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Abstract: Multivariate spatial field data are increasingly common and their model-

ing typically relies on building cross-covariance functions to describe cross-process

relationships. An alternative viewpoint is to model the matrix of spectral mea-

sures. We develop the notions of coherence, phase, and gain for multidimensional

stationary processes. Coherence, as a function of frequency, is a measure of linear

relationship between two spatial processes at that frequency. We use the coherence

function to illustrate fundamental limitations on a number of previously proposed

constructions for multivariate processes, suggesting these options are not viable for

data modeling. We also give natural interpretations to cross-covariance parameters

of the Matérn class, where the cross-smoothness controls the decay of coherence at

infinitely high frequencies, and the cross-range parameter controls the frequency of

greatest coherence. These interpretations provide warnings for particular parameter

combinations that imply potentially non-physical relationships between variables.

Estimation follows from smoothed multivariate periodogram matrices. We illus-

trate the estimation and interpretation of these functions on two datasets, forecast

and reanalysis sea level pressure and geopotential heights over the equatorial region.

Key words and phrases: Coherency, gain, periodogram, phase, reanalysis, squared

coherence, spectral density.

1. Introduction

The theory of univariate continuous stochastic processes has become well

developed over nearly a century of research. The past quarter century or so has

seen an increasing interest and development of models for multivariate spatial

processes. The recent review by Genton and Kleiber (2015) gives a comprehen-

sive treatment of the basic approaches that have been explored to build stochastic

spatial models. In the discussion, Bevilacqua, Hering and Porcu (2015) posed the

question of, given the recent deluge of multivariate constructions, “which para-

metric model is more flexible?” Indeed, the relative strengths and weaknesses

of multivariate models have been explored only by testing a battery of different

models on particular datasets, and comparing performance either by likelihood

values or by predictive cross-validation (in the multivariate context, spatial pre-

diction is known as co-kriging). Thus, a fundamental open question is (1), to
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what extent can the flexibilities of model constructions be compared theoreti-

cally? Additionally, most models are motivated in the covariance domain, and

the natural follow-up question is (2), are there other approaches than covariance

to measure and quantify spatial dependence?

Spectral coherence has traditionally appeared in the time series literature

as a quantitative method to describe the strength of relationship between com-

ponents of a multivariate time series (Koopmans (1964); Brockwell and Davis

(2009); Shumway and Stoffer (2011)). In the spatial context, coherence has been

successfully applied in other sciences such as optics (Mandel and Wolf (1976);

Carter and Wolf (1977)), while in the statistical literature there appears to be

a less thorough history. For instance, Fuentes (2006) used coherence to test for

time-separability of space-time fields, while Guinness et al. (2014) suggested its

use for modeling conditional dependence between processes. We introduce and

discuss the notions of spectral coherence, phase, and gain for multidimensional

and multivariate spatial random fields. We propose that these functions allow

for natural partial answers to questions (1) and (2).

From coherence, we illustrate fundamental limitations on a number of multi-

variate models in that they imply constant coherence across all frequencies. We

also suggest insights into such well-established models as the multivariate Matérn,

where parameters such as the cross-covariance smoothness and range have had

elusive direct interpretations that relate to process behavior. Moreover, certain

parameter settings imply possibly non-physical behavior, for instance implying

coherence that does not decay to zero at arbitrarily high frequencies. For in-

stance, self-similar processes such as multivariate fractional Brownian motion

have constant coherence (Amblard et al. (2012)), whereas a number of empirical

studies in the various sciences suggest coherence should decay at high frequen-

cies (Fante (1974); Katz and Briscoe (1979); Kneer et al. (1980); Schreiner and

Dorman (1990)), although the outcomes of some are less clear (Mack and Flinn

(1971)).

We consider two datasets from the atmospheric sciences. Both are reforecast

and reanalysis data products over the equatorial region based on a well estab-

lished numerical weather prediction (NWP) model. Reanalysis forecasts are from

a fixed version of a NWP model that are run retrospectively to generate a large

database of model forecasts and analyses (in this context, an analysis can be con-

sidered a best estimate of the current state of the atmosphere). First we look at

forecasted surfaces of sea level pressure at daily forecast horizons between 24 and

192 hours. We show that coherence can be used as a diagnostic to assess forecast
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quality, and additionally illustrate frequency bands at which forecasts improve

over time. The second dataset involves geopotential heights at differing pressure

levels. We show that coherence and phase extract, and highlight qualities of the

spatial relationship between different pressure levels that are difficult to model

using extant multivariate covariance constructions, and indeed illustrate major

limitations of existing popular constructions.

2. Spectra for Multivariate Random Fields

Suppose Z(s) = (Z1(s), . . . , Zp(s))T ∈ Cp is a p-variate weakly station-

ary random field on s ∈ Rd admitting a matrix-valued covariance function

C(h) = (Cij(h))pi,j=1 where Cij(h) = Cov(Zi(s + h), Zj(s)). For simplicity of

exposition we suppose Z(s) is a mean zero process. For complex-valued station-

ary processes, Cov(Zi(s1), Zj(s2)) = E(Zi(s1)Zj(s2)), so that Cij(h) = Cji(h).

The main obstacle to multivariate process modeling is developing flexible classes

of matrix-valued covariance functions C that are nonnegative definite.

