfor-

ward: use the quasi-arithmetic class of functionals in Eq.

(6) as a link function between the margins such that

Cijðx; yÞ ¼ Qu fi; fj

� �
ðx; yÞ; ðx; yÞ 2 D � D; ð7Þ

where fi : D ! Rþ is a collection of m nonnegative Le-

besgue-measurable functions. As shown subsequently, we

do not need any other analytic property for such functions.

The first nice feature of such construction is that the margins

are of the type Qu fi; fið Þðx; xÞ ¼ fiðxÞ. The following result

offers sufficient conditions for the permissibility of this new

candidate class of matrix-valued covariance mappings. A

slight additional flexibility added here is the presence of the

co-located correlation coefficients qij, which represent the

same-site correlations between the ith and jth processes.

Theorem 1 Let fi : D ! Rþ be a set of nonnegative-

valued mappings. Let u : Rþ ! Rþ be such that its proper

inverse is completely monotone on the positive real line

and such that fiðDÞ [ fjðDÞ � DðuÞ for all pairs

i; j ¼ 1; . . .;m. Define the mapping C : D�D ! Mm�m as

Cðx; yÞ ¼ Cijðx; yÞ
� �m

i;j¼1
¼ rirjqijQu fi; fj

� �
ðx; yÞ

� �m
i;j¼1

;

ðx; yÞ 2 D � D; ð8Þ

where qij is a co-located correlation coefficient such that

the matrix ½qij�mi;j¼1 is nonnegative definite, and ri� 0.

Then C is a valid multivariate covariance.

Proof We give a proof of the constructive type. We need

to prove that, for any finite collection of points fxigN
i¼1 of D

and vectors fcigN
i¼1 of Cm, the following inequality holds,

XN

k;‘¼1

Xm

i;j¼1

cikcj‘rirjQu fi; fj

� �
ðxk; x‘Þ� 0

where we do not need to include qij since its matrix is

nonnegative definite by assumption, which is preserved

under Schur products (Bhatia 2007). In particular,

XN

k;‘¼1

Xm

i;j¼1

cikcj‘rirjQu fi; fj

� �
ðxk; x‘Þ

¼
XN

k;‘¼1

Xm

i;j¼1

cikcj‘rirju
�1 1

2
u 	 fiðxkÞ þ

1

2
u 	 fjðx‘Þ

� �

¼
XN

k;‘¼1

Xm

i;j¼1

cikcj‘rirj

Z

½0;1Þ

exp � r

2
u 	 fiðxkÞ �

r

2
u 	 fjðx‘Þ

� 	
lðdrÞ

¼
Z

½0;1Þ

XN

k¼1

Xm

i¼1

ricik exp � r

2
u 	 fiðxkÞ

� 	













2

lðdrÞ� 0

where the third equality comes from Bernstein’s theorem,

where l is a positive bounded measure on Rþ. h

A huge quantity of examples can be proposed under this

setting. We do not need the completely monotone function

to be finite at the origin (as required, for instance, in

Gneiting 2002b). Consider functions fi being radial in their

argument, in the sense that there exist functions wi : R!
Rþ such that

fiðxÞ ¼ wiðkxkÞ; x 2 R
d;

where k � k can be any seminorm. Another possibility is to

compose the functions wi with the great circle distance; this

would not affect the construction proposed in Theorem 1.

Table 1 Examples of quasi-

arithmetic compositions for

some possible choices of the

generating function u 2 W

uðnÞ u�1ðnÞ Quðf1; f2Þ (x,y) Remarks

f1; f2 : D ! ½0;1Þ
expð�nÞ � log n f1ðxÞ1=2

f2ðyÞ1=2 log 0 ¼ �1
expð�1Þ ¼ 0

f1; f2 : D ! ½0;1Þ
1=n 1=n 2f1ðxÞf2ðyÞ

f1ðxÞþf2ðyÞ
1=0 ¼ 1; 1=1 ¼ 0

0=0 ¼ 0

f1; f2 : D ! ½0;M�
Mð1� n=MÞþ Mð1� n=MÞþ 1

2
f1ðxÞ þ 1

2
f2ðyÞ for some M [ 0

ðuÞþ ¼ maxðu; 0Þ
-log n expð�nÞ � log

expð�f1ðxÞÞ þ expð�f2ðyÞÞ
2

� �
f1; f2 : D ! ½0;1Þ
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Regarding the choice of the generator u�1 for the

composition Qu in Eq. (6), some completely monotone

functions are listed in Gneiting (2002b) and we report them

together with other choices in Table 2.

