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Abstract
Tropical cyclones are important drivers of coastal flooding which have severe
negative public safety and economic consequences. Due to the rare occur-
rence of such events, high spatial and temporal resolution historical storm
precipitation data are limited in availability. This article introduces a statistical
tropical cyclone space-time precipitation generator given limited information
from storm track datasets. Given a handful of predictor variables that are com-
mon in either historical or simulated storm track ensembles such as pressure
deficit at the storm’s center, radius of maximal winds, storm center and direction,
and distance to coast, the proposed stochastic model generates space-time fields
of quantitative precipitation over the study domain. Statistically novel aspects
include that the model is developed in Lagrangian coordinates with respect to
the dynamic storm center that uses ideas from low-rank representations along
with circular process models. The model is trained on a set of tropical cyclone
data from an advanced weather forecasting model over the Gulf of Mexico and
southern United States, and is validated by cross-validation. Results show the
model appropriately captures spatial asymmetry of cyclone precipitation pat-
terns, total precipitation as well as the local distribution of precipitation at a
set of case study locations along the coast. We additionally compare our model
against a widely-used statistical forecast, and illustrate that our approach better
captures uncertainty, as well as storm characteristics such as asymmetry.

K E Y W O R D S
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1 INTRODUCTION

Tropical cyclones (TCs) are major drivers of coastal flooding. Due to the extreme nature of these events (both in terms
of magnitude and rarity), quantifying flood risk is a difficult task that requires a combination of atmospheric, hydrologic
and statistical modeling. Flood risk from TCs is primarily driven by two factors: storm surge due to intense winds over
the open ocean, as well as substantial sustained precipitation over land. Storm surge causes flooding along the immediate
coastline while extreme precipitation over land also causes flooding away from the coast, and the two hazards together
conspire to cause extreme water levels throughout large areas that extend far from the TC center (Lai et al., 2021; Wahl
et al., 2015).

Wind fields associated with tropical cyclones have been well-studied and are measured directly via aircraft- and
satellite-based observing systems when TCs are located over the open ocean. However, much less is known about
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the forcing, distribution, and variation in tropical cyclone-induced precipitation over water and land (Elsberry, 2002).
Nevertheless, TC-induced precipitation is a key factor in defining the upper tail of flood distributions throughout the east-
ern United States (Villarini & Smith, 2010) and TC-induced precipitation is projected to increase in future storms due
to changes in atmospheric moisture content and increasing storm intensities (Knutson et al., 2019). Regardless of the
impacts due to TC-induced precipitation, the lack of long observation records, the physical complexities associated with
factors that control the precipitation, and large computational resources required to model such complex processes pose
particularly difficult problems to quantify the impacts of TC-induced precipitation.

One approach to counter the lack of observational data on TCs is the use of simulated or synthetic storm tracks
(Emanuel, 2006; Hall & Jewson, 2007; Nakamura et al., 2015; see Section 2.1 below for more detail) in a computational
pipeline that uses these synthetic tracks in conjunction with geophysical models. These synthetic tracks provide only
limited information about location and direction, speed, strength, and size of storms and reflect assumptions about the
distribution of TC behavior. While this limited information is often enough to enable a computational approach for surge
modeling, the lack of corresponding atmospheric conditions for these synthetic tracks makes direct physical modeling of
the associated weather, specifically precipitation, difficult, if not impossible.

While the use of geophysical models pose significant challenges, there is an opportunity for statistical techniques that
can generate realistic fields of TC precipitation (Rogers et al., 2009), and many of the differences between these models
involve the availability of covariates on which the model conditions. The simplest models, to which our ensuing proposal
should be compared, rely on only a small handful of statistics such as storm track, central pressure deficit and so forth.
A popular statistical emulator is the Rainfall Climatology and Persistence (R-CLIPER) statistical model, trained on large
sets of satellite-based observations of TC-induced precipitation Lonfat et al. (2004). This first-order model produces sym-
metric precipitation patterns about a TC center with no variation due to environmental interactions. Lonfat et al. (2007)
modify R-CLIPER to include asymmetries about the storm center caused by environmental interactions. While simple
to implement, the R-CLIPER versions do not produce precipitation patters with sufficient detail to capture extreme vari-
ations due to environmental interactions, extreme storm intensity, or steep topography. A first model using simplified
physical principles and detail in the atmosphere boundary layer was introduced by Langousis and Veneziano (2009).
While an improvement over R-CLIPER, the model of Langousis and Veneziano (2009) is only applicable over water as
it does not account for topography or over-land friction. Other approaches rely on detailed information about atmo-
spheric structure that is not available in widely-used storm track databases. For example, Zhu et al. (2013) build the
tropical cyclone rainfall (TCR) model that incorporates topography, land-induced friction, and TC characteristics such
as varying intensity and size. Lu et al. (2018) compare TCR with full-physics, high-resolution simulations of TC-induced
precipitation from a numerical weather model and found that TCR produced detailed spatially- and temporally-varying
precipitation patterns. However, the main drawback to TCR is that it requires substantial information about the atmo-
sphere, for example wind structure, gradient wind, shear, topography as well as saturation specific humidity. Such
variables are not available in common storm track databases.

To motivate the statistical approach outlined here, it is helpful to examine some partial realizations of tropical cyclones
that directly impact the Texas coastline near the city of Houston. Figure 1 shows two such example tropical cyclone events
from an atmospheric model detailed in the next section. Each row contains three snapshots of hourly-integrated precipita-
tion along with the historical storm track, and estimated storm center. From simply a statistical point of view these images
present some serious obstacles: precipitation exhibits a mixed discrete-continuous distribution whose spatial intensity
and signature change as a function of the storm size, intensity, and track. While over open ocean, precipitation will vary
with sea-surface temperatures and general atmospheric conditions such as vertical wind shear (Ueno, 2007). When the
TC approaches land and makes landfall, interactions with topography and increased friction will alter precipitation pat-
terns and intensities. Standard space-time statistical models are not well-suited for a non-Gaussian dynamical process
such as those exhibited in Figure 1.

Our approach is to focus on the behavior of the storm, with respect to its estimated center, in a Lagrangian coordinate
framework. The precipitation patterns seen in Figure 1 show a degree of spatial structure in a circular fashion with respect
to the center of the storm but also includes an asymmetric structure around the storm track. Modeling the process in
polar coordinates presents some challenges, including the requirement of polar-indexed processes. The basic structure
of the model outlined in Section 3.1 is not too surprising for a reader familiar with the space-time statistics literature,
including separation of mean and stochastic variation components. However, extant space-time models for precipitation
are not well suited to the type of structures seen in Figure 1; this work introduces necessary novel statistical innovations
including a new polar-indexed process convolution representation, as well as the incorporation of geophysical predictors
in a statistical learning framework.
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F I G U R E 1 Each row contains example snapshots of hourly-integrated tropical cyclone precipitation; the purple line is the storm track
to the current snapshot, while the “x” represents the storm center at the hour displayed. The top row is hurricane Fay in September 2002,
while the bottom row is hurricane Bill in June 2015. Units are mm.