For univariate processes, Bochner’s Theorem states that Cii(h) is a valid

(i.e., nonnegative definite) function if and only if it can be written

C(h) =

∫
Rd

exp(iωTh)dF (ω),

where F is a positive finite measure (Stein (1999)). If F admits a density f with

respect to the Lebesgue measure on Rd, we call it the spectral density for C.

The multivariate extension of Bochner’s fundamental result is given by Cramér

(1940), here stated for covariances admitting spectral densities.

Theorem 1 (Cramér (1940)). A matrix-valued function C : Rd → Cp×p,C =

(Cij)
p
i,j=1 is nonnegative definite if and only if

Cij(h) =

∫
Rd

exp(iωTh)fij(ω)dω

for i, j = 1, . . . , p such that the matrix f(ω) = (fij(ω))pi,j=1 is nonnegative definite

for all ω ∈ Rd.

The functions fij(ω) are the spectral and cross-spectral densities for the

marginal and cross-covariance functions Cij(h), and fij(ω) = fji(ω). When

the spectral density exists, it can be solved for as the Fourier transform of the

covariance function,

fij(ω) =
1

(2π)d

∫
Rd

exp(−iωTh)Cij(h)dh.

Theorem 1 has primarily been used in practice to build multivariate covariance
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models, by specifying matrices of spectral densities that are nonnegative definite

for all frequencies.

2.1. Coherence

In time series, the notion of frequency coherence is well developed, and can

be used, for instance, to assess whether one time series is related to another by

a time invariant linear filter. These notions carry over to the spatial case, and

form the point of entry for our analyses.

If Cij(h), i, j = 1, 2, form a matrix-valued covariance function with associ-

ated spectral densities fij(ω), then define the coherence function (or coherency

function)

γ(ω) =
f12(ω)√

f11(ω)f22(ω)
.

We might assume fii(ω) > 0 for all ω ∈ Rd for i = 1, 2, but can define γ(ω) = 0

if fii(ω) = 0. The coherence function can be complex-valued, so in practice

we examine the absolute coherence function, |γ(ω)|. The real-valued function

|γ(ω)|2 is the squared coherence function and, by Theorem 1, 0 ≤ |γ(ω)|2 ≤ 1

for all ω. Values of |γ(ω)| near unity indicate a linear relationship between Z1(s)

and Z2(s) at particular frequency bands.

The predictive estimator in the next result is based on a kernel-smoothed

process, a natural predictor given the interpretation of the univariate kriging

weights as a kernel function (Kleiber and Nychka (2015)).

Theorem 2. Suppose (Z1(s), Z2(s))T is a complex-valued mean zero weakly sta-

tionary bivariate field with matrix-valued covariance C(h) admitting a spectral

density matrix f(ω) = (fij(ω))2i,j=1 that is everywhere nonzero. Then the con-

tinuous square integrable function K(u) : Rd → C that minimizes E
∣∣Z1(s0) −∫

Rd K(u− s0)Z2(u)du
∣∣2 is

K(u) =
1

(2π)d

∫
Rd

exp(−iωTu)
f12(ω)

f22(ω)
dω

=
1

(2π)d

∫
Rd

exp(−iωTu)

√
f11(ω)

f22(ω)
γ(ω)dω. (2.1)

The spectral density of the predictor Ẑ1(s0) =
∫
Rd K(u − s0)Z2(u)du is, for all

ω ∈ Rd,

f1|2(ω) = f11(ω)|γ(ω)|2. (2.2)

The relationship (2.1) implies that the optimal weighting function is modu-
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lated by the coherence between the two processes, and indeed has greater spectral

weight on frequencies with high coherence. This can be contrasted with the anal-

ogous result for time series, see, e.g., Theorem 8.3.1 of Brillinger (2001).

An immediate corollary to Theorem 2 is that

|γ(ω)|2 =
f1|2(ω)

f11(ω)
.

Thus, the coherence has an attractive interpretation as the amount of variability

that can be attributed to a linear relationship between two processes at a partic-

ular frequency. Reich, Chang and Foley (2014) uses a similar idea to downscale

air quality models. We use the coherence function to illuminate fundamental

limitations on some popular multivariate covariance constructions.

2.2. Implications for some existing models

The coherence function can be used as a tool to compare proposed multivari-

ate models, as an indicator of the amount of flexibility of bivariate relationships at

differing frequencies. For example, a common approach to specifying covariances

is separability, setting C(h) = RC(h) where C(h) is a univariate covariance

function and R is a p × p positive definite matrix (Mardia and Goodall (1993);

Helterbrand and Cressie (1994); Bhat, Haran and Goes (2010)). This approach

has been empirically shown to be insufficiently flexible, and the following result

contributes to the empirical results.

Proposition 1. If C(h) = RC(h) where C : Rd → R is a covariance func-

tion and R is a p × p positive definite matrix with (i, j)th entry rij, then the

squared coherence between the ith and jth process is constant, with γij(ω)2 =

(rijrji)/(riirjj).

This result can be contrasted against the analogous result for separable space-

time processes (Fuentes (2006)), where process index can be viewed as indexing

spatial coordinate and frequency being time-frequency rather than multidimen-

sional. Such separation and constant coherence is the essential idea for the testing

procedure developed by Fuentes (2006).

