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a b s t r a c t

Simulation of random fields is a fundamental requirement for many spatial analyses. For
small spatial networks, simulations can be produced using direct manipulations of the co-
variance matrix. Larger high resolution simulations are most easily available for stationary
processes, where algorithms such as circulant embedding can be used to simulate a process
at millions of locations. We discuss an approach to simulating high resolution nonstation-
ary Gaussian processes that relies on generating a stationary random field followed by a
nonlinear deformation to produce a nonstationary field. A spatially varying variance coef-
ficient accounts for local scale effects. The nonstationary covariance function is estimated
nonparametrically, and the deformation function is then estimated in a variational frame-
work. We illustrate the proposed approach on synthetic datasets, a challenging tempera-
ture dataset over the state of Colorado and a regional climate model over North America.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Spatial analyses typically involve three common goals: the first is surface estimation based on incomplete or noisy
observations, the second is interpretation of a spatial model to gain scientific insight of a particular process, and the third is
simulation. Simulation plays an important role for both of the first two goals; in surface estimation simulation can be used
to quantify predictive uncertainty via conditional simulation and can also yield field realizations consistent with a partially
observed process. In the second goal, simulation can give insight into the statistical properties of a process, such as its spatial
length scale, smoothness, level crossings or extrema.

Suppose interest focuses on simulating a random process Z(s), s ∈ Rd. Without loss of generality we assume Z(s) is
a mean zero process; otherwise we would simulate a mean zero field onto which we add a nontrivial mean function. We
additionally assume Z(s) is a Gaussian process, whose stochastic behavior is then fully known once the covariance function
C(s1, s2) = Cov(Z(s1), Z(s2)) is specified.

Simulation of random fields can be either unconditional or conditional. Unconditional simulation is simply direct simu-
lation of the process Z(s). Conditional simulation, on the other hand, is the simulation of Z(s) conditioned on some observa-
tions in order to generate plausible realizations that are consistent with the partially observed process. In this manuscript,
we mainly focus on unconditional simulation, noting that conditional simulation can be directly formulated via uncondi-
tional simulations (Journel, 1974).

It seems there are at least three possibleways to simulate nonstationary field—first, use a stochasticmodel that allows for
nonstationarity and directly simulate from this (e.g., a nonstationaryMatérn); this requires a Cholesky decomposition of the
covariance matrix which is infeasible for large simulation grids. The second is to explicitly build such a process from a set of
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basis functions, e.g., using a Karhunen–Loéve expansion or polynomial chaos expansion. The final method is one explored in
thismanuscript, where amapping is developed between the nonstationary process and a stationary process,whence simula-
tions involve only the straightforward stationary generation.Wenote that there is some literature on simulationmethods for
nonstationary intrinsic random functions, althoughwedonot focus on these here (Stein, 2001, 2002, and references therein).

Our proposal relies on the spatial deformation approach of Sampson and Guttorp (1992) to achieve a mapping between
the nonstationary and stationary plane. The basic idea is that in the stationary plane high resolution simulations are easy
to produce from some existing method such as circulant embedding, and then the inverse transformation results in a high
dimensional nonstationary simulation. Note we are primarily concerned with simulation, whereas Sampson and Guttorp
(1992) and ensuing literature has focused almost exclusively on modeling and kriging. The type of nonstationarity that can
be captured by deformation is either known as stationary isotropic reducible or stationary reducible (Perrin and Senoussi,
1999, 2000). Deformation has successfully been used to model a large number of physical processes (Guttorp et al., 1992;
Monestiez et al., 1993; Guttorp and Sampson, 1994; Brown et al., 1994; Guttorp et al., 1994;Meiring, 1995), but not all types
of nonstationarity canbe reduced to stationarity thisway, e.g., aMatérn covariancewith spatially varying smoothness cannot
be (Stein, 2005; Paciorek and Schervish, 2006). Note some similarities with the time-deformation method in economics
(Barndorff-Nielsen and Shepard, 2006).