The next section details the data used in our study, Section 3 describes the model and estimation procedure
while Section 4 contains the illustration of our approach, including a comprehensive cross-validation study as well as
comparison against an extant statistical precipitation model. The final section discusses possible future routes of research.

2 OBSERVATIONAL AND MODELED TC DATA

The limited information in TC storm tracks are the basis for inputs to the precipitation generator outlined in the previous
section and are available in both historical and simulated databases. For training the precipitation generator, however,
full space-time fields of precipitation that align with historical TCs are necessary. In what follows, we describe available
storm track databases, observed and modeled TC precipitation data, as well as specifics on the training data used in the
illustration in Section 4.

2.1 Storm track databases

Detailed information regarding atmospheric conditions during TCs are difficult to procure due to the limited historical
record and localized nature of such events. However, simple summary statistics regarding a storm’s evolution are much
more readily available, and in fact are commonly logged in so-called storm track databases. Such statistics include general
geophysical descriptors of a given TC behavior at any point in time, typically including location of the storm center,
maximum wind speed (measure of intensity), direction and speed of motion, central pressure deficit with respect to the
large-scale environment (a measure of strength) and radius of maximum winds (a measure of storm footprint). For each
TC that occurs worldwide, such descriptors are archived in the International Best Track Archive for Climate Stewardship
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(IBTrACS, Knapp et al., 2010). The IBTrACS database is constructed based on official TC analyses as defined by Regional
Specialized Meteorological Centers (RSMCs) of the World Meteorological Organization (WMO).

While IBTrACS provides a source of actual worldwide TC activity over approximately the past 100 years (depending
on ocean basin), synthetic TC data can be generated using a variety of methods (Emanuel, 2006; Hall & Jewson, 2007;
Nakamura et al., 2015) and are stored in formats that mimic the IBTrACS to enable consistency among data sets and
allow a more thorough study of TC behavior and impacts. Recently some authors have begun considering the problem of
generating synthetic storm track data using stochastic models (Rekabdarkolaee et al., 2019).

2.2 Existing TC precipitation data and limitations

There are four basic sources of data for TC precipitation: in situ observations, radar-derived estimates, satellite-derived
estimates, and atmospheric model output. This study focuses on a statistical framework for generating complete
space-time fields of TC-driven precipitation. Rain gauge data are not optimal for such a study, given their sparse spa-
tial sampling and potential biases or measurement errors, especially in windy conditions such as during a TC (Pollock
et al., 2018; Villarini et al., 2008). Radar-derived estimates such as those from National Center for Environmental Pre-
diction (NCEP) Stage-IV precipitation analysis (Lin & Mitchell, 2005) are lacking over open water where TCs form, and
hourly estimates lack quality control (Nelson et al., 2016). Satellite-derived estimates such as from the Global Precipi-
tation Mission are gridded and available at high time frequencies, but have been found to underestimate heavy rainfall
in coastal areas (Omranian et al., 2018). This leaves atmospheric model output as a prime candidate for developing and
training a statistical approach.

Our approach to studying TC-driven precipitation is to exploit advanced atmospheric models such as the Weather
Research and Forecasting (WRF) model developed at the National Center for Atmospheric Research (Skamarock
et al., 2019). Dynamic weather models such as WRF use physically-based equations to advance an atmospheric state
forward through time, simulating the likely evolution of a number of weather-relevant features including temperature,
winds, pressure, moisture, and precipitation. These simulations prescribe and advance the “state” of the atmosphere as
defined on a regular geospatial grid.

While global-scale weather simulations with these models are possible, they typically require enormous computa-
tional expense; for this reason scientists interested in spatially localized weather features such as TCs (Davis et al., 2008)
typically use the WRF in a regional simulation mode, only simulating a small portion of the globe at a time. This still
requires a fair amount of computational resources, but a reasonable-quality simulation of a single multi-day tropical
cyclone event may be accomplished on a laptop within a few hours time (Hacker et al., 2017). In addition, such sim-
ulations require initial and boundary conditions for the model that are consistent with the environment necessary to
develop and maintain a tropical cyclone. These initial and boundary conditions (i.e., space-time fields of temperature,
wind, moisture, and pressure at all grid points in the model grid) must maintain a dynamical balance to avoid instabil-
ities in the model. However, it is difficult to constrain all the factors in the environment that lead to a TC developing
to a particular strength or taking a particular path while retaining dynamical balance, making it hard to synthetically
generate initial and boundary conditions in a systematic way. Rather, these are typically extracted from other, global
scale forecasts or historical “reanalyses” of weather conditions (e.g., ERA-Interim; Dee et al., 2011) which are often too
coarse to well-resolve the tropical cyclone itself, requiring the WRF model to properly simulate the tropical cyclone
structure.

2.3 Training data

To provide training data for this model, simulations of tropical cyclone events were performed with the WRF model, which
has been shown to produce realistic simulations of historical tropical cyclone events, including their precipitation char-
acteristics (e.g., Davis et al., 2008, 2010). The WRF model is used to simulate seven historical TC events that impacted the
Texas Gulf Coast, in particular hurricanes Fay (2002), Claudette (2003), Erin (2007), Humberto (2007), Edouard (2008),
Ike (2008) and Bill (2015). The WRF model has a number of configuration options that can be tuned to change its perfor-
mance, and such tuning was done here to optimize the WRF configuration to simulate these TC events. The exact WRF
model configuration is described in Appendix A. Example snapshots of 1-h accumulated precipitation output on the WRF
grid is shown in Figure 1.
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We additionally require a set of features that match information typically contained in storm track databases such
as location of storm center, radius of maximal wind, central pressure deficit, and storm direction. These quantities are
calculated directly from the WRF output, and the derivations are detailed in the Appendix A.

The WRF data are thus available for n = 7 different TCs, or events, at hourly-spaced time points t = 1, … ,Te the total
number of which depends on the particular event. In this application, the number of hours in a TC ranges between 72
and 108 h; altogether there are T =

∑n
e=1Te = 576 observed realizations. The WRF data are on a 59 × 59 longitude-latitude

grid, representing a 36 km spacing over the Gulf of Mexico region, extending into the southern United States (see e.g.,
Figure 6).

3 METHODS

The past twenty years have seen a substantial increase in developing space-time statistical models. Much literature
has focused on investigating valid space-time covariance functions, Porcu et al. (2021) give a nice up-to-date overview.
However, space-time Gaussian random field models are not, by themselves, appropriate for the type of dynamical and
nonnegative behavior seen in Figure 1. The moving nature of the storm beckons a Lagrangian framework, and indeed
although some authors have investigated such models previously (Alegria & Porcu, 2017; Gneiting, Genton, & Gut-
torp, 2007; Rodriguez-Iturbe et al., 1987), the attention has been restricted to standard Gaussian random field models that
advect in time.