A more sophisticated method of generating multivariate covariance struc-

tures is to convolve univariate square integrable functions (Gaspari and Cohn

(1999); Oliver (2003); Gaspari et al. (2006); Majumdar and Gelfand (2007)). In

particular, if ci : Rd → R are square integrable functions for i = 1, . . . , p, then

Cij(h) = (ci ? cj)(h) is a valid matrix-covariance function where ? denotes the

convolution operator. This is sometimes known as covariance convolution (es-
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pecially when the ci are positive definite functions). This approach to model

building is also overly-restrictive.

Proposition 2. If c1 and c2 are square integrable functions on Rd and a matrix-

valued covariance is defined via Cij = ci ? cj for i, j = 1, 2, where ? denotes

convolution, then γ(ω) ≡ 1 for all ω ∈ Rd such that the Fourier transforms of ci
and cj are nonzero.

Multivariate processes can sometimes be modeled as being related by local

averaging. For example, the relationship between column integrated ozone obser-

vations and local ozone might plausibly be modeled as observations being locally

averaged over the true underlying field (Cressie and Johannesson (2008)). Wind

observations are often time averaged over moving windows to produce smoother

and more stable observation series (Hering, Kazor and Kleiber (2015)). We char-

acterize the coherence in such situations.

Proposition 3. If Z1(s) is a weakly stationary stochastic process and Z2(s) =∫
Rd K(u− s)Z1(u)du for some continuous square integrable kernel function K :

Rd → R that is symmetric, then γ(ω) ≡ 1 for all ω ∈ Rd such that the Fourier

transform of K is nonzero.

According to Proposition 3, estimated coherences near unity over all fre-

quency bands may be indicative of a linear or local averaged relationship between

processes, and this result may serve as the theoretical basis for testing such a

hypothesis. Fuentes (2006) developed a test for separability of space-time pro-

cesses based on a similar notion. Proposition 3 is a multidimensional extension of

exercise 8.6.16 of Brillinger (2001), and indeed follows from identical arguments

as the time series result.

The kernel convolution method, introduced by Ver Hoef and Barry (1998)

and Ver Hoef, Cressie and Barry (2004), originally involved representing a process

as a moving average against a white noise process. In simple cases this yields

the covariance convolution model. The basic form of the multivariate kernel

convolution method involves integrating against correlated stochastic processes,

Zk(s) =

∫
Rd

gk(x− s)Wk(x)dx, (2.3)

where W1, . . . ,Wp are correlated stationary processes and gk : Rd → R are square

integrable symmetric kernel functions for k = 1, . . . , p.

Proposition 4. If Z1(s) and Z2(s) are constructed as in (2.3), with W1 = W2

almost everywhere, then γ(ω) is constant for all ω ∈ Rd.
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For separable, covariance convolution, and simple cases of kernel convolution,

the multivariate structures are restricted to constant coherence.

2.3. Phase and gain

Similar notions to frequency coherence can be motivated by examining spec-

tral density matrices. If (Z1(s), Z2(s))T is a stationary random vector with spec-

tral density matrix (fij(ω))2i,j=1, take A(ω) = f12(ω)/f11(ω), possibly complex-

valued. The gain function G(ω) = |A(ω)| is sometimes referred to as the gain

of Z2(s) on Z1(s), in time series (Brockwell and Davis (2009)). The phase

function at frequency ω is φ(ω) = argA(ω). It satisfies φ(ω) ∈ (−π, π] and

φ(−ω) = −φ(ω).

The interpretations of gain and phase are clearest when considering processes

built by the relationship Z1(s) = αZ2(s − u) for some u ∈ Rd and α 6= 0. It is

straightforward to show that the phase function is

φ(ω) =

{
−ωTu (mod 2π), α > 0,

π − ωTu (mod 2π) α < 0.

Li and Zhang (2011) develop an approach to modeling this type of asymmetric

cross-covariance behavior. This shows that their construction has a phase func-

tion that depends on the angle ωTu, and may be used as an exploratory data

approach or as the basis for a statistical test of whether a pair of spatial pro-

cesses exhibit an asymmetric relationship. Li and Zhang (2011) use the empirical

cross-correlation function to visually assess such asymmetric behavior. The gain

function in this case is simply G(ω) = |α|; all frequency components of Z2 are

exaggerated by an amount α for Z1.

We consider some multivariate constructions that are particular to real-

valued processes having real-valued spectral matrices. Any model with real-

valued cross-spectral density has φ(ω) ≡ 0, but a possibly non-trivial gain func-

tion. Thus, testing φ(ω) ≡ 0 can be viewed as a test for a real-valued cross-

spectral density.

2.4. Revisiting the multivariate Matérn

The multivariate Matérn is a model for matrix-valued covariance functions

such that each marginal is a Matérn covariance function, and all cross-covariance

functions are in the Matérn class (Gneiting, Kleiber and Schlather (2010); Apanaso-

vich, Genton and Sun (2012)). Specifically, the multivariate Matérn has Cii(h) =

σ2i M(h | νi, ai) for i = j, and Cij(h) = ρijσiσjM(h | νij , aij) for 1 ≤ i 6= j ≤ p.
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Here, M(h | ν, a) = (21−ν/Γ(ν))(a‖h‖)νKν(a‖h‖), where Kν is a modified Bessel

function of the second kind of order ν. Gneiting, Kleiber and Schlather (2010)

and Apanasovich, Genton and Sun (2012) discuss restrictions on the parameters

νi, ai, νij , aij , and ρij that result in a valid model.