We consider two motivating environmental examples: the first is application in the field of stochastic weather gener-
ators, while the second involves statistical emulation or analysis of a regional climate model. Stochastic weather gener-
ators are probabilistic models whose simulations behave statistically similarly to observations (Wilks and Wilby, 1999).
These simulators are used primarily in the hydrologic and climate sciences to perform downscaling or impact assessments
(Semenov and Barrow, 1997). Typically, weather realizations are required on a grid, sometimes requiring simulation over
very large geographical regions at high resolutions (Serinaldi and Kilsby, 2014). Following the technical development of our
approach, we illustrate its implementation on a challenging temperature dataset over the state of Colorado. For the sec-
ond example, we consider the problem of stochastically simulating fields of regional climate model (RCM) output that are
consistent with RCM runs. These products are crucial for climate forecasting or model emulation, that is, using a statistical
model as a fast surrogate for a computationally expensive physical climate model. RCMs are usually run coupled with a
general circulation model (GCM) in order to better represent local nonstationarities that are driven by local geographical
effects that are not well represented in a coarse GCM grid. The ability to quickly generate stochastic realizations from a high
resolution nonstationary process is of fundamental importance for both of these applications.

2. Simulation of random fields

Our approach to nonstationary random field simulation relies on fast simulation algorithms for stationary or isotropic
random fields. We begin this section with a brief overview of some classic algorithms for stationary simulation, Schlather
(2012) and Kroese and Botev (2013) give nice recent overviews of some of these approaches among others.

2.1. Stationary simulation

Momentarily suppose the random field Z(s) is stationary, that is, C(s1, s2) = C(s1 − s2) is a function of the lag vector
separating two spatial locations. The spectralmethod is a traditional approach to approximately simulate stationary random
fields. The spectral method (Shinozuka and Jan, 1972) relies on using the spectral representation of a random field requiring
continuity of the covariance function,

Z(s) = Re


exp(2π ıω′s)dY (ω)


(1)

where ω ∈ Rd and dY (ω) is a complex-valued Gaussian measure with zero mean and whose pointwise variance is
F (C)(ω)dω,F denoting the Fourier transform. Simulations of Z(s) can then be approximately generated by using a discrete
approximation to the integral representation (1). The turning bandsmethod, originally suggested byMatheron (1973), relies
on simulating amultidimensional isotropic Gaussian random field by summing simulations fromone-dimensional processes
that have been embedded inmore than one dimension (Mantoglou andWilson, 1982; Dietrich, 1995; Gneiting, 1996, 1999).
In particular, realizations for d = 2, 3 are obtained via

Z(s) =
1

√
L

L
i=1

Zi(s · ei)

where {Zi(·)}Li=1 are mutually independent one-dimensional processes, {ei}Li=1 are unit vectors and · indicates the dot
product. The key difficulty turns out to be identifying the one-dimensional covariance function that corresponds to the
desired multidimensional covariance structure, with the most common two-dimensional case requiring solving an Abel
integral equation (Gneiting, 1998). For stationary fields whose covariance can be represented as a convolution, C(h) =
g(s)g(s + h)ds, one can use the so-called random coin (or dilution) method to generate approximate realizations (Chilès

and Delfiner, 1999; Schlather, 2012). Ehm et al. (2004) examined conditions on compactly supported covariance functions
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that admit such a convolution representation. The approximate simulation is


h∈Π g(s − h) where Π is a stationary
Poisson point process with unit intensity; in practice one sums multiple simulations and then relies on the central limit
theorem to generate approximate stationary Gaussian process realizations. Another approximate simulation method is
based on a propagative Gibbs sampler (Lantuéjoul and Desassis, 2012) which only requires univariate normal samples at
every step. However, each univariate normal is based on computing simple kriging estimates at each iteration, and can be
computationally time consuming.

A direct approach to simulation is to specify the stochastic process through an explicitmodel. For example, Lindgren et al.
(2011) use stochastic partial differential equations to specify a spatial process, and whose simulations then are essentially
based on a basis function decomposition. Similarly, Nychka et al. (2015) introduced the LatticeKrig approach, another basis
decomposition idea, in which the process is broken up into differing levels of resolution; simulation in both of these cases
is straightforward given the specification of the process.

Probably the most popular modern method for stationary random field simulation is circulant embedding (Dietrich and
Newsam, 1993, 1997;Wood and Chan, 1994), in part due to the fact that the spectral, turning bands, random coin and Gibbs
methods only generate approximate realizations. For two-dimensional simulation, if simulation points are on a regular grid
then the corresponding covariance matrix is block Toeplitz. By appropriately embedding this block Toeplitz matrix into a
circulant matrix Σ , we can decompose Σ = FDF∗ where D is a diagonal matrix of eigenvalues of Σ and F has complex
exponential entries corresponding to the fast Fourier transform (FFT). The key to simulation is that FFT techniques can be
applied to decompose the circulant matrix easing computational burden. If the circulant matrix has negative eigenvalues
then this approach fails. Gneiting et al. (2006) explore two alternatives, cut-off and intrinsic embedding, both suggested by
Stein (2002), as remedies for this issue that still yield exact simulations.