To the best of our knowledge, no authors have developed a stochastic model for TC-induced precipitation fields.
A related, but distinct, problem in understanding TC risk is in developing models for associated wind vector fields. Reich
and Fuentes (2007) introduce a multivariate semiparametric model for surface U- and V-direction wind components
driven by hurricanes. Their model conditions on satellite measurements, as well as a physical model for wind vectors.
Modlin et al. (2012) use a polar coordinate representation, and exploit a standard wrapped normal circular statistical
model. Our approach introduces a new polar coordinate stochastic model relying on a process convolution (Fuentes &
Smith, 2001) that allows for high-dimensional space-time simulations, accommodating nonstationarity, and asymmetry
in precipitation fields.

Our interest focuses on hourly integrated precipitation amount at a spatial grid cell indexed by its center, s, at time
point t. A standard approach would directly model such precipitation, denoted P(s, t) = P(slon, slat, t), where, over a limited
domain such as ours, latitude and longitude can be projected to a Euclidean coordinate system (or directly treated as
Cartesian near the equator). However, modeling in Euclidean coordinates is difficult due to the complex dynamic nature
of tropical cyclones that involves rotation about a moving storm center with asymmetric precipitation patterns.

3.1 Statistical model

We propose modeling P in a Lagrangian coordinate system with respect to the space-time varying storm center. That is, we
model P(r, 𝜃, t)where (r, 𝜃) are polar coordinates from the storm center at time t. Precipitation amounts are non-Gaussian
and nonnegative; to this end we exploit a common integral transformation technique (sometimes called an anamorphosis
or copula),

P(r, 𝜃, t) =

{
G−1(F(Y (r, 𝜃, t))), Y (r, 𝜃, t) > 0,
0, Y (r, 𝜃, t) ≤ 0,

(1)

where Y (r, 𝜃, t) is a space-time Gaussian process, G−1 is a gamma quantile function, and F is a cumulative distribu-
tion function (cdf). The use of a gamma distribution to model quantitative precipitation is common in the stochastic
weather generator literature (Kleiber et al., 2012; Stern & Coe, 1984). The inner transformation F is the cdf of the mixture
distribution f (y) = ∫ fr,𝜃,t(y)drd𝜃dt where fr,𝜃,t is the pdf of [Y (r, 𝜃, t)|Y (r, 𝜃, t) > 0]. The model for Y follows a familiar
mean-plus-residual decomposition that is standard in the spatial modeling literature, but with details adapted to modeling
space-time processes in polar coordinates:

Y (r, 𝜃, t) =
L∑

𝓁=1
c𝓁(t)𝜑𝓁(r, 𝜃) + Z(r, 𝜃, t), (2)
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for time-varying stochastic coefficients {c𝓁(t)}L
𝓁=1, fixed basis functions {𝜑𝓁(r, 𝜃)}L

𝓁=1 and a space-time residual stochas-
tic process Z(r, 𝜃, t). The model (2) assumes a stochastic mean function expressed as a weighted combination of spatial
patterns.

Basis decompositions as in (2) are very popular due to their computational benefits, as well as abilities to approximate
processes from traditional spatial statistical models. They are also widely applicable and can be used to model nonsta-
tionary and heterogeneous processes (Bandyopadhyay & Lahiri, 2010; Cressie & Johannesson, 2008; Lindgren et al., 2011;
Nychka et al., 2015; Wikle, 2010). We first concern ourselves with specification of the mean function in (2). Stochas-
ticity is imposed in both the mean function coefficients and residual field, Z(r, 𝜃, t). In particular, we decompose 𝓁th
coefficient as

c𝓁(t) = 𝜇𝓁(t) +W𝓁(t), (3)

for a deterministic trend function 𝜇𝓁(t) and time series process W𝓁(t).
Exploratory data analyses do not suggest strong simple linear relationships between the predictors and the estimated

coefficients, so we opt to model each 𝜇𝓁(⋅) as a random forest (Breiman, 2001) with predictors discussed in Section 2. The
residual processes W𝓁(t) are modeled as independent (across 𝓁), mean zero autoregressive Gaussian time series of order
one, suggested by exploratory data analysis plots.

3.1.1 Residual process

It is worthwhile to distinguish the problem we are tackling in the context of process models for polar data. Much research
has been devoted to directional statistics problems where the response is an angle or direction (Mardia & Jupp, 2009); a
common model for univariate data is the Von Mises distribution. Jona-Lasinio et al. (2012) extended such approaches to
spatially-indexed data by introducing wrapped Gaussian processes. Our problem is distinct in that the response remains
real-valued, but the indexing is no longer in Euclidean coordinates. The residual process at a given fixed band r and time
point t must be periodic in 𝜃. We adopt a Gaussian process specification; due to the reference system these processes
have recently been termed polar Gaussian process (Padonou & Roustant, 2016). Traditionally such a model would involve
defining a positive-definite function in polar coordinates. There are many routes to this end, and Gneiting (2013) and
Rasmussen and Williams (2006) discuss some approaches. Due to the moderate size of our dataset, rather than specifying
a functional form of a covariance kernel, we opt for a constructive approach that ensures a nonnegative definite covariance
kernel.

To this end, we propose a basis representation that can be seen to be a synthesis of common low-rank ideas
(Wikle, 2010) along with the polar Gaussian process idea. We model Z(r, 𝜃, t) as

Z(r, 𝜃, t) =
∫

k(r, 𝜃, r0, 𝜃0)U(r0, 𝜃0, t)dr0d𝜃0, (4)

for a space-time correlated process U(r, 𝜃, t) and kernel function k. The kernel function is a bilinear interpolation func-
tion related to a polar coordinate grid, discussed in the next section; this choice of kernel function was motivated by its
computational convenience. The model in (4) can be seen to be an adapted case of the nonstationary mixture models of
Fuentes and Smith (2001), but different than the framework proposed by Higdon (1998) in that the kernel function varies
over space, and U is a correlated process. The model for U is a low-rank circular Gaussian process,

U(r, 𝜃, t) = d0(r, t) +
M∑

m=1

(
d1,m(r, t) cos(m𝜃) + d2,m(r, t) sin(m𝜃)

)
, (5)

where {di(⋅, ⋅)} are stochastic. The specification in (5) can be interpreted as a harmonic decomposition for circular pro-
cesses analogous to the spectral decomposition for stationary spatial processes (Stein, 1999). The intercept accounts for
any bias incurred from the fitted random forest mean functions, and is seen to provide more realistic residual field sim-
ulations. Each process d0(r, t) or {d1,m(r, t), d2,m(r, t)}m is a radius-time process that is correlated in time according to an
autoregressive process of order one, with a common autoregressive coefficient to avoid overfitting. For all time t, we model
Cov(d0(r1, t), d0(r2, t)) as the same function of r1 and r2 nonparametrically (analogously for d1,m and d2,m), described in
the next section.
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3.2 Estimation

Our estimation strategy is intimately tied to the way in which the model is developed. For example, is it difficult to envi-
sion a cohesive likelihood-based framework for simultaneously estimating empirical orthogonal functions (our favored
choice of basis functions, described next), random forests defining the principal components and polar Gaussian pro-
cess covariance parameters. Moreover, our objective is directly tied to simulating realistic precipitation fields rather than
robustly estimating and interpreting statistical parameters. In the next section we show the stepwise approach works well
in out-of-sample testing.