The Matérn class is popular due to the smoothness parameter ν > 0 that

continuously indexes smoothness of the sample paths of the process. In particu-

lar, sample paths are m times differentiable if and only if ν > m, and there is an

additional relationship between ν and the fractal dimension in that sample paths

have dimension max(d, d+ 1− ν) (Goff and Jordan (1988); Handcock and Stein

(1993)). These interpretations and implications also hold in the multivariate

case, where νi indexes the smoothness of the ith component process Zi(s). The

parameters ai act as range parameters, and control the rate of decay of spatial

correlation away from the origin.

A standing issue with the multivariate Matérn is that the cross-covariance

parameters, νij and aij for i 6= j, do not have straightforward interpretations and

implications analogous to the marginal smoothness and range interpretations,

and indeed nowhere in the literature have these parameters been linked directly

to process behavior. Coherence provides natural explanations for the effects of

the cross-smoothness and range parameters.

The squared coherence function for a bivariate process with multivariate

Matérn correlation is

γ(ω)2 = ρ2
Γ(ν12 + d/2)2Γ(ν1)Γ(ν2)

Γ(ν1 + d/2)Γ(ν2 + d/2)Γ(ν12)2
a4ν1212

a2ν11 a2ν22

(a21 + ‖ω‖2)ν1+d/2(a22 + ‖ω‖2)ν2+d/2

(a212 + ‖ω‖2)2ν12+d
. (2.4)

Cross-Smoothness ν12

Restrictions on the cross-covariance parameters that result in a valid covari-

ance model are characterized in Theorem 3 of Gneiting, Kleiber and Schlather

(2010). In particular, if ν12 < (ν1 + ν2)/2 then ρ = 0. If ν12 > (ν1 + ν2)/2

then the restrictions on a12 and ρ are relatively complicated. The choice of

ν12 = (ν1 + ν2)/2 results in easy-to-check conditions on ρ, and removes a free

parameter from the model. But, from (2.4), the squared coherence converges to

the non-trivial value

ρ2
Γ(ν12 + d/2)2Γ(ν1)Γ(ν2)

Γ(ν1 + d/2)Γ(ν2 + d/2)Γ(ν12)2
a4ν1212

a2ν11 a2ν22

as ‖ω‖ → ∞. Under ν12 = (ν1 + ν2)/2, the two processes Z1 and Z2 are corre-
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Figure 1. Squared coherence functions for various bivariate Matérns with a1 = a12 =
a2 = 1, ν1 = ν2 = 0.5, varying ν12 and ρ.

lated at arbitrarily high frequencies, and may not be justifiable for some physical

processes.

If a1 = a2 = a12 = a, all covariance and cross-covariance functions share a

common range. In this case,

γ(ω)2 = ρ2
Γ(ν12 + d/2)2Γ(ν1)Γ(ν2)

Γ(ν1 + d/2)Γ(ν2 + d/2)Γ(ν12)2
(a2 + ‖ω‖2)ν1+ν2−2ν12 . (2.5)

Figure 1 shows some coherence functions for common length scale parameters,

varying ν12 and ρ. Clearly, ν12 controls the rate of decay at high frequencies, and

indeed γ(ω)2 ∼ ‖ω‖2ν1+2ν2−4ν12 at high frequencies when ν12 > (ν1 + ν2)/2.

Cross-Range a12

The cross-range parameter a12 controls the frequency of greatest coherence,

which can either be at ‖ω‖ = 0, ‖ω‖ → ∞, or for finite but nonzero frequencies.

The frequency of greatest coherence can be derived by taking derivatives of the

log coherence (2.4). In general, they occur at solutions to

ν1 + d/2

a21 + ‖ω‖2
+

ν2 + d/2

a22 + ‖ω‖2
− 2ν12 + d

a212 + ‖ω‖2
= 0.

We discuss two special cases. Setting a1 = a2 = a and ν1 = ν2 = ν, we suppose

ν12 > ν (distinct a1 and a2 and ν1 and ν2 follow qualitatively similar behavior).

Then the frequency of maximal coherence is

‖ω‖2 =
a212(2ν + d)− a2(2ν12 + d)

2(ν12 − ν)
.

When the numerator is positive, the frequency of greatest coherence is linear
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Figure 2. Squared coherence functions for various bivariate Matérns with ν1 = ν12 =
ν2 = 1, a1 = a2 = 1, varying a12 and ρ.

in a212, and thus the effect of varying the cross-range is to move the location of

maximal coherence. For ν1 = ν2 = ν12 = ν, and a1 = a2 = a, the coherence

function is

γ(ω)2 = ρ2
(
a212
a2

)2ν (
a2 + ‖ω‖2

a212 + ‖ω‖2

)2ν+d

. (2.6)

If a12 < a, maximal coherence is at ‖ω‖ = 0, whereas if a12 > a, the maximal

coherence is at ‖ω‖ → ∞. Figure 2 illustrates these scenarios.