2.2. Nonstationary simulation

Apart from intrinsic random functions and related constructions (Stein, 2001), less attention has been directed toward
efficient nonstationary process simulation. Some approaches involve analogues of the spectral method (Deodatis, 1996;
Liang et al., 2007) and FFTs applied to adapted spectra (Li and Kareem, 1991), but these seem to be mostly relegated to the
engineering literature. Other promising approaches (that, too, have not seen much attention in the statistics literature),
involve Karhunen–Loéve expansions (Huang et al., 2001; Spanos et al., 2007; Sarma et al., 2008), polynomial chaos
approaches (Ghanemand Spanos, 1990; Sakamoto andGhanem, 2002a,b; Soize andGhanem, 2004), or general basis function
expansions (Puig et al., 2002). Some approaches can additionally allow for non-Gaussian simulation (Deodatis andMicaletti,
2001). We now suppose Z(s) is a possibly nonstationary process.

One relatively straightforward way to simulate a general nonstationary Gaussian random field at locations si, i =

1, . . . , n is via matrix manipulations. If Σ is the covariance matrix of the vector (Z(s1), . . . , Z(sn))′ and has Cholesky
decomposition Σ = TT ′ where T is lower triangular, then the random vector T (ε1, . . . , εn)

′ also has covariance matrix
Σ , where εi are uncorrelated standard normal random variables. For large n, simulation and storage via the Cholesky
decomposition for an unstructured and dense matrix Σ is expensive, requiring 6n5 flops, whereas circulant embedding
for a stationary simulation requires 40n2 log2 2n (Dietrich, 1993; Gneiting et al., 2006).

The basic idea in this article is to apply an appropriate transformation to the nonstationary Z(s) process so that the
transformed process is stationary, whence we can exploit the fast simulation algorithms for stationary processes. The
nonstationary simulation is then formed by back-transforming the stationary simulation. We generalize the approach of
Sampson and Guttorp (1992) to allow for locally nonstationary variances, incorporate stationary simulations and update
the estimation approach to focus on nonstationary versions of the covariance function, rather than the variogram.

The notion of spatial deformation for nonstationary modeling has been exploited by many authors for over two decades,
and our proposal can be viewed as an extension of these ideas for the purposes of simulation. Sampson and Guttorp
(1992) originally introduced the idea of using spatial deformations for nonstationary modeling. Since then, many authors
have considered variations on this theme: space–time warping was considered by Meiring et al. (1997, 1998) and Perrin
and Monestiez (1998) introduced radial basis deformations to ensure bijectivity; Iovleff and Perrin (2004) discussed
estimation via simulated annealingwhile Damian et al. (2001) provided a Bayesian approach. Some authors have considered
theoretical implications of deformation, Perrin and Meiring (1999) show the deformation model is unique under certain
assumptions regarding the isotropic variogram in the stationary plane; Anderes and Stein (2008) introduced a new approach
to deformation depending on orientation preserving diffeomorphisms and Anderes and Chatterjee (2009) discussed
consistency of estimating deformations in an infill asymptotic framework. Sampson (2010) gives a recent overview.

Before considering the details of implementation, Fig. 1 illustrates the proposed approach. The stationary simulation in
the left panel is regularized by the overlaid deformation function, resulting in the nonstationary simulation on the right.
For this example, the simulated values near the top of the deformed domain are stretched vertically, while values near
the bottom retain approximate stationarity. Note that if the stationary process is Gaussian, then the nonstationary process
(generated by spatially transforming the stationary process) will still be Gaussian, as it is just a re-indexed version thereof.

A useful representation for a nonstationary process is to explicitly separate variance from a spatially correlated pro-
cess with unit variance, Z(s) = σ(s)Z0(s). Here, Z0(s) has correlation function R(·, ·) and VarZ0(s) = 1. Thus, C(s1, s2) =

σ(s1)σ (s2)R(s1, s2). We propose viewing the nonstationary process Z0(s) as a geographically transformed version of a sta-
tionary process. In particular, we suppose the existence of a mean zero stationary process D(s) with correlation function
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Fig. 1. Example of approach: a stationary simulation is generated and then deformed to obtain a nonstationary random field realization.

RD(h) and an invertible deformation function ϕ : Rd
→ Rd such that Z0(s) = D(ϕ(s)), or equivalently Z0(ϕ−1(s)) = D(s).

Thus,

Cov(Z0(s1), Z0(s2)) = σ(s1)σ (s2)RD

ϕ(s1) − ϕ(s2)


.