3.2.1 Stochastic mean function

We first concern ourselves with specifying and estimating the components of the stochastic mean function in (2) and (3).
A common approach to modeling nonstationary processes in the atmospheric and climate sciences is to use an empirical
orthogonal function representation (EOFs; von Storch & Zwiers, 2002; Wikle, 2010), which is a low-rank representation
in which the shape and form of the basis functions are specified by the data (we provide a technical description of EOFs
below). Such an approach is equivalent to a principal components decomposition common in the statistical literature,
and requires replicates of the process of interest on the same spatial grid. The native grid of our data in Euclidean space
is common across all events and time points and directly lends itself to an EOF decomposition; however, the typical TC
structure (e.g., the circular patterns of precipitation intensity about the center) varies widely across the domain depending
on the location of the TC, which hampers an empirical method’s ability to determine reasonable basis function structures.
Moreover, the grid of our data in Euclidean space is common to all time points, modeling the process in a Lagrangian
coordinate system results in irregularly-spaced and time-dependent coordinates in (r, 𝜃) as the cyclone center moves
across the domain.

For the purpose of developing a mean function model, we artificially grid the Lagrangian-indexed data to a regular
grid in polar coordinate space spanning 𝜃 ∈ [−𝜋, 𝜋) and r ∈ [0, 1000] extending to 1000 km, resulting in a 100 × 100
gridded product at each time point for each storm; denote this grid by {(rkr , 𝜃k

𝜃

)}100,100
kr=1,k

𝜃

=1. The choice of gridding to 100
points in each axial direction is admittedly arbitrary, but was seen to work as well as higher-resolution grids in exploratory
simulations; moreover in radius this corresponds to a grid spacing of 10 km which is below the native resolution of the
WRF data at 36 km. For each event e and time point t we take the available 59 × 59 data points Pe(slon, slat, t) = Pe(r, 𝜃, t),
fit a LatticeKrig model (Nychka et al., 2015) and krige to the regular grid in (r, 𝜃). To account for differences of units, we
rescale the radius axis to [0, 10]. We use four levels of resolution and model settings that mimic an exponential covariance
function, see Nychka et al. (2015) for details on the LatticeKrig model. Although the data are not Gaussian, fitting the
LatticeKrig model by maximum likelihood assuming Gaussianity is one objective function approach, and as our goal is
simply to produce a kriged field (rather than uncertainty estimates), LatticeKrig is an attractive option for computational
reasons involving large spatial datasets (see Figure B1 for an example kriged surface). Because of the smoothing effect of
kriging, the peaks of the original precipitation data will be slightly reduced in the polar-gridded dataset; in our experiments
the median loss in maximal precipitation is 0.28 mm, or about 1% under the max. This slight biasing is partially addressed
in the anamorphosis transformation, discussed later. An example of the polar coordinate smoothing is shown in Figure B1
in Appendix B.1. Note that the gridding of the data in polar coordinate space is necessary to estimate the EOF basis
functions; indeed other bases could be imagined, but we prefer EOFs due to their widespread use in the atmospheric
sciences, as well as ability to extract physically meaningful patterns in geophysical data (see example section below).

Collecting together the gridded data in a K × T matrix P, where each column is a “flattened” polar image with
K = 1002 for all T = 576 available time points, the EOFs and principal components are obtained through a singular
value decomposition (SVD) of P. In particular, if P = UDVT is the SVD of P then the columns of U represent ordered
EOFs, and the columns of (DVT)T the principal components. These EOFs are spatial functions that define {𝜑𝓁(r, 𝜃)}.
We note that such an approach may seem unintuitive at first, as we fit EOFs to the gridded precipitation data P, rather
than Y , which is unobserved. We perform a simulation study to assess the ability of this approach to estimate EOF
patterns, Appendix B.7 shows that our approach adequately reproduces true mean function patterns contained in the
leading EOFs.

We use the first 13 EOFs, which explain more than 75% of variability. We also experimented with more EOFs, but
found that the predictive ability of the principal component model, introduced next, suffered with higher order EOFs and
likely resulted from overfitting. Instead, we opt for a parameterized residual process Z(r, 𝜃, t).
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8 of 24 KLEIBER et al.

The resulting principal components {c𝓁(t)}𝓁,t are modeled as in (3). The trend functions 𝜇𝓁(t) are random forests
(Breiman, 2001; Hastie et al., 2009) with predictors of radius of maximal wind, central pressure deficit, storm center
and direction (both vectors) and great circle distance of the storm center to coast. Some of these variables (e.g., storm
center) are not directly available from the WRF output, but are derived to match the typical format of IBTrACS data;
details can be found in Appendix A. We use 500 trees and fit the forests using the randomForest package in R (Liaw &
Wiener, 2002) on the estimated principal components contained in (DVT)T. Estimated residuals are formed from the fitted
trend functions �̂�𝓁(t), ̂W𝓁(t) = c𝓁(t) − �̂�𝓁(t). The covariance parameters of the first-order autoregressive model for ̂W𝓁(⋅)
for a given event 𝓁 are estimated by maximum likelihood, yielding { ̂𝜙𝓁 , �̂�2

𝓁}
n
𝓁=1 where 𝜙𝓁 is the autoregressive coefficient

and 𝜎2
𝓁 is the innovation variance.

3.2.2 Residual process

We turn to the residual process Z(r, 𝜃, t), which follows a specification of (4) and (5). Based on the prior section,
we have estimated trends �̂�𝓁(t) from the fitted random forest. These yield estimated residuals Û(r, 𝜃, t) = P(r, 𝜃, t) −
∑L
𝓁=1�̂�𝓁(t)𝜑𝓁(r, 𝜃); note we use P here as Y is unobserved; in cross-validation experiments shown below, this approx-

imation is seen to work well. Here it is useful to introduce additional notation: call Û(rkr , ⋅, t) the estimated residuals
for the krth radial band in the gridded polar coordinate system (kr = 1, … , 100). Using Û(rkr , ⋅, t) as data, coefficients
d0(rkr , t), {d1,m(rkr , t), d2,m(rkr , t)}m are estimated by least squares regression assuming a linear model of the form (5),
yielding ̂d0(rkr , t), { ̂d1,m(rkr , t), ̂d2,m(rkr , t)}m. Taking ̂d0(t) = ( ̂d0(r1, t), … ,

̂d0(r100, t))T for each time point t = 1, … ,T, we
estimate the covariance matrix of Var d0(t) for any time point empirically using T−1∑T

t=1
̂d0(t) ̂d0(t)T (and analogously for

d1,m and d2,m); this covariance matrix controls dependence across radial bands and is common across all time points.
The autoregressive coefficient governing each of d0(rk, ⋅) and {d1,m(rkr , ⋅), d2,m(rkr , ⋅)}m are estimated independently by
maximum likelihood assuming marginal Gaussianity, and are then averaged to provide a single autoregressive param-
eter estimate. See also Appendix B.6. One natural question is to what extent the residual component in (2) contributes
variability to the simulated fields; Appendix B.4 considers the removal of the residual component with both a fixed, and
stochastic mean function, and illustrates that the residual process is critical to include.