The multivariate Matérn is flexible in that it can put greatest coherence at

zero or infinity, and can allow for increasing, decreasing or constant coherence.

Not all choices imply monotonic coherence, though; for example, various choices

of parameters can imply a ‘bump’ in coherence that is between zero and infinity,

for example see Figure 3.

The so-called parsimonious Matérn model arises from imposing common

range parameters and taking ν12 = (ν1 + ν2)/2 (Gneiting, Kleiber and Schlather

(2010)). This model has been empirically shown to produce inferior model fits

to datasets as compared to more general versions of the multivariate Matérn as

well as other multivariate classes (Apanasovich, Genton and Sun (2012); Genton

and Kleiber (2015)). The coherence function for a bivariate parsimonious Matérn

model is constant, γ(ω) = ρ, which suggests an inflexible model for the spectral

behavior of spatial processes.

2.5. The linear model of coregionalization

The linear model of coregionalization (LMC) is built by decomposing a mul-
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Figure 3. Squared coherence functions for two bivariate Matérns with (a) ν1 = 1, ν12 =
1.5, ν2 = 2, a1 = 1, a2 = 2, a12 = 1.5; (b) ν1 = 1, ν12 = 1.5, ν2 = 1, a1 = 1, a2 = 2, a12 =
2.5; ρ = 0.5 in both cases.

tivariate process as linear combinations of uncorrelated, univariate processes

(Goulard and Voltz (1992); Royle and Berliner (1999); Wackernagel (2003); Schmidt

and Gelfand (2003)). In particular, we entertain version

Z(s) =

(
Z1(s)

Z2(s)

)
=

(
b11 b12
b21 b22

)(
W1(s)

W2(s)

)
= BW(s). (2.7)

The matrix B is known as the coregionalization matrix, and controls the strength

of dependencies on the latent uncorrelated processes W. Here, suppose W1(s)

and W2(s) are uncorrelated processes with spectral densities f1(ω) and f2(ω),

respectively.

Given the number of parameters in the LMC, it is often useful to impose

restrictions on the coregionalization matrix B, such as setting b11 = b22 = 1

(Berrocal, Gelfand and Holland (2010)).

Lemma 1. In the linear model of coregionalization (2.7), if b11 = b22 = 1 then

the coherence function between Z1(s) and Z2(s) is unity if and only if b12b21 = 1.

Thus, under the LMC, two processes are exactly coherent when they differ only

by a scalar multiplier.

How does the coherence depend on b12 and b21 at high frequencies? Without

loss of generality, suppose W1 has a spectral density that decays as ‖ω‖−2ν1−d as

‖ω‖ → ∞, and W2 has a spectral density that decays as ‖ω‖−2ν2−d as ‖ω‖ → ∞
where ν1 < ν2 (we can interpret W1 as the rough process and W2 as the smooth
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process). It is straightforward to show that the coherence between Z1 and Z2

converges to a nonzero constant as ‖ω‖ → ∞ if b21 6= 0, whereas it converges

to zero if b12 = 0. This suggests that the coregionalization matrix should be

structured to include off-diagonal zeros, so that Z1 and Z2 do not both share

components of W1 and W2, unless there is a physically justifiable argument for

nontrivial coherence at arbitrarily high frequencies.

Under the assumption b11 = b22 = 1, we have the gain function of Z2(s) on

Z1(s) is

G(ω) =
b21f1(ω) + b12f2(ω)

f1(ω) + b212f2(ω)
.

If, as is common in using the LMC, we set b12 = 0, then there is constant gain at

all frequencies by the amount of coregionalization, b21. The complementary case

where b21 = 0 yields the gain

G(ω) =
b12f2(ω)

f1(ω) + b212f2(ω)
,

the relative contribution of component b12W2(s) to the combined spectrum of

Z1(s). If the latent processes have real-valued spectral densities, the phase func-

tion is exactly zero at all frequencies.

3. Estimation of Spectra

Suppose Z(s) is a p-variate process that has been observed at a regular grid

of points {si}Ni=1, of marginal dimensions ni, i = 1, . . . , d where N =
∏d
i=1 ni.

If grid spacing in the ith dimension is δi, take δ =
∏d
i=1 δi. Then the spatial

periodogram matrix is defined as I(ω) = (Ik`(ω))pk,`=1 where

Ik`(ω) =
δ

(2π)dN

(
N∑
k=1

Zk(sk) exp(−isTkω)

)(
N∑
k=1

Z`(sk) exp(−isTkω)

)
, (3.1)

and is available at Fourier frequencies ω = 2πf where f = (f1/(δ1n1), . . . , fd/

(δdnd))
T for fi ∈ {−b(ni − 1)/2c, . . . , ni − bni/2c}. Note that Ik`(ω) = I`k(ω).

It is natural to consider asymptotics for time series as time t→∞, resulting

in effectively uncorrelated blocks of a process; in the spatial realm there are two

competing asymptotic frameworks. Increasing domain asymptotics has samples

taken on an ever-increasing domain in all axial directions, and typically asymp-

totic results here echo those in time series. Infill asymptotics has the domain

boundary fixed and points sampled at an ever finer resolution within the domain

(Zhang and Zimmerman (2005)). The large sample properties of the periodogram
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(3.1) change accordingly.