If the goal is to simulate a vector (Z(s1), . . . , Z(sn))′, this is achieved by simulating (σ (s1)D(ϕ(s1)), . . . , σ (sn)D(ϕ(sn)))′.
Simulation of D is performed via a fast stationary technique jointly at locations {ϕ(si)}ni=1; multiplication by σ(si) is simply
a rescaling.

If the goal is to produce a gridded nonstationary simulation, there are two basic approaches. The first is to begin with
a gridded stationary simulation and then deform it to the nonstationary plane—in this case the deformed version will
almost never lay exactly on a grid, but an approximation to the nonstationary simulation can be performed by taking the
nearest neighbor from the deformed stationary simulation to the nonstationary grid. The alternative approach is to begin by
specifying the grid in the nonstationary domain, whence the deformation (e.g., that shown in Fig. 1) results in an irregular
grid in stationary space. There are then two roads: use a stationary simulation method that does not depend on regular
spacing, such as the random coin or turning bands methods, or alternatively, approximate the irregular spacing with a very
high resolution grid and perform a gridded stationary simulation such as with circulant embedding, then taking the nearest
grid neighbor to the deformed irregular grid. In the examples below,we adopt this latter approach, and find in our experience
that moderately dense stationary simulation grids work as well as extremely high resolution simulations.

2.3. Estimation

Based on the above discussion, there are two important functions to estimate: The first is the nonstationary process
covariance C(s1, s2), and the second is the geographical warping function ϕ.

Sampson and Guttorp (1992) work with spatial dispersions, which are nonstationary analogues of variogram values.
Their basic idea was to estimate a monotone function of spatial distance to approximate the dispersions, followed by a
invertible coordinate mapping to deform geographical space to a stationary plane. We take a slightly different approach by
separately estimating the nonstationary covariance function, followed by estimation of the spatial deformation function to
match a pre-specified stationary covariance. Either method requires separate estimation of the covariance (or dispersion),
followed by optimization of the deformation. In a Bayesian context, one could consider joint estimation of the two in a
conditional sampling framework, first estimating the covariance, then the deformation, followed by an acceptance–rejection
step. However, this would require a flexible family of prior distributions for both classes of functions, which is beyond the
scope of the current paper.

We begin by estimating the nonstationary spatial structure using a nonparametric estimator. In particular, if observations
are available at spatial locations s1, . . . , sn, then we form

Ĉ(x, y) =

n
i=1

n
j=1

Kb (∥x − si∥) Kb

∥y − sj∥


Y (si)Y (sj)

n
i=1

n
j=1

Kb(∥x − si∥)Kb(∥y − sj∥)
(2)
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where Kb is a kernel function with bandwidth b, and ∥ · ∥ denotes Euclidean norm. This nonparametric estimator has
previously been employed and extended by numerous authors includingOehlert (1993), Guillot et al. (2001), Jun et al. (2011)
and Kleiber et al. (2013), and whose theoretical properties were explored by Kleiber and Nychka (2012). This estimator
has desirable properties as it is available at all spatial locations, and retains nonnegative definiteness. From this
estimate, we extract the local variance estimates σ̂ 2(s) = Ĉ(s, s) and nonparametric correlation function R̂(s1, s2) =

Ĉ(s1, s2)/(σ̂ (s1)σ̂ (s2)).
To estimate the deformation function ϕ, we pre-specify a stationary covariance from which the simulations will be

generated, RD(·). A straightforward way to estimate ϕ is by minimizing a distance between the theoretical covariance
and nonparametric estimator, for instance

n
i=1
n

j=1(R̂(si, sj) − RD(ϕ(si) − ϕ(sj)))2. However, minimizing such a criteria
without restricting the class of functions ϕ can lead to nonphysical behavior such as space folding upon itself. From a
simulation perspective, this is an undesirable possibility, as this implies two spatial locations in undeformed space will
necessarily have identical simulated values, and there are few situations in which this behavior is physically warranted. To
this end, we follow Sampson and Guttorp (1992) by entertaining only particular classes of functions in a reproducing kernel
Hilbert space H . In particular, we estimate ϕ by minimizing the penalized criterion

n
i=1

n
j=1


R̂(si, sj) − RD(ϕ(si) − ϕ(sj))

2
+ λ⟨ϕ, ϕ⟩ (3)

over ϕ ∈ H whereH has corresponding inner product ⟨·, ·⟩ and λ ≥ 0 controls the amount of allowed deformation. Indeed,
including the penalty term has the effect of regularizing the spatial deformation.