3.2.3 Transformation function

By this point all statistical parameters are estimated, except those governing the transformation functions G and F in (1).
The parameters of the gamma function G are estimated by maximum likelihood based on {Pe(r, 𝜃, t) | Pe(r, 𝜃, t) > 0}
assuming space-time independence. The assumption of independence may lead to, for example, overly narrow confi-
dence intervals for estimated parameters; however, in our data example we only use the point estimate. Other marginal
transformations could be envisioned; if focus is on the extreme tail of the distribution then options that include general-
ized extreme value distribution tail behavior may be adopted (Naveau et al., 2016); our initial focus is on the bulk of the
precipitation distribution which is well modeled by the gamma transformation. Note the space-time varying nature of
the statistical model implies that the distribution of precipitation at (s1, t) and (s2, t) are different, even with the common
gamma transformation. Finally, F is estimated as follows: assume an ensemble of E realizations of space-time trajectories
from the model for a given storm has been generated, {Ye(s, t)}E

e=1 on the original Euclidean grid and set of times for a study
storm. We estimate F as the empirical cumulative distribution function of the positive values {Ye(s, t)|Ye(s, t) > 0}E

e=1,
which, as E → ∞, can be seen to approximate an equal weight mixture of local space-time densities; such an approach
is an attempt to avoid overfitting of local probability density functions that can vary substantially over both space and
time, and is seen to work well in the data study. In Appendix B.2 we compare against a standard marginal transforma-
tion, assuming F is the cdf of a standard normal (see, e.g., Kleiber et al., 2012); the results suggest a strong tendency to
over-simulate precipitation.

3.2.4 Simulation and interpolation

As modeling is done in regularly-spaced polar coordinates {(rkr , 𝜃k
𝜃

)}, initial simulations are quickly generated on the
polar grid, yielding {U(rkr , 𝜃k

𝜃

, t)}. For an arbitrary polar coordinate (r, 𝜃) ∉ {(rkr , 𝜃k
𝜃

)}, the values of Z(rkr , 𝜃k
𝜃

, t) are
bilinearly interpolated, that is, k(r, 𝜃, r0, 𝜃0) in (4) represents a bilinear interpolation kernel. Generating U(r, 𝜃, t) directly
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KLEIBER et al. 9 of 24

is not straightforward given the empirical estimation approach for the component coefficients d0, d1,m, d2,m. The EOFs are
also bilinearly interpolated to the native grid for a given storm center, weighted by a realization of {c𝓁(t)} and are added
to Z(r, 𝜃, t). The final transformation (1) is applied at each grid cell separately.

4 APPLICATION TO HOUSTON DOMAIN

In this section we explore the adequacy of the statistical model for capturing the distribution of precipitation patterns in
the WRF data. First we explore some of the fitted model components based on the full available dataset (an in-sample
assessment), followed by detailed cross-validation study to assess the model’s ability to capture out-of-sample behavior. In
both cases we apply a tapering function to both the simulated and observed precipitation fields that is radially-symmetric
and whose support depends on a particular time point’s radius of maximal winds; the motivation for this is that our
model is primarily designed to capture the local structure of tropical cyclones near the eye of the storm, whereas in WRF
simulations other auxiliary precipitation events can be present due to other atmospheric conditions and forcings which
our model is not designed to tackle. The taper function formula is given in Appendix B.3. Future research may combine
both tropical cyclone generators with other precipitation generators for convective or frontal events.

To assess the realism of our model’s space-time simulations, we examine a number of validation statistics at both
the point-level, and domain-level. These include visual assessment of the simulated fields to confirm corresponding
asymmetric structure of the TC, as well as statistics such as total precipitation both at a point level as well as domain
level, assessment of pointwise precipitation distributions at a set of coastal locations, an assessment of probability of
precipitation as well as the statistical calibration of the pointwise precipitation distributions.

4.1 In-sample assessment

In this section we explore some details of the estimated model using the estimation procedure of the previous section
applied to all seven tropical cyclones. The basis functions {𝜑𝓁(r, 𝜃)} comprising the mean function in (2) are empir-
ical orthogonal functions, estimated as described in the previous section. Figure 2 shows the first eight estimated
EOFs for a storm center located in approximately the center of the study domain. The first EOF shows a classical
approximately-circular pattern around the storm center, but with a skewed feature to the southeast of the center. The
second EOF can be seen to be a correction to the first that can reduce cyclone asymmetry and increase precipitation to
the north of the center. The combination of these two EOFs with the coastline approximately determining the separation
between positive and negative regions of these fields is anticipated, as there is often a notable enhancement of precipita-
tion as the rain bands of the storm arrive over land. In addition, the concentric “swirls” seen in other EOFs relate to the
banded nature of precipitation in tropical cyclones which is enhanced as they approach land. The banding is enhanced
as drier air from the continental interior gets wrapped into the center of the storm, suppressing precipitation in its path.

The coefficients of (2) are modeled including a random forest component as in (3); see also Appendix B.5. Although
random forests consist of numerous easier-to-interpret trees, variable importance is one approach to assess the utility of
features included in the predictor set over all trees simultaneously. Variable importance for a particular feature can be
defined as the total (or average) reduction in variance explained at all nodes for all component trees over which that fea-
ture was split (Hastie et al., 2009). Table 1 includes variable importance factors for the first seven principal components’
random forest models. The first three principal components’ random forest models highly favor the storm’s central pres-
sure deficit as the most important predictor, which is unsurprising given the statistical relationship between such deficit
and the overall strength of the storm (Chavas et al., 2017). As we move into higher frequency patterns, there are not appar-
ent strong patterns highly favoring one particular feature over another. In the fourth principal component, the radius of
maximum wind, V component of center (analogous to latitude) and distance to coast experience jumps in their variable
importance factors, which indicates the importance of those variables for the EOF pattern seen in Figure 2.

4.2 Cross-validation

In this section we consider the predictive ability of our approach. In particular, the model depends on only a handful of
predictors: radius of maximal winds, central pressure deficit, storm center and direction of movement. Recall that these
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10 of 24 KLEIBER et al.

F I G U R E 2 First eight empirical orthogonal functions the storm center indicated by a grey dot.