Using infill asymptotics, Lim and Stein (2008) show that the raw multivariate

periodogram can exhibit bias at low frequencies, and suggest prewhitening the

process to overcome this inadequacy (in the univariate case Stein (1995) gives a

simulated example where the bias is quite substantial). However, under a mixture

of infill and increasing domain asymptotics, Fuentes (2002) showed (for univariate

processes) the analogous result to the time series case that the periodogram

is asymptotically unbiased and is uncorrelated at differing Fourier frequencies.

Additionally, in this latter case it is not a consistent estimator, but must be

smoothed to gain consistency.

Under certain assumptions the nonparametric periodogram (3.1) is asymp-

totically unbiased, and generates asymptotically uncorrelated random variables

between distinct Fourier frequencies. In this, use the same assumptions as

Fuentes (2002), generalized to the multivariate setting.

A1 The true spectral densities fk`(ω) decay as ‖ω‖−τ , τ > 2 as ‖ω‖ → ∞,

ω ∈ R2.

A2 The marginal and cross-covariances satisfy
∫
‖h‖|Ck`(h)|dh <∞,h ∈ R2.

A3 δi → 0, ni →∞ and δini →∞ for all i, j = 1, 2 such that ni/nj → λij > 0.

Theorem 3. Under A1-A3, we have EIk`(ω) → fk`(ω), VarIk`(ω) → fk`(ω)2

and Cov(Ik`(ω1), Ik`(ω2))→ 0 for ω1 6= ω2.

The proof for Theorem 3 follows directly from Fuentes (2002) and is not included

here.

According to Theorem 3, the matrix-valued periodogram is not an asymp-

totically consistent estimator. To produce a consistent estimator of the spectral

density at a particular frequency ω0, in practice we locally smooth adjacent pe-

riodogram values and appeal to Theorem 3. In particular, the smoothed matrix-

valued periodogram is

Ĩk`(ω0) =

∫
Rd

Kλ(ω − ω0)Ik`(ω)dFn(ω), (3.2)

where Fn(ω) is the empirical cumulative distribution function of Fourier frequen-

cies {ωi}Ni=1. Here, Kλ is some kernel function with bandwidth λ, where, as we

have it written, the same kernel is applied to each process. Naturally, different

kernels may be used for different processes if the scientific context calls for such

an approach.
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Table 1. Empirical bias and root mean squared error (RMSE) between empirical and the-
oretical coherence for various bivariate Matérn correlation models for sample sizes of n2

for n = 50, 100, 200. Parenthetical values are standard errors based on 100 independent
simulations.

a = 1, ν1 = 0.5, ν2 = 0.5, ν12 = 0.5, ρ = 0.5 a = 1, ν1 = 0.5, ν2 = 0.5, ν12 = 1.5, ρ = 0.3
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Bias 0.002 (0.030) 0.001 (0.016) 0.001 (0.009) −0.041 (0.022) −0.038 (0.012) −0.032 (0.006)
RMSE 0.04 (0.02) 0.03 (0.01) 0.02 (0.01) 0.13 (0.02) 0.09 (0.01) 0.07 (0.01)

a = 1, ν1 = 0.5, ν2 = 0.5, ν12 = 2.5, ρ = 0.15 a = 5, ν1 = 0.5, ν2 = 0.5, ν12 = 0.5, ρ = 0.5
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Bias −0.027 (0.015) −0.026 (0.009) −0.019 (0.005) 0.001 (0.029) 0.001 (0.015) 0.001 (0.01)
RMSE 0.11 (0.01) 0.09 (0.01) 0.06 (0.01) 0.04 (0.01) 0.03 (0.01) 0.02 (0.01)

a = 0.2, ν1 = 0.5, ν2 = 0.5, ν12 = 0.5, ρ = 0.5 a = 1, ν1 = 0.5, ν2 = 1, ν12 = 1.5, ρ = 0.4
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Bias 0.004 (0.053) 0.001 (0.028) 0.003 (0.013) −0.017 (0.024) −0.021 (0.013) −0.020 (0.007)
RMSE 0.07 (0.03) 0.05 (0.02) 0.02 (0.01) 0.09 (0.02) 0.07 (0.01) 0.04 (0.01)

We cannot directly use the nonparametric periodogram fraction to estimate

the coherence as Ik`(ω)I`k(ω) = Ikk(ω)I``(ω) at all Fourier frequencies. Thus,

we estimate the coherence functions by using the smoothed periodograms,

γ̂k`(ω)2 =
|Ĩk`(ω)|2

Ĩkk(ω)Ĩ``(ω)

for k, ` = 1, . . . , p.

We close this section with a small simulation study to build some intuition

for the effect of sample size and model parameters on estimating the coherence

function. We considered sample sizes of n2 for n = 50, 100, 200, and various

multivariate Matérn covariance models. For each sample size, we generated 100

realizations of a bivariate Gaussian process on a grid of coordinates {(i, j)}ni,j=1

and estimated the coherence function using a two-dimensional Daniell kernel with

a bandwidth of
√
n. For each simulation we calculated the average bias and root

mean squared error (RMSE) over all Fourier frequencies, and then averaged over

simulations. Table 1 reports these values of bias and RMSE, along with standard

errors.