The spatial datasets we are interested in are indexed in the plane, d = 2 dimensions. In this case, s = (sx, sy)′ and
ϕ = (ϕx, ϕy)

′. In this case, we use the penalty ⟨ϕ, ϕ⟩ = ⟨ϕx, ϕx⟩ + ⟨ϕy, ϕy⟩ where each of these marginal inner products is

⟨f , f ⟩ =


∞

−∞


∞

−∞

∂2f
∂s2x

2

+ 2


∂2f
∂sx∂sy

2

+


∂2f
∂s2y

2
 dsxdsy

so that H is the space of twice-differentiable functions with ⟨f , f ⟩ < ∞ (Bookstein, 1989; Green and Silverman, 1994). This
type of penalty, resulting in a thin plate spline solution, has convenient algebraic expressions for computation, see Bookstein
(1989) or Gilleland et al. (2011) for details. In this case, the two components of the vector-valued deformation function are
expansions in terms of the radial basis function R(s, s0i) = ∥s − s0i∥2 log


∥s − s0i∥2


,

ϕx(s) = a0x + a1xsx + a2xsy +

L
i=1

bixR(s, s0i)

with a similar form forϕy; this basis function is intimately related to the formof the inner product ⟨·, ·⟩, seeWahba (1990) for
discussion. Sampson and Guttorp (1992) specify L = n basis nodes centered at the observation locations, s0i = si. However,
for moderate-to-large spatial datasets, this introduces a large number of statistical parameters defining the warp, and so
setting L < n is useful, where the locations {s0i}Li=1 are user-specified landmark points, usually outlining important spatial
features.

3. Data illustrations

We illustrate our proposed simulation approach in a number of idealized situations, with a challenging nonstationary
meteorological dataset over complex terrain and in a climate model emulation context. Stationary simulations based on
circulant embedding are performed in R using the RandomFields package (Schlather et al., 2014).

3.1. Exploratory examples

The first example scenario involves the situation in which a process experiences regime-dependent behavior. A proto-
typical example is modeling of temperature in and around valleys or orographic depressions where varying terrain implies
non-ellipsoidal level curves of correlation. Alternatively this type of behavior is common at the boundary between land and
water; typically authors separately model processes over land and ocean, while the proposed framework allows for simul-
taneous simulation over both regimes. For this motivating example, we simulate a stationary random field having Matérn
correlation with unity smoothness and spatial range of five; the corresponding nonstationary simulation is shown in Fig. 2
on a 500× 500 grid. Note that such a simulation would be impossible to implement without restrictive assumptions on the
covariance structure of the nonstationary process using the traditional matrix decomposition approach.

The second example we entertain is simulation of a vortex; this type of nonstationarity is common in hurricane mod-
eling, for instance (Reich and Fuentes, 2007). Rotational nonstationarity is difficult to accommodate using extant models,
and indeed it is unclear how high resolution simulation would proceed in a traditional fashion. Fig. 3 shows an example
simulation from a vortex model at 250,000 spatial locations, along with the associated deformation function. A particularly
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Fig. 2. Valley simulation on a 500×500 grid. Simultaneous simulations between regime dependent climates are possible using the deformation approach.

Fig. 3. Vortex simulation on a 500 × 500 grid.

difficult quality to explicitly model (but which is present in our simulation) is the increased rotational velocity near the
center of the vortex, while away from the center less rotation is apparent.

3.2. High resolution temperature simulation over complex terrain

Stochastic weather generators (SWGs) are statistical models whose simulations statistically match observed weather
patterns. Weather generators are particularly useful for downscaling and climate impact studies. Both of these goals often
involve high resolution simulation of plausible weather patterns, sometimes over large regions or regions with complex
terrain, and thus require the capability of producing ensembles of high resolution realizations of nonstationary fields. We
focus here on simulating daily minimum temperature over the state of Colorado in the United States. Our observational
dataset is from theUnited StatesHistorical ClimatologyNetwork,with observations ofminimumandmaximumtemperature
available during 1852 through 2011 (Peterson and Vose, 1997).

As a framework for building stochastic weather generators, Kleiber et al. (2013) suggested decomposing the observations
into a climate component and a weather component. We follow a similar avenue here, where we decompose minimum
temperature observations Y (s, t) for spatial location s ∈ R2 and time point t as

Y (s, t) = µ(s, t) + Z(s, t) + ε(s, t).
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Fig. 4. Estimated warping function for the minimum temperature dataset over Colorado (left panel). The right panel shows the deformed correlation
matrix error.