T A B L E 1 Variable importance measured as total reduction in variance for the first seven principal components’ random forest models;
values are scaled by 1 × 10−5.

c1 c2 c3 c4 c5 c6 c7

Radius of maximal winds 1.07 0.65 0.48 0.56 0.34 0.19 0.18

Pressure deficit at center 9.97 4.61 1.06 0.70 0.89 0.64 0.61

U component of direction 1.57 1.06 0.78 0.47 0.41 0.29 0.24

V component of direction 3.82 0.84 0.98 0.69 0.45 0.51 0.51

U component of center 2.88 1.91 0.74 0.44 0.32 0.38 0.35

V component of center 1.86 1.10 0.61 0.96 0.40 0.32 0.29

Distance to coast 1.44 1.04 0.45 0.64 0.26 0.37 0.33

few predictors are those that are available in the widely-used IBTrACS data base or in other simulated products. With
only these features, the model generates plausible precipitation patterns.

To test the ability of the model to generalize beyond the few storms we have available, we consider a cross-validation
experiment in which the estimation routine of Section 3.2 is implemented on six of seven storms, the last of which is held
out for comparison purposes. The estimation process is repeated for each possible hold-out storm, and in each case we
generate an ensemble of 100 space-time realizations from the statistical model which we compare against the held-out
WRF data.

4.2.1 Space-time structure

To begin this section, Figure 3 shows realizations from the cross-validation experiment for a handful of instances. The
three rows correspond to different TCs, the left column contains the held-out WRF simulation for a particular hour and
the right three columns contain randomly chosen simulations from the simulated ensemble. We can see, for example in
the second two instances, apparent asymmetry in the WRF fields that are replicated by the statistical model. In the first
row, the first and second realization of the storm show heavier precipitation patterns, but that are more circular. The third
realization shows stronger asymmetry with less precipitation.
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KLEIBER et al. 11 of 24

F I G U R E 3 Cross-validation realizations for three snapshots. The three rows represent hurricanes Claudette on July 15, 2003 at 4:00
p.m., Ike on September 13, 2008 at 12:00 p.m. and Bill on June 17, 2015 at 4:00 a.m., respectively. The first column is WRF output for the
corresponding time, the middle three columns show cross-validation realizations from the statistical model while the last column shows the
R-CLIPER prediction. Units are mm and all plots are on the same color scale.

The asymmetrical patterns returned by the cross-validation realizations are consistent with observed patterns of tropi-
cal cyclone precipitation, particularly near landfall, where precipitation is enhanced to the right of the storm motion (here,
to the east side of the storm). In addition, localized enhancements are seen in the portion of these rain bands immediately
adjacent to the coast, particularly in the first and second row, which is also consistent with physical expectations (Rogers
et al., 2009). In the third row, this is a particularly difficult time to replicate, as the storm has moved well inland and is
losing its structure as a tropical cyclone. Factors outside of the immediate environment of the tropical cyclone (including
pre-existing atmospheric patterns over the continent) are more strongly influencing the structure of the decaying storm
and increasing the variability in precipitation patterns away from the coast, and the statistical model struggles somewhat
to capture this.

Although capturing the instantaneous spatial patterns of precipitation is important, it is also important to replicate
temporally-aggregated behavior such as the total rainfall over the duration of the cyclone for flood risk modeling exercises.
Figure 4 shows pointwise-integrated precipitation over the study domain for one example event. The left panel represents
integrated WRF and the second panel is one particular realization’s integration; the next two panels show pointwise 5%
and 95% quantiles of integrated precipitation over all realizations. First, the simulated totals appropriately capture the
spatial distribution of total precipitation that cut in a diagonal pattern across the study domain. The statistical model
exhibits some smoothing as compared to the actual WRF data, but capturing such high frequency behavior with our
limited features is likely an unrealistic goal.

A third assessment of the model’s ability to replicate space-time structure is in the temporal behavior of domain-wide
integrated (i.e., total hourly) precipitation. Figure 5 shows functional boxplots (Sun & Genton, 2011) for integrated pre-
cipitation at each hour for each of the seven cross-validation storms. The red line indicates the held-out WRF statistic,
while the grey band shows interquartile range of the WRF ensemble. There is some additional high-frequency variation
in the statistical model’s integrated precipitation, where the WRF time series exhibits smoother variation of total precip-
itation than the statistical model. This could potentially be resolved by putting moderately-strong prior distributions on
the autoregressive aspects of the model, encouraging greater temporal regularity, but is it not clear that the additional
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12 of 24 KLEIBER et al.

F I G U R E 4 Integrated pointwise precipitation for the event beginning August 14, 2007 for WRF and a realization from the statistical
model (left two panels), as well as pointwise 5%, 50% and 95% quantiles over an ensemble of 100 realizations of the statistical model. Units
are mm.

F I G U R E 5 Functional boxplots of integrated precipitation over the study domain for each storm event based on an ensemble of 100
realizations of the statistical model. The black line is the functional boxplot median while the red line is the integrated precipitation of WRF.
Units are mm.

computational cost of such an implementation would be prohibitive. Generally the model realizations capture the ver-
ification time series within the 95% functional boxplot confidence intervals, and also tend to follow the increasing and
decreasing trends of precipitation. The sixth storm is an unusual or outlying case where substantially more precipita-
tion fell over the domain (around hours 30–60) than in any of the other study storms; the statistical model captures the
ramp-up period of increasing rainfall, but whose median does not adequately represent such intensity. This failure to cap-
ture the extreme integrated rainfall is due to the fact that the training storms (the other six) had more similar statistical
characteristics with much less instantaneous precipitation falling on average.

4.2.2 Local verification and case studies

We now turn to local verification and case study examples of the statistical model. We consider five case study locations
shown in Figure 6 on and near the Texas coastline which represents the primary area of interest for the original experi-
mental design. The study locations are Port Arthur, Houston, Corpus Christi, TX and two pixels covering Galveston, TX:
one pixel that is primarily over the land, the second is primarily over the ocean/coast adjacent to Galveston. The motiva-
tion for choosing the two Galveston locations is that precipitation patterns can change substantially with the introduction
of land.
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KLEIBER et al. 13 of 24

F I G U R E 6 Locations of five case study locations on and near the Texas coastline; dots represent the computational WRF grid.

We consider distributional aspects of hourly precipitation at each of the five case study locations in Figure 6 over all
seven cross-validation events. Figure 7 shows Q-Q plots for each storm and location and each of the 100 realizations of the
model, as well as values from R-CLIPER. In particular, these Q-Q plots represent hourly precipitation data at the particular
pixel of interest. These plots provide much information about the ability of the statistical model to appropriately localize
precipitation. For example, in approximately six of the 35 Q-Q plots, the statistical model undersimulates precipitation at
the extremes. Specifically, the sixth storm (column six) has high precipitation at Port Arthur and both Galveston pixels
that are not adequately captured by the statistical model; as with Figure 5 this is likely due to the fact that this storm was
statistically unusual in having substantially higher precipitation compared to the other events. Generally speaking the
Q-Q plots typically contain the identity line in approximate 95% confidence bands, even at more extreme precipitation
amounts, although there are instances where the statistical model oversimulates precipitation (e.g., the first event at
Houston, TX). Moreover, it is clear from these plots that R-CLIPER typically severely oversimulates, or undersimulates,
at the point-level, whereas in our simulations the identity line is more often contained within the central bulk of our
simulations, see, for example, the Port Arthur Q-Q plots. Capturing such local distributions is a high demand on the
model given the highly heterogeneous behavior of local precipitation, including its discrete-continuous nature. We next
consider validating the occurrence of precipitation.