4. Illustrations

We examine two datasets from the atmospheric sciences, gridded reforecasts

and reanalyses of sea level pressure and geopotential heights over the equatorial

region. Reforecast data are produced retrospectively from a fixed version of a

numerical weather prediction model, in this case the 2nd generation National

Oceanic and Atmospheric Administration’s (NOAA) Global Ensemble Forecast

System Reforecast (Hamill et al. (2013)). Forecasts are generated at 3 hour incre-
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ments from 0 to 192 hours, with the 0h forecast being a reanalysis, an estimate of

the current state of the atmosphere. For our data, the control initial conditions

were produced using a hybrid ensemble Kalman filter-variational analysis system

(Hamill et al. (2011)). Reanalysis data are particularly useful and important as

many physical processes (such as geopotential heights) are extremely difficult to

observe directly (e.g., geopotential heights are typically measured by atmospheric

soundings at a handful of locations worldwide).

4.1. Sea level pressure

The first dataset we considered was a set of reforecast sea level pressures

(SLP) over the equatorial region. Sea level pressures in this region are approxi-

mately stationary, and we compare forecast horizons in 24 hour increments from

0h to 192h (8 days out). The data consist of gridded reforecasts from the first 90

days of 2014 at 1◦ increments over 360 longitude and 47 latitude bands between

−23◦ to 23◦, defining the equatorial region.

One approach to examining the quality of forecasts is the coherence between

the forecast with the corresponding reanalysis. For example, we might com-

pare the 24h forecast of SLP generated on January 1, 2014 to the 0h reanalysis

generated on January 2, 2014. It is well known that forecast skill decays with

horizon, and we expect the short-term forecasts to share higher coherence with

the reanalyses than the long-term forecasts.

We began by standardizing each analysis and forecast horizon grid cell by

subtracting the temporal average and dividing by empirical standard deviation

to produce forecast anomalies. Denote these anomalies by Zk(s, d) for forecast

horizons k = 0, 1, 2, . . . , 8 corresponding to forecast horizons 0, 24, . . . , 192 hours,

spatial locations s ∈ D ⊂ R2 in the equatorial region D on days d = 1, . . . , 90.

Each day’s marginal process empirical periodogram, (3.1), was calculated for

all forecast horizons k, yielding {Ikk(ω, d)}. The smoothed periodogram was a

convolution with a simple low-pass filter, a matrix of zeros with a 3× 3 constant

block of 1/9. Interest focused on comparing various forecast horizons with the

reanalysis at k = 0, so we calculated empirical cross-periodograms {I0k(ω, d)} for

all available days d allowing for forecast validation (e.g., the k = 1, 24h horizon,

has 89 available days, d = 2, . . . , 90). The cross-periodograms were smoothed

using the same low-pass filter as the marginals. With Ĩk`(ω, d) as the smoothed

cross-periodograms, we estimated the squared coherence function as

γ̂0k(ω)2 =
1

90− k

90∑
d=1+k

|Ĩ0k(ω, d)|2

Ĩ00(ω, d)Ĩkk(ω, d− k)
,
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Figure 4. Estimated absolute coherence functions for the GEFS sea level pressure re-
forecast data, comparing the 168, 96 and 24 hour forecast horizons with the zero hour
analysis. The vertical axis spans [0, 1].

for k = 1, . . . , 8, that is, the average over all available daily smoothed cross-

periodograms.

Figure 4 shows estimated absolute coherence functions for horizons 168, 92,

and 24h with the 0h analysis. Even at long lead times there is substantial coher-

ence, which increases by a substantial margin at very low longitudinal frequencies.

For any given longitude frequency band, the coherence appears to be relatively

constant across latitudes, which is sensible given that there appears to be greater

variability in the equatorial direction than in the north-south direction for sea

level pressure in this region. As the forecast horizon decreases the coherence

begins building between low-to-mid frequency bands in the latitudinal direction,

suggesting that the statistical characteristics of short term forecasts are more

similar to observed sea level pressure than are the longer term forecasts. At the

highest frequencies there is not a substantial improvement in forecast skill, bor-

dering on no improvement, which suggests that small scale events are difficult to

forecast even at one day out.

To gain a better understanding of where the forecasts are improving as the

horizon decreases toward zero, we considered pairwise differences of coherence

functions. Figure 5 displays maps of pointwise difference between adjacent fore-

cast horizons. For example, Panel (a) shows the improvement in coherence in

moving from a 48h to a 24h forecast horizon. Apparently, the greatest improve-

ments in forecast ability begin to occur at approximately 2-3 days out. Moreover,

as the validation time nears, the forecasts improve at higher frequencies. Such an

exploratory analysis would be difficult to accomplish with standard covariance

techniques.
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Figure 5. Incremental differences in coherence for the GEFS sea level pressure reforecast
data. Panels show the improvement (as a difference) in coherence for (a) 48 to 24h, (b)
72 to 48h, (c) 96 to 72h, (d) 120 to 96h, (e) 144 to 120h, and (f) 168 to 144h.

4.2. Geopotential height

Our second example is on the same spatial domain, but the data are geopo-

tential heights. Geopotential height is the height (in meters) above sea level at

which the atmospheric pressure is a certain level. In the atmospheric sciences,

it is common to examine geopotential heights as indicators of climatic regimes;

for instance, Knapp and Yin (1996) discuss the relationship between heights and

temperature anomalies over a portion of the United States.