Here, µ is the climatological mean function, Z can be interpreted as the weather term, and ε is a noise process representing
measurement error. We include elevation as a covariate, writing µ(s, t) = β(s)′X(s, t) with

X(s, t) =


1, e(s), cos


2π t
365


, sin


2π t
365


, Y (s, t − 1),M(s, t − 1), r(t)

′

where e(s) is the elevation at location s,M(s, t−1) is the previous day’smaximum temperature and r(t) is a linear drift term
to account for possible climate change.Weopt not to includehigher order harmonics, followingKleiber et al. (2013), andnote
that the illustrations below are for individual days, where the temporal structure is less important. The correspondingmodel
coefficients are β(s) = (β0, β1, β2(s), β3(s), β4(s), β5(s), β6(s))′, where the first two parameters are spatially constant.
We estimate β0 and β1 by ordinary least squares on all available observations, followed by estimating remaining regression
parameters locally at each individual observation location by ordinary least squares based on residuals from the global
regression. The spatial covariance of Z(s, t) is estimated nonparametrically using an estimator similar to (2) applied to the
residuals, except that additionally includes kernel smoothing over time, see Kleiber et al. (2013) for details.

We focus simulations on daily minimum temperature observations on June 29. The previous day’s temperatures are
set as the climatological mean for June 28. Corresponding stationary simulations must come from a specified probability
model. If the true process were stationary, the deformation function would reduce to the identity and the untransformed
stationary simulation would be used. Thus, our heuristic for choosing a stationary model is to choose one that best matches
the observed process. To this end, we estimate a stationary correlation function RD(·) by minimizing (3) with λ = 0 and
ϕ set to the identity map. For the minimum temperature dataset, we choose RD to be a Matérn correlation function with
smoothness set to unity, following North et al. (2011).

The deformation function is estimated as in (3) using the thin plate spline penalty formulation for the inner product and
corresponding deformation function. We use an iterative procedure, first estimating the warp for three randomly chosen
landmark locations, then using the predicted deformation for four locations as a starting point, estimate the deformation
for those four. We iterate this procedure until 100 of the locations have been included.

The resulting deformation function is shown in Fig. 4; note that the estimated deformation function suggests the
presence of substantial nonstationarity in the minimum temperature residuals. Areas that appear pinched according to
the deformation function will be stretched in the nonstationary simulation (thus having a greater spatial range), whereas
areas that appear stretched will have greater variability in the nonstationary plane. Visually, the deformation function
suggests there will be areas of stronger correlation the left and right side of Colorado, with more variability split down the
center. This agreeswell with the estimated correlation function in that there are strong correlationswithin themountainous
western region and plains eastern region, but less strong correlation between the two regions (see Kleiber et al., 2013 for
further discussion of the local climate and spatial structure). Fig. 4 also illustrates the deformed correlation error, that is,
the difference in estimated nonstationary covariance (2) and the warped stationary correlation


RD(ϕ̂(si) − ϕ̂(sj))


. The

deformed stationary covariance appears to replicate with reasonable accuracy the patterns andmagnitude of nonstationary
covariance present in the dataset.

The ability to perform high resolution nonstationary simulations allows for quantitative assessments of features of the
process that would otherwise be difficult to calculate analytically. For example, roadmaintenance can play a large economic
role, requiring short terms decisions and long term planning (Berrocal et al., 2010). Interstate 70 runs through Colorado in
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Fig. 5. Simulation of minimum temperature on Interstate 70 passing through Colorado (shown black line in upper left plot over an elevation heatmap;
elevations are in meters above sea level). The upper right panel shows the change in elevation along I-70. The bottom row contains functional boxplots for
minimum temperature simulations along I-70 based on the proposed nonstationary method as well as a stationary Matérn model.

a nearly east–west direction and is influenced by weather in the eastern plains, the Rocky Mountains as well as the western
slopes. Fig. 5 shows the path of I-70 through Colorado, as well as the local elevation along I-70. To illustrate the importance
of producing nonstationary simulations, we compare 200 independent simulations using our nonstationary method and a
competing stationary method using circulant embedding with a Matérn covariance function whose parameters were es-
timated by maximum likelihood. Fig. 5 shows functional boxplots for both types of simulations (Sun and Genton, 2011).
Functional boxplots are preferable here as they capture the behavior of each simulated curve and thus are not restricted
to pointwise interpretations. The stationary model is able to identify the climatological trend of minimum temperature
over I-70 in that the Rocky Mountains tend to exhibit colder minima than the plains, however the nonstationary simula-
tions additionally capture the change in variability of minimum temperatures, with greater variability over the western
slopes and eastern plains and more consistent minima in the mountains. Thus, the nonstationary model provides a supe-
rior representation of the physical process and whose simulations are only available at high resolution using the proposed
method.