The TC generator provides a separate probability distribution at each spatial location and hour; it is appropriate and
useful to quantify the quality of these distributions with respect to the held-out WRF data using verification tools from
probabilistic forecasting (Gneiting, Balabdaoui, & Raftery, 2007). In particular, we present two statistics, the first validating
the model’s ability to realistically provide probability of precipitation, and the second the full local simulation distribution.
A Brier score is a proper scoring rule used for predicting dichotomous events: for a set of forecast probabilities fi ∈ [0, 1]
and observations oi ∈ {0, 1}, the Brier score i = 1, … ,n is defined as

1
n

n∑

i=1
(oi − fi)2.

Brier scores vary between zero and one, and are inversely oriented in that lower scores indicate better probability forecasts.
We approximate the model’s probability of precipitation by the empirical rate that the 100 ensemble members are nonzero
at any given spatial location and hour. Figure 8 shows a histogram of Brier scores for presence of positive precipitation over
all hours from all events with almost all scores falling below 0.2. The average Brier score over all data is 0.05, indicating
high quality model probabilities of zero or positive precipitation that generally correctly identify locations of precipitation
occurrence.

As a final verification statistic, we consider the full local predictive distributions of precipitation. In theme with validat-
ing the probability of precipitation, at each spatial location and time point there is a predictive distribution of precipitation
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14 of 24 KLEIBER et al.

F I G U R E 7 Q-Q plots of hourly precipitation at the five case study sites for all seven events. Each row is a case study location and each
column is a separate event. Grey dots represent values different simulations from the proposed model, while black dots represent R-CLIPER
quantiles. Units are mm.

sampled by the 100 realizations from the statistical model. Such predictive distributions can be validated using verifi-
cation rank histograms (Gneiting, Balabdaoui, & Raftery, 2007). Rank histograms represent counts of the rank of the
WRF precipitation (at a given pixel and time) within the 100 simulated values from the statistical model. If the model is
well-calibrated, then these ranks should approximately follow a uniform distribution.

Figure 9 shows such rank histograms for each separate verification storm with a horizontal line indicating perfect
calibration. Events with ties between the WRF data and simulated data are randomly disaggregated. Generally the his-
tograms are flat and indicate high-quality calibration without much substantial under- or over-dispersion. Evidence shows
in almost all cases of slight undersimulation at the most extreme events. That is, the presence of the peak at the highest
rank indicates that there are an exaggerated number of cases where the WRF precipitation is higher than all 100 ensemble
members from the model. These are not necessarily cases of extreme precipitation, although they are contributing fac-
tors. Future research will focus on incorporating extreme value distributions into the space-time dynamical framework
proposed in this article.

5 DISCUSSION

In this article we introduce an ambitious approach to simulating quantitative precipitation fields for tropical cyclones
given a handful of features that are typically available in historical or simulated tropical cyclone track databases. The
method relies on modeling in Lagrangian coordinates, using the estimated storm center as the coordinate system origin.
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KLEIBER et al. 15 of 24

F I G U R E 8 Histogram of Brier scores validating probability of precipitation over all hours and all TC events.

F I G U R E 9 Verification rank histograms for each tropical cyclone event in the cross-validation experiment.

Basis expansion models are used both within the mean and residual processes, exploiting links to standard kernel con-
volution approaches for nonstationary processes in the spatial statistical literature. The limited information in the tracks
is aided by the use of training data based on observed TC tracks and high-resolution WRF model output, and the results
here represent a positive first step in developing a statistical approach for simulating precipitation fields for assessing
flooding due to TCs.

Estimation of the model is closely tied to model development, allowing for assumption checking and model build-
ing at each stage. A natural criticism of our approach is such a stepwise estimation procedure which is not expected
to be statistically efficient. Taking a more principled likelihood-based approach would be desirable for a fully statisti-
cal solution, but in our experiments the current approach aligns well with the goal of this article: to produce realistic
space-time correlated fields of tropical cyclone precipitation. It is not clear that the added effort to more fully incorporate
parametric uncertainty would have any substantive benefit, and would certainly come at the cost of significantly greater
effort.
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16 of 24 KLEIBER et al.

While our interest focuses on TC precipitation characteristics, coastal flooding is driven by both precipitation and
storm surge. A future research direction is to fold in a wind field model, such as Reich and Fuentes (2007), to estimate
the joint hazard posed by these two aspects of TCs. Another relevant direction would be to experiment with the proposed
approach in other geographical domains, as tropical cyclone climatological characteristics differ over distinct bodies of
water.

ORCID
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APPENDIX A. WRF DETAILS

Here we describe the configuration of the WRF model and the extraction of predictors from the WRF model output.

A.1 WRF model configuration
Version 4.0.1 of the Advanced Research WRF (ARW; Skamarock et al., 2019) model is used to make these simulations.
The WRF model has a number of settings that can be configured to change the exact formulation of the model; many
of these settings are configured to simulate particular types of weather events. Several WRF model simulations with
different configuration options were compared to hourly Automated Surface Observing System (ASOS) observations at
major airports within the WRF domain, and the configuration that best matched the available in-situ observations was
chosen for these simulations. The configuration options are outlined in Table A1.

A.2 Extraction of WRF predictors
The WRF output contains U and V direction wind speeds (in m/s) at multiple geopotential heights; we use speeds at
850 mb to derive both the storm center and radius of maximal winds. First, winds are spatially smoothed using a double
exponential kernel which reduces aberrant artifacts in the derivation of predictors. We calculate the pointwise curl of
U/V wind speeds using second-order discretized finite difference derivatives at each time step. At each hour, the storm
center is identified as the grid cell with maximal curl. We restrict attention to storm centers that are within two degrees
L∞ distance of the associated IBTrACS estimated storm centers to ensure that instantaneous aberrant storm center values
are not used. Finally, the storm centers, which are registered to the WRF output grid, are then independently smoothed
in both the U and V directions with a cubic smoothing spline.

Radius of maximal winds is calculated as the great circle distance to the point of maximal wind speed within 400 km
of the estimated storm center at each hour. These radii are then smoothed over time with a cubic smoothing spline to
reduce artifacts of the WRF gridding. Storm direction is calculated at hour t as the difference of the estimated storm center
at time t minus that at time t − 1; such an estimate was found to be quantitatively similar to higher order approximations
of direction. Central pressure deficit is quantified as 1013 minus pressure at the estimated storm center.

T A B L E A1 WRF model configuration, see text for details.

Configuration Selection Citation

Grid spacing 20 km

Initial and boundary conditions ERA-Interim Dee et al. (2011)

Microphysics WSM5 Hong et al. (2004)

Cumulus Kain–Fritsch Kain (2004)

Planetary boundary layer YSU Hong et al. (2006)

Radiation RRTMG Iacono et al. (2008)
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APPENDIX B. MODEL DETAILS

This appendix contains details of the model fit, including comparisons against simpler alternatives at various stages of
the model.