Three common geopotential height maps are the 850hPa, 500hPa, and 300hPa

maps. The first, 850hPa, approximately defines the planetary boundary layer,

the lowest level of the atmosphere that interacts with the surface of the Earth

(note 1000hPa is approximately sea level). The 300hPa level is at the core of the

jet stream, while the 500hPa approximately divides the atmosphere in half, and

whose anomalies are used in part to assess climatological temperature variations.

The vertical structure of geopotential heights is a focus of some interest within

atmospheric sciences (Blackmon et al. (1979)).

We examined geopotential height reanalysis anomalies Zk(s, d) for k = 1, 2, 3,

representing the 850hPa, 500hPa, and 300hPa pressure levels on days d = 1, . . . ,

181. The anomalies are differences between the reanalysis height and a time-

varying Nadaraya-Watson kernel smoothed estimate of the mean with a band-
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Figure 6. Estimated absolute coherence functions for the GEFS geopotential height data
between (a) 850hPa and 500hPa, (b) 850hPa and 300hPa and, (c) 500hPa and 300hPa.

width of 5 days. Experiments suggested that results are qualitatively robust

against choices of the bandwidth and smoothing kernel.

We smoothed the marginal process periodogram (3.1) using a low-pass filter,

and calculated smoothed empirical cross-periodograms yielding {Ĩij(ω, d)}3i,j=1.

Then the squared coherence was estimated as the arithmetic average of each

day’s empirical squared coherence estimate,

γ̂ij(ω)2 =
1

181

181∑
d=1

|Ĩij(ω, d)|2

Ĩii(ω, d)Ĩjj(ω, d)
.

Figure 6 shows the three estimated pairwise absolute coherence functions.

There is high coherence between the lower pressure levels at low frequencies,

and some evidence of moderate coherence between all levels at low frequencies.

We also note some strikingly different behavior than for the sea level pressure

example. First, there is an apparent ridge in coherence at low frequencies (ap-

proximately 2π9/360) which may be indicative of equatorial planetary waves

(Wang and Xie (1996); Xie and Wang (1996); Kiladis et al. (2009)). Planetary

waves can play crucial roles in the formation of tropical cyclones (Molinari, Lom-

bardo and Vollaro (2007)). Additionally, there is high coherence at the greatest

Fourier frequencies simultaneously in both dimensions for all coherence functions

(capping out at approximately 0.62, 0.54, and 0.70). This is evidence of a nonsep-

arable relationship in the frequency domain, and we are unaware of any current

multivariate models that can adequately capture such behavior. One possible

explanation for this high coherence at high frequencies is artifacts in the data as-

similation scheme, in particular aberrant observational data leading to unusually

large anomalies in geopotential height. Indeed, variables such as sea level pres-

sure are well constrained by a wealth of observational data, while geopotential
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Figure 7. Estimated phase functions for the GEFS geopotential height data between (a)
850hPa and 500hPa, (b) 850hPa and 300hPa and (c) 500hPa and 300hPa.

heights are less constrained, usually being observed by sparsely released weather

balloons.

Figure 7 shows pairwise plots for each pair of geopotential height anomalies.

In particular there seems to be evidence of nontrivial phase at a low frequency

band between the 850hPa and both lower pressure heights. These frequencies

indicate longitudinal wavelengths of approximately 4,000–6,000 km, which is a

typical wavelength for planetary equatorial waves, or Rossby waves (Wang and

Xie (1996); Xie and Wang (1996); Kiladis et al. (2009)). Moreover, Panel (a)

suggests there may be additional areas of positive phase at mid longitudinal

and low-to-mid latitudinal frequencies, although we currently have no physical

intuition for what these might represent. Most extant multivariate models utilize

real-valued cross-spectral densities, and thus are insufficiently flexible to capture

this type of phase behavior at specific spectra.

5. Discussion

The notions of coherence, phase and gain are common in the time series lit-

erature, but have not received much attention for multivariate spatial processes.

The coherence between two variables can be interpreted as a measure of linear

relationship at particular frequency bands, resulting in a complementary frame-

work for comparing processes than the usual cross-covariance function. Phase

and gain also yield straightforward interpretations as a physical space-shift and

relative amplitude of frequency dependence when comparing two processes. We

developed these ideas for stationary processes, and future research may be di-

rected toward the analogous cases for nonstationary processes, perhaps extending

the work of Fuentes (2002).



1694 WILLIAM KLEIBER

Coherence, phase, and gain can be estimated using smoothed cross-periodo-

grams and, in our examples, we showed that as exploratory tools, these functions

can be very useful in detecting structure that may not be readily captured using

extant multivariate models. We additionally illustrated that the coherence func-

tion gives a natural interpretation to the multivariate Matérn cross-covariance

parameters that have otherwise been uninterpretable.

A number of future research directions can be considered, including the

adaptation of coherence to multivariate space-time processes. Development of

frequency-nonseparable models is also of interest. Naturally, estimation at irregu-

larly-sited locations is of particular interest for many spatial datasets, and could

be an additional route for future research.

Supplementary Materials

Proofs for the main theorems and propositions are in the supplemental ma-

terial.
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