The fact that the family of completely monotone functions is

not very rich can be overcome by considering completely

Bernstein functions; the excellent textbook by Schilling et al.

(2010) offers a wide selection. We point the reader to their book

as well as to Porcu and Schilling (2011) for an historical account

of the use of such functions (under different names) over sev-

eral branches of mathematics. Table 3 is taken directly from

Porcu and Schilling (2011). Such functions are very important

since they have stability properties that make them appealing in

order to create new examples of completely monotone func-

tions. The Stieltjies class of functions (Berg and Forst 1975) is a

subclass of the completely monotonic class. Let us denote with

CBF andS, respectively, the class of completely Bernstein and

Stieltjies functions. Using the arguments in Porcu and Schilling

(2011), we have, for any f 6
 0,

f 2 CBF ()
�

x! f ðxÞ
x

�
2 S ()

�
x! x

f ðxÞ

�

2 CBF () 1

f
2 S;

ð9Þ

so that, using simple stability properties, we have a sub-

stantial class of completely monotone functions that can be

used as generator of the composition Qu in Eq. (6). The

same functions can then be effectively used as functions wi,

i ¼ 1; . . .;m, entering the composition in Eq. (7).

Consider covariances that can be obtained through the

choice u�1ðtÞ ¼ t�d, d [ 0. For instance, if fiðxÞ ¼
ð1þ kxkaiÞ�bi

þ , ai; bi [ 0, we get a nonstationary covari-

ance of the type

Cijðx; yÞ ¼ 1=2ð1þ kxkaiÞbi=d
þ þ 1=2ð1þ kykajÞbj=d

þ

� 	�d
;

ð10Þ

having the interesting property that the marginal variances

Ciiðx; xÞ ¼ fiðxÞ, which are radial functions of the gen-

eralized Cauchy type (Gneiting and Schlather 2004) and

thus the variances of the processes Zi at a point x 2 R
d are

decreasing and convex on the positive real line. This may

be desirable for some processes, but if the opposite were

desired, then it would be sufficient to apply the decom-

position (10) to the function giðxÞ ¼ 1� fiðxÞ to obtain

increasing variances. Finally, constant variance can be

obtained by Cijðx; yÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ciiðx; xÞCjjðy; yÞ

p
, yielding still a

permissible matrix-valued covariance function. The

covariance (10) is not readily reduced to a stationary

covariance; it is a nonstationary construction with

straightforward parameterization. We anticipate a primary

application for (10) to be modeling dispersion from a

source, such as particulate matter from a volcano, or wind

vectors from a hurricane’s eye.

Many other examples can be obtained under the same

setting. For instance, taking fiðxÞ ¼ kxkbcð1þ kxkbÞc, b 2
ð0; 2� and c 2 ð0; 1� we respect the requirements in Theo-

rem 1 since such function is bounded by one and thus we

obtain, for d ¼ ci, i ¼ 1; . . .;m,

Cijðx;yÞ ¼
1

2
kxk�bið1þkxkbiÞþ 1

2
kyk�bjð1þkykbjÞ

� ��d

;

ð11Þ

and Cijð0; 0Þ ¼ 0, which has increasing marginal variances.