For climate change impact assessment scenarios it is crucial to accurately capture the true underlying physical behavior
of meteorological processes (Semenov and Barrow, 1997). Suppose interest focused on state-wide extrema of minimum
temperature in Colorado, which is an important benchmark against which future climate model projections may be
compared. Fig. 6 shows density estimates of the 5%, 50% and 95% quantiles of state-wide minimum temperature based on
200 simulations fromour nonstationarymodel and the stationarymodel based on theMatérn covariance (whose simulations
are produced using circulant embedding); simulations are produced on a grid of 25,200 locations. The nonstationary
model simulations are based on stationary plane simulation via circulant embedding at a 1000 × 1000 grid; simulations
in the nonstationary plane are identified by their nearest neighbor to this dense stationary simulation. While both the
nonstationary and stationarymodels capture approximately the same average behavior of these quantiles, the nonstationary
model exhibits substantially different second moment behavior. In particular, at the lowest quantiles, the nonstationary
simulation exhibits a standard deviation that is approximately 28% lower relative to the stationary simulation (1.27 and
1.78 °C, respectively, for the 5% state-wide quantile), whereas bothmethods have similar variation at the 95% quantiles, 1.60
and 1.72 °C, respectively. The interpretation of this is that the coldest extremal low temperatures tend to be more clustered
than themild low temperatures. Simulations based on a stationarymodel are unable to elucidate this climatological feature,
and additionally the nonstationary simulations are infeasible to implement without the proposed methods.

Finally, we illustrate two independent simulations over the state of Colorado that highlight important and difficult non-
stationary features present in the process. Fig. 7 show two independent simulations of minimum temperature over the state
of Colorado for June 29 at 25,200 locations. Comparing the two simulations, we see that the eastern plains experience cooler
weather in the second than in the first, while the mountainous Rocky region in central Colorado has approximately simi-
lar minimum temperatures. However, the western slopes experience much warmer conditions in the second simulation as
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Fig. 6. 5%, 50% and 95% quantiles of state-wide minimum temperature based on 200 independent simulations on a grid of 25,200 locations from the
nonstationary model and a stationary model with Matérn covariance.

Fig. 7. Two independentminimum temperature simulations for June 29 over Colorado. Simulations are realizations from a nonstationary Gaussian process
and are produced on a grid of 25,200 locations; each simulation requires approximately 7.5 s of computation time.

compared to the first, which is a direct effect of the nonstationary correlation over the western slopes. We reiterate that
such simulations would be nearly impossible to generate at such spatial resolution using a traditional matrix multiplication
technique.

Regarding the total timing for estimation and simulation, estimation of the deformation function is typically the
bottleneck in computations. For this example, estimating the warping function through the above iterative procedure took
approximately 7min in a standard implementation ofR (Ihaka andGentleman, 1996) on aMacBook Pro laptopwith a 2.9GHz
Intel Core i7 processor and 8 GB of 1600 MHz DDR3 RAM. Once the deformation function is known, simulations are then
very fast: each circulant embedding simulation on a 1000 × 1000 grid took approximately 7.5 s.

3.3. Emulating a regional climate model

The final example we entertain is the simulation of meteorological surfaces that are consistent with regional climate
model (RCM) solutions. The particular RCM we examine is the Experimental Climate Prediction Center Regional Spectral
Model (ECP2)with National Center for Environmental Prediction reanalysis 2 (NCEP2) data provided as boundary conditions
that was run as part of the North American Regional Climate Change Assessment Program (Mearns et al., 2009, NARCCAP).
The resulting RCM run is an estimate of the historical monthly climate during the years 1981–2004.

The process we examine is average cube-root winter precipitation (DJF) over North America. The cube-root transforma-
tion of precipitation makes the resulting field approximately Gaussian. We initially remove a spatially varying mean from
the cube-rootmonthly precipitation estimated as the arithmetic average over all availablemonths ofwinter data. The spatial
covariancematrix is then estimated by averaging all empirical covariancematrices over all available months. The stationary
process fromwhich simulations will be generated is set to be amean zero Gaussian process with an exponential covariance;
we use the exponential as precipitation tends to exhibit rough characteristics over space and is highly influenced by local ge-
ographical characteristics such asmountains and coastal regions.We use a randomly chosen set of 108 grid points (about 1%
of the total number of grid points) as landmark locations, but perform estimation of the deformation function in an iterative
fashion: the initial estimation is done over a set of 3 locations, and then individual locations are included in a stepwise fash-
ion until all 108 have been optimized. The initial estimations are very fast due to the small number of entertained landmarks,
while the later optimizations are more time consuming, typically taking on the order of a few minutes to optimize.
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Fig. 8. Two independent winter average cube-root precipitation simulations over North America. Simulations are realizations from a nonstationary
Gaussian process and are produced on a grid of 120 × 98 locations; each simulation requires approximately 1 s of computation time.