B.1 Polar coordinate smoothing
Figure B1 shows two example snapshots of raw precipitation data from WRF (without the spatial tapering), the same
data in polar coordinates and finally the kriged data in polar coordinate space. The critical point is that the two datasets
in the first column show rather distinct spatial structure of precipitation, but when viewed in polar coordinates (middle
column), the structure becomes more similar. However, the two sets of data are at irregularly-spaced locations in polar
coordinates, while the kriged data (third column) are mapped to a regular grid which is then comparable across all storms
and hours, and still maintains the important spatial structure seen in geographical coordinates.

B.2 Specification of transformation function
We next consider the choice of F in (1), instead using a standard normal cdf. Note that a standard normal cdf is the
approach used in Kleiber et al. (2012); however, in this application the process is highly nonstationary, and it is not a priori
clear that the more complicated version used in (1) is necessary. Figure B2 shows verification rank histograms for our case
study locations when using a normal cdf transformation—there is clear and strong evidence of bias and over-simulation.

B.3 Specification of taper function
We apply a taper function to each WRF and simulated precipitation field at each time point. The function is

g(r;RMAX) =
⎧
⎪
⎨
⎪
⎩

1, r ≤ RMAX ,

exp
(

−
(

r−RMAX
60

)2
)

, r > RMAX ,

F I G U R E B1 The first column contains two snapshots of for TC Fay on September 6, 2002 at 11 p.m. and September 8, 2002 at midnight.
The second column are the same data, in polar coordinates, while the third contains the kriged data that are regular in polar coordinates.
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F I G U R E B2 Verification rank histograms for each tropical cyclone event in the cross-validation experiment using F as a standard
normal cdf in (1).

F I G U R E B3 Q-Q plots for the fixed mean trend model.
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F I G U R E B4 Verification rank histograms for the stochastic mean-only model.

T A B L E B1 Percent of variance explained for the first seven principal component models using a multiple linear regression model for
𝜇𝓁(⋅) versus the random forest model in the text.

Model 𝝁1 𝝁2 𝝁3 𝝁4 𝝁5 𝝁6 𝝁7

Linear regression 0.69 0.42 0.05 0.16 0.09 0.12 0.09

Random forest 0.97 0.94 0.86 0.83 0.81 0.86 0.86

where r is a distance of a pixel in kilometers from the storm center at a particular time point, and RMAX is the radius of
maximal winds at the corresponding time point. This taper function maintains the exact simulated precipitation fields
below the radius of maximal winds, and applies a squared exponential taper beyond this radius with a range of 60 km,
which was seen to work well in visual assessments.

B.4 Model without residual process
The model (2) includes both a stochastic mean trend, as well as stochastic residual component. We performed the
cross-validation experiment under two separate models that remove the residual process, so that

Y (r, 𝜃, t) =
L∑

𝓁=1
c𝓁(t)𝜑𝓁(r, 𝜃).

F I G U R E B5 Averaged autocorrelation (ACF) and partial autocorrelation (PACF) functions for the d0(r, t), {d1,m(r, t), d2,m(r, t)}m

coefficients.
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F I G U R E B6 Parametric bootstrap estimates of the first three EOFs of (2) in the cross-validation study with storm Ike leftout.

In the first experiment, we allow c𝓁(t) to be random as in the manuscript; in the second experiment, we use fixed pre-
dicted values according to the fitted random forests, that is we update (3) to c𝓁(t) = 𝜇𝓁(t) without the random time series
process. Figures B3 and B4 show the local Q-Q plot studies for the fixed, non-random mean approach, and the stochastic
mean-only models, respectively. With the fixed-mean model, there is no quantification of uncertainty, and clearly some
bias is introduced through the model’s nonlinear transformations. With the stochastic mean-only model, there is evi-
dence of clear underdispersion in the simulated precipitation distributions, suggesting that the residual component of (2)
is a necessary piece of the model.

B.5 Models for basis function coefficients
The choice to model 𝜇𝓁(t) in (3) as a random forest is due to the apparent nontrivial and nonlinear relationships between
the features and the principal components. The random forest model for 𝜇𝓁(t) explains a substantial amount of vari-
ability in the coefficients c𝓁(t) as compared to a multiple linear regression model—Table B1 compares the r-squared
values for each model fit for the first seven principal components. There is, essentially, little-to-no predictive ability when
using a linear model, whereas the nonlinear relationships identified by the random forests explain more than 80% of
variability for these coefficients. Of course, it is unsurprising that a nonparametric model will outperform a straight-
forward linear model, but in this case it seems critical to use the nonlinear model given its vastly superior explanatory
ability.

B.6 Residual process autocorrelation
Figure B5 shows lag-wise averaged empirical autocorrelation and partial autocorrelation functions for the
d0(r, t), {d1,m(r, t), d2,m(r, t)}m coefficients, averaged over m and r. In our model we assume an autoregressive structure of
order one, which seems reasonable given the approximate exponential decay of the autocorrelation and negligible values
of the partial autocorrelation function of after order one.
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F I G U R E B7 All empirical orthogonal functions the storm center indicated by a grey dot.

T A B L E B2 Variable importance measured as total reduction in variance for all principal components’ random forest models; values are
scaled by 1 × 10−5.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

Radius of maximal winds 1.07 0.65 0.48 0.56 0.34 0.19 0.18 0.29 0.21 0.16 0.14 0.16 0.11

Pressure deficit at center 9.97 4.61 1.06 0.70 0.89 0.64 0.61 0.33 0.35 0.31 0.22 0.16 0.14

U component of direction 1.57 1.06 0.78 0.47 0.41 0.29 0.24 0.34 0.29 0.20 0.14 0.16 0.14

V component of direction 3.82 0.84 0.98 0.69 0.45 0.51 0.51 0.39 0.22 0.22 0.31 0.22 0.18

U component of center 2.88 1.91 0.74 0.44 0.32 0.38 0.35 0.27 0.31 0.23 0.15 0.17 0.15

V component of center 1.86 1.10 0.61 0.96 0.40 0.32 0.29 0.24 0.22 0.17 0.18 0.13 0.18

Distance to coast 1.44 1.04 0.45 0.64 0.26 0.37 0.33 0.23 0.19 0.19 0.14 0.15 0.15
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B.7 EOF estimation
It is not a priori clear that our method of estimating the EOFs in (2) will work, as EOFs are not invariant under nonlinear
transformations. Figure B6 shows parametric bootstrap samples of the first three EOFs using simulated data from the
model. Note these were estimated in the cross-validation study with TC Ike held out, to illustrate that even with a slightly
reduced sample size, our estimates of these functions are reasonable. The exact spatial patterns in higher-order EOFs do
not always match the bootstrap estimates, but the amount of variability explained is still consistent with our estimation
approach.

As a final addition, we include the full set of 13 EOFs used in the application, as well as their coefficient’s random
forest variable importance, seen in Figure B7 and Table B2.
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