The proposed structure is nonstationary and irreducible in

the sense of point (b) of the introduction. The following

Table 2 Examples of

completely monotone functions
Function u�1 Parameter restrictions Function u�1 Parameter restrictions

ð1þ xaÞb 0\a� 1; b\0 xmKmðxÞ m [ 0

xb

1þ xb

� �c 0\b� 1; 0\c\1 expð
ffiffi
t
p
Þ þ expð�t

ffiffi
t
p
Þ

� ��m m [ 0

Table 3 Examples of complete

Bernstein functions

Cða; xÞ ¼
R1

x
ta�1 e�t dt is the

incomplete Gamma function

Function Parameter restrictions Function Parameter restrictions

1� 1

ð1þ xaÞb
0\a;b� 1

ex � x
�

1þ 1

x

	x

� x

xþ 1

� xq

1þ xq

	c 0\c;q\1 1

a
� 1

x
log
�

1þ x

a

	
a [ 0

xa � xð1þ xÞa�1

ð1þ xÞa � xa

0\a\1
ffiffiffi
x

2

r
sinh2

ffiffiffiffiffi
2x
p

sinhð2
ffiffiffiffiffi
2x
p
Þ

ffiffiffi
x
p �

1� e�2a
ffiffi
x
p �

a [ 0 x1�m eax Cðm; axÞ a [ 0; 0\m\1

x
�
1� e�2

ffiffiffiffiffiffi
xþa
p �

ffiffiffiffiffiffiffiffiffiffiffi
xþ a
p

a [ 0 xm ea=x C
�
m;

a

x

�
a [ 0; 0\m\1
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result is obtained using much similar arguments as in Porcu

et al. (2010).

Theorem 2 Let u be a strictly monotonic function and

Cðx; yÞ be the matrix of functions as defined in Eq. (8). If

there exists an even mapping Rij : Rd ! R and a bijection

Uij such that the reducibility condition (2) holds, then fi, fj

and Rij are constant functions.

The Gneiting class of space–time correlation functions

(Gneiting 2002b; Porcu and Zastavnyi 2011) has been

widely used in applications involving space–time data. For

u a completely monotone function and h an increasing and

concave function, such a correlation is defined as

Cðx� y; t � sÞ ¼ 1

hd=2 jt � sj2
� 	u

kx� yk2

h jt � sj2
� 	

0
@

1
A: ð12Þ

Gneiting (2002b) describes sufficient conditions for such

function to be the stationary covariance associated with a

space–time Gaussian random field. Porcu and Zastavnyi

(2011) examine necessary conditions, and relax the

hypothesis on the function h, which is restricted to a function

whose first derivative is completely monotonic in Gneiting

(2002b). Porcu and Zastavnyi (2011) also analyze how to

preserve permissibility if the function u is not composed

with the Euclidean norm, but with an arbitrary seminorm.

It is well known that completely monotone functions are

the Laplace transforms of nonnegative and bounded mea-

sures. The natural generalization is thus to consider

bivariate Laplace transforms Lð�; �Þ associated with a ran-

dom vector, admitting the integral representation, for

ðn1; n2Þ 2 R
2
þ,

Lðn1; n2Þ ¼
Z

½0;1Þ

Z

½0;1Þ

exp �r1n1 � r2n2ð Þlðdr1; dr2Þ

ð13Þ

where l is a nonnegative measure on R
2
þ.

This allows us to generalize the Gneiting class to the

nonstationary case. We omit the proof since it will be

obtained following the same arguments as in Theorem 1.

Theorem 3 Let L be the Laplace transform of a positive

bivariate random vector. Let wki : Rþ ! Rþ k ¼ 1; 2 and

i ¼ 1; . . .;m be m-dimensional collection of Lebesgue

measurable functions. Then

Cijðx; t; y; uÞ ¼
rirjqij

w1iðt2Þd=2w1jðu2Þd=2

� L w2i

kxk2

w1iðt2Þ

 !
;w2j

kyk2

w1jðu2Þ

 ! !
;

ð14Þ

for ðx; t; y; uÞ 2 D � R�D� R, is a permissible matrix-

valued space–time covariance function.

The Laplace transform for the Frechet-Hoeffding lower

bound of bivariate copula has expression

Lðn1; n2Þ ¼
exp�n1 � exp�n2

n2 � n1

:

We may now choose the following functions: w1iðtÞ ¼
1þ tai , ai [ 0, w2iðtÞ ¼ tdi in a way to obtain

Cijðx; t; y; uÞ ¼
rirj

ð1þ taiÞd=2ð1þ uajÞd=2

exp
kxk2

1þtai

� 	di

� exp
kyk2

1þuaj

� 	dj

kyk2

1þuaj � kxk2

1þtai

;

and Cijð0; t; 0; uÞ ¼ rirj=ðð1þ taiÞd=2ð1þ uajÞd=2Þ, having

the nice feature of being asymmetric in both time instants u

and t.