Fig. 9. Density estimates of the North American 50% and 95% quantiles of precipitation (in mm) based on 200 independent simulations on a grid of 11,760
based on a nonstationary emulator of a NARCCAP component climate model.

This particular RCM is generated at a grid of 120×98 cells; simulating from a general nonstationary Gaussian process, say
onewith a nonstationary version of theMatérn covariance, would be difficult given the dimensionality of the climatemodel.
Fig. 8 shows two nonstationary simulations that were generated by deforming a stationary simulation to the nonstationary
plane. In particular, the stationary simulations are produced via circulant embedding at a grid of 500×500 locations, and the
nonstationary values are found via the nearest neighbors of the undeformed NARCCAP grid; each resulting simulation takes
approximately 1 s to compute. In Fig. 8, notice the principal types of nonstationarity that are apparent in these simulations—
greater correlation of precipitation over the Atlantic ocean and the so-called pineapple express phenomenon in the northern
Pacific ocean that gives rise to the extreme precipitation events seen in the Pacific Northwest (Weller and Cooley, 2012).
These physical phenomena would not be present in a stationary simulation.

Climate change assessments require both estimates of future and past climate states. In particular, historical climate
states are uncertain due to incomplete and noisy observations, and the ability to emulate climate models constrained by
observational data with accurate descriptions of the spatial behavior is crucial for estimating the uncertainty in historical
climate quantities. For instance, interest often focuses on how the average behavior of a process changes over time, but an
equally important (or perhaps moreso) quantity is precipitation’s behavior in the tails. We examine the domain-wide North
American median and 95% quantile of precipitation over 200 independent nonstationary simulations; the corresponding
densities are shown in Fig. 9. Evidently, there is greater variability in the high precipitation events than in the spatialmedian,
and thus any climate change assessment comparison to these higher quantiles should account for this discrepancy in the
variation in estimated historical climate. For example, our estimate of the spatial maximum of North American precipitation
is 22.7 mm with a 95% confidence interval of (13.5, 39.5) based on our simulations. Such information is difficult to derive
from ensembles of climate model runs given their well known underdispersion, and thus requires a flexible framework for
statistical emulation and simulation.

4. Discussion

This manuscript focuses on an approach to generating high resolution nonstationary random field simulations. By ex-
ploiting a deformation function linking the nonstationary process to a deformed stationary process, simulations can proceed
by utilizing well-known and established stationary simulation methods followed by a transformation to the nonstation-
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ary plane. Local variances are extracted, which allow for spatially-varying scale behavior. Estimation is separated into two
steps. The first involves estimation of the nonstationary covariance function, for which we use a nonparametric estimator.
The second estimation step is to find the deformation function, which follows from a straightforward regularized minimum
distance estimator from the estimated nonstationary correlation.

The first scientific motivation for our proposal is in the field of stochastic weather simulation, where a fundamental
goal is to simulate plausible weather scenarios at high resolutions that can be used for climate model downscaling or ob-
servational network infilling. The example of daily minimum temperature simulation over the state of Colorado provides
challenging obstacles for any simulation method, and our example suggests we are able to maintain physically reasonable
behavior in the simulated nonstationary fields.We additionally showed that stationary simulations do not provide adequate
representations of the process, thus underscoring the need for a flexible nonstationary simulation framework. We secondly
considered generating stochastic realizations of spatial fields that are consistent with regional climate model output. Our
example simulations show physical behavior consistent with the NARCCAP RCM runs, exhibiting pineapple express type
events, as well as long range correlations over the Atlantic ocean for precipitation. Spatial quantiles are readily estimated
with uncertainty from the simulations, providing a feasible approach for uncertainty quantification in climate projections.

Extensions to our deformed simulation approach are called for, including the difficult possibility of simultaneous
space–time simulation. High resolution multivariate simulations are also desirable, as well as exploring other classes of
deformation functions that may yield different types of flexibility than the thin plate spline approach explored herein.
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