Before moving to the next section, we cover the proof of

Theorem 3.

Proof Suppose there are m processes; consider a finite

collection of space–time coordinates, ðxi; tiÞ; i ¼ 1; . . .;N,

and arbitrary vectors fcigN
i¼1 of C

m. As in the proof of

Theorem 1, we do not need to include qij as its matrix is

assumed to be nonnegative definite, which is preserved

under Schur products (Bhatia 2007).

Then,

XN

k;‘¼1

Xm

i;j¼1

cikcj‘rirjCijðxk; tk; x‘; t‘Þ

¼
XN

k;‘¼1

Xm

i;j¼1

cikcj‘
rirj

w1iðt2
kÞ

d=2w1jðt2
‘ Þ

d=2

� L w2i

kxkk2

w1iðt2
kÞ

 !
;w2j

kx‘k2

w1jðt2
‘ Þ

 ! !

¼
XN

k;‘¼1

Xm

i;j¼1

cikcj‘
rirj

w1iðt2
kÞ

d=2w1jðt2
‘ Þ

d=2

�
Z

½0;1Þ

Z

½0;1Þ

exp �r1w2i

kxkk2

w1iðt2
kÞ

 ! 

�r2w2j

kx‘k2

w1jðt2
‘ Þ

 !!
lðdr1; dr2Þ

¼
XN

k;‘¼1

Xm

i;j¼1

Z

½0;1Þ

Z

½0;1Þ

cikri

w1iðt2
kÞ

d=2
exp �rw2i

kxkk2

w1iðt2
kÞ

 ! !

� cj‘rj

w1jðt2
‘ Þ

d=2
exp �rw2j

kx‘k2

w1jðt2
‘ Þ

 ! !
lðdr1; dr2Þ

¼
Z

½0;1Þ

Z

½0;1Þ

XN

k¼1

Xm

i¼1

cikri

w1iðt2
kÞ

d=2
exp �rw2i

kxkk2

w1iðt2
kÞ

 ! !













2

lðdrÞ� 0
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where the third equality comes from Bernstein’s theorem,

where l is a positive bounded measure on Rþ.

4 Locally stationary covariances with compact support

Modern spatial datasets typically involve multiple pro-

cesses at thousands to tens of thousands of spatial loca-

tions. Traditional geostatistical constructions are not well

adapted to such scenarios; indeed covariance matrices with

large dimensions are either infeasible or impossible to

invert, and thereby precludes traditional likelihood and

kriging ventures. While a number of solutions have been

proposed, particularly for kriging, using compactly sup-

ported covariances has proven an effective idea, either for

direct use, or for tapering a non-compact covariance

(Furrer et al. 2006; Kaufman et al. 2008; Du et al. 2009).

While some authors have recently acknowledged the need

for such constructions (Du and Ma 2012; Porcu et al.

2013a), there is yet a lack of flexible nonstationary possi-

bilities. In this section we examine compactly supported

matrix covariances, and in particular derive a class of such

models that allow for substantial nonstationarity.

4.1 Wendland–Gneiting functions

For an exposition of our following constructions, we start

by describing a popular class of functions in the statistical

and numerical analysis literature, proposed by Wendland

(1995) in the numerical analysis setting and then by

Gneiting (2002a) in the geostatistical one. This Wendland-

Gneiting class of correlation functions has been repeatedly

used in applications involving, for example, the so-called

tapered likelihood (Furrer et al. 2006). Let

wm;0ðtÞ ¼ 1� tð Þmþ; t� 0; m 2 Rþ; ð15Þ

be the truncated power function, also known as the Askey

function (Askey 1973). We make similar use of wm or wm;0

as will be apparent from the context; we have that

x 7!wmðkxkÞ, x 2 R
d, is compactly supported over the unit

sphere in R
d, and wm 2 Ud for m�ðd þ 1Þ=2. For any g 2

UðRdÞ for which limt!1
R t

0
u gðuÞ du\1, the Descente

operator I of Matheron (1962) is defined by

IgðtÞ ¼
R1

t
u gðuÞ duR1

0
u gðuÞ du

ðt 2 RþÞ:

Wendland (1995) defines

wd;kðtÞ ¼ Ikw½1
2
d�þkþ1;0ðtÞ; t� 0; ð16Þ

via k-fold iterated application of the Descente operator on

the Askey function wm;0ðxÞ defined at (15), and proves that

wd;k 2 UðRdÞ. The implications in terms of differentiability

are well summarized by Gneiting (2002a): wd;k is a poly-

nomial of order ½1
2

d� þ 3k þ 1 and differentiable of order

2k on R. Moreover, wd;k 2 C2kðRÞ are unique up to a

constant factor, and the polynomial degree is minimal for

given space dimension d and smoothness 2k; that is, the

degree of the piecewise polynomials is minimal for the

given smoothness and dimension for which the radial basis

function should be positive definite.

4.2 Results: compact support

We start with the Askey function wmð�Þ of (15). The fol-

lowing theorem characterizes a large class of compactly

supported covariances, and after its proof we discuss the

problem of differentiability at the origin.

Theorem 4 Suppose cijðx; yÞ ¼ ðciðxÞ þ cjðyÞÞ=2 are

positive valued mappings for i ¼ 1; . . .;m. Define the

matrix-valued mapping C : Rd � R
d ! Mm�m with

where B is the beta function. Then, C is a nonnegative

definite matrix-valued mapping.

Proof Using notation and cij ¼ ðci þ cjÞ=2 for the map-

pings defined in the assertion, we have that the function

f ðt; x; yÞ ¼ tmð1� t=bÞcij

þ is nonnegative definite on R
2d for

any fixed positive t, as is the function wmðkx� yk=tÞ for the

previously defined arguments. From Theorem 1 in Porcu and

Zastavnyi (2011), we thus have that the scale mixture integral

Cijðx; yÞ ¼
Z

Rþ

wm
kx� yk

t

� �
tm 1� t

b

� 	cij

þ
dt

offers a nonnegative definite matrix function. In particular, we

have trivially that Cijðx; yÞ\1, and that wmðk � k=tÞ is

Cijðx; yÞ ¼
(

bmþ1Bðcijðx; yÞ þ 1; mþ 1Þwmþcijðx;yÞþ1

kx� yk
b

� �
; x; y 2 R

d;

0; otherwise:

ð17Þ

Stoch Environ Res Risk Assess (2015) 29:193–204 199

123



nonnegative definite (Gneiting 2002a). That the matrix-val-

ued function whose ði; jÞth entry is tm 1� t
b

� �cij

þ is a nonnega-

tive definite matrix function follows since it can be written

tmff 0 where the ith entry of f is 1� t
b

� �ci=2

þ , and outer products

are nonnegative definite (Bhatia 2007); thus, the conditions

(i)–(iii) of Theorem 1 of Porcu and Zastavnyi (2011) hold.

Direct inspection then shows that Cijðx; yÞ can be written as

Zb

kx�yk

1� kx� yk
t

� �m

tm 1� t

b

� 	cij

þ
dt

¼ b�cij

Zb

kx�yk

t � kx� ykð Þm b� tð Þcij

þdt

¼ b�cij

Zb�kx�yk

0

zð Þm b� kx� yk � zð Þcij

þdt

which gives (17) through integration by parts.

The stationary case of this theorem has been proposed in

(Porcu et al. 2013a). Figure 1 illustrates the flexibility of

this nonstationary construction, where we have two posi-

tively correlated spatial processes, each with distinct and

drastically changing marginal nonstationarity. The Des-

cente operator can then be used to obtain new constructions

based on (17). For instance, direct calculations (Porcu et al.

2013b) show that

Bðcþ 1; mþ 2k þ 1ÞIkwmþcþ1ðtÞ

¼
Z

tmþ2kð1� t=bÞcþIkwm
kx� yk

t

� �
dt;

and thus the mapping

is a valid model under the same conditions as in Theorem 4

for m ¼ ½1
2

n� þ k þ 2. For instance, for k ¼ 1 we obtain
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0.
0

0.
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1.
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Fig. 1 Compactly supported bivariate simulation. The first variable

(left panel) has shorter length scale near the four corners, while the

second variable has longer length scale in a swath crossing the west to

south domain boundaries. The two processes are positively cross-

correlated and nonstationary

Cijðx; yÞ ¼
�

bmþ2kþ1Bðcijðx; yÞ þ 1; mþ 2k þ 1Þwmþcijðx;yÞþ1;k

kx� yk
b

� �
; x; y 2 R

d;

0; otherwise;

Cijðx; yÞ ¼
(

bmþ3Bðcijðx; yÞ þ 1; mþ 3Þ 1� kx� yk
b

� �mþcijðx;yÞþ1

1þ ðcijðx; yÞ þ mþ 1Þ kx� yk
b

� �

0; otherwise:
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5 Locally stationary covariances with long range

dependence

An alternative approach to building matrix covariances is

to use normal scale mixtures (Schlather 2010). The fol-

lowing theorem combines quasi arithmetic compositions

with normal scale mixtures to produce a general class of

nonstationary matrix-valued covariance functions.

For the following theorem, set Rijðx; yÞ ¼ ðRiðxÞþ
RjðyÞÞ=2, where Ri maps to the set of real valued positive

definite d � d dimensional matrices, and let ri : Rd !
½0;1Þ for i; j ¼ 1; . . .;m. For a measure space ðX;A; lÞ
and Borel measurable functions hi : Rd ! R, i ¼ 1; 2, the

following theorem considers functions fi : A� R such that

fið�; hiðxÞÞ is measurable with respect to l for a given

x 2 R
d. A slight change of notation is also needed here. For

the quasi-arithmetic composition of functions fi, we use

Qðfiðx; hið�ÞÞ; fjðx; hjð�ÞÞðx; yÞ.

Theorem 5 Let fi : A� R as above, with i ¼ 1; . . .;m.

For given x; y 2 R
d, suppose Quðfiðx; hið�ÞÞ; fjðx; hjð�ÞÞÞ

ðx; yÞ 2 L2ðlÞ for some nonnegative measure l on ½0;1Þ
and i; j ¼ 1; . . .;m, for some generator u. Then the matrix-

valued function with ði; jÞth entry Cijðx; yÞ defined as

riðxÞrjðyÞ
jRijðx; yÞj1=2

Z1

0

exp �xðx� yÞ0Rijðx; yÞ�1ðx� yÞ
� 	

Quðfiðx; hið�ÞÞ; fjðx; hjð�ÞÞÞðx; yÞ dlðxÞ

is a multivariate covariance function.

Proof Suppose we have m processes indexed by

i; j ¼ 1; . . .;m, n locations xk; x‘ 2 R
d; k; ‘ ¼ 1; . . .; n, and

an arbitrary vector a ¼ ða11; a12; . . .; amnÞ0. Then let R be

an mn� mn block matrix made up of m2, n� n blocks.

Set the ði; jÞth block to be an n� n matrix whose

ðk; ‘Þth entry is Cijðxk; x‘Þ. The following argument

shows a0Ra� 0. We drop the local standard deviation

functions riðxÞ from the proof, as these trivially do not

affect the nonnegative definiteness of the resulting

matrix R. First note the covariance functions can be

written

where in the second equality we have made used of

Bernstein representation for completely monotonic

functions and have used the notation giðx; x; rÞ for

exp �ru 	 fiðx; hðxÞÞð Þ. Here, Kx
ikðuÞ is a Gaussian kernel

with mean xk and variance RiðxkÞ=ð4xÞ; see Paciorek

and Schervish (2006) for the univariate case. With the

above representation, we can write

a0Ra ¼
Xm

i;j¼1

Xn

k;‘¼1

aikaj‘Cijðxk; x‘Þ

¼
Xm

i;j¼1

Xn

k;‘¼1

aikaj‘2
�1ð4pÞ�d=2

Z Z1

0

Z

R
d

x�1=2Kx
ikðuÞKx

j‘ ðuÞdgðuÞ

� giðx; xk; rÞgjðx; x‘; rÞdlðxÞdnðrÞ

¼ 2�1ð4pÞ�d=2

Z Z1

0

Z

R
d

Xm

i¼1

Xn

k¼1

x�1=4aikKx
ikðuÞgiðx; xk; rÞ

 !2

dgðuÞdlðxÞdnðrÞ� 0:

h

Theorem 5 is a general construction for nonstationary

multivariate covariance functions. The nonstationary mul-

tivariate Matérn construction of Kleiber and Nychka

(2012) is a special case of Theorem 5, where Qu

ðf1ðx; h1ð�Þ; f2ðx; h2ð�ÞÞðx; yÞ ¼ f1ðxÞ1=2
f2ðxÞ1=2

, dlðxÞ ¼
x�1 expð�1=ð4xÞÞ and fiðx; miðxÞÞ ¼ x�miðxÞ. In this con-

struction, Ri is the locally varying geometric anisotropy, ri

Cijðxk; x‘Þ ¼ jRijðxk; x‘Þj�1=2

Z
exp �xðxk � x‘Þ0Rijðxk; y‘Þ�1ðxk � x‘Þ
� 	

�Quðfiðx; hð�ÞÞ; fjðx; hð�ÞÞÞðxk; x‘Þ dlðxÞ

¼ jRijðxk; x‘Þj�1=2

Z Z1

0

exp �xðxk � x‘Þ0Rijðxk; x‘Þ�1ðxk � x‘Þ
� 	

� giðx; xk; rÞgjðx; x‘; rÞdlðxÞdnðrÞ

¼
Z Z1

0

4�1=2ð4pÞ�d=2x�1=2

Z

R
d

Kx
ikðuÞKx

j‘ ðuÞdgðuÞgiðx; xk; rÞ

� gjðx; x‘; rÞdlðxÞdnðrÞ
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is the local standard deviation and mi is the local smooth-

ness function for the ith process.

Consider an alternative special case of Theorem 5,

where Awðf1; f2ÞðxÞ ¼ f1ðxÞ1=2
f2ðxÞ1=2

. Set fiðx; xÞ ¼
xdiðxÞ and set the integration measure to dlðxÞ ¼
x�1e�xdx. These choices yield a multivariate covariance

function with ði; jÞth entry

Cijðx; yÞ ¼
riðxÞrjðyÞ

jRijðx; yÞj1=2ð1þ ðx� yÞ0Rijðx; yÞ�1ðx� yÞÞðdiðxÞþdjðyÞÞ=2
:

ð18Þ

In the stationary case, diðxÞ ¼ di controls the range-depen-

dence of the process. In particular, with RiðxÞ ¼ Ri and

riðxÞ ¼ ri, then the corresponding process is long-range

dependent if di� d=2, and is short-range dependent other-

wise. This class allows for nontrivial cross-covariance

between processes that are long-range dependent, short-range

dependent, or some mix thereof. In particular, to the authors’

knowledge, this is the first time a class of matrix-valued

covariance functions has been described where one process is

long-range dependent, another is short-range dependent and

there is nontrivial cross-covariance between the two.

Figures 2 and 3 illustrate the flexible mixture of long

and short-range dependence endowed by (18). Two posi-

tively correlated variables are displayed; in Fig. 2 the two

are stationary, with the first being short-range dependent,

while the second is long-range dependent. Figure 3
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Fig. 2 Realization of a stationary bivariate Gaussian process with the

first variable (left column) exhibiting short range dependence, while

the second variable (right column) exhibits long range dependence.

The bottom row is a detailed zoom-in of the delineated subdomain of

the top row. The two processes are positively cross-correlated and

stationary
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contains a bivariate simulation with both variables being

nonstationary, and exhibiting a mixture of short and long-

range dependence across the simulation domain, while still

having substantial positive cross-correlation